Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from direct detection and neutrino observations

Arpan Kar

Center for Quantum Spacetime (CQUeST), Sogang University, Seoul, South Korea

Based on JCAP03(2023)011

in collaboration with S. Scopel, and S. Kang

SUSY 2023, University of Southampton Jul 17-21, 2023

 \bullet Cold Dark Matter (CDM): provides \sim 25% of the energy density of the Universe; evidences are only through gravitational effects

- \bullet Cold Dark Matter (CDM): provides $\sim\!25\%$ of the energy density of the Universe; evidences are only through gravitational effects
- Weakly Interacting Massive Particles (WIMPs): one of the most popular candidates for CDM

- Cold Dark Matter (CDM): provides \sim 25% of the energy density of the Universe; evidences are only through gravitational effects
- Weakly Interacting Massive Particles (WIMPs): one of the most popular candidates for CDM
- Direct Detection (DD):
 A popular technique to search for WIMPs
 - mainly based on scattering of WIMPs against nuclear targets

- \bullet Cold Dark Matter (CDM): provides $\sim\!25\%$ of the energy density of the Universe; evidences are only through gravitational effects
- Weakly Interacting Massive Particles (WIMPs): one of the most popular candidates for CDM
- Direct Detection (DD):
 A popular technique to search for WIMPs
 - mainly based on scattering of WIMPs against nuclear targets
- Same WIMP-nucleus scatterings probed by DD can trigger gravitational capture of WIMPs in celestial bodies (e.g., Sun)

Neutrino Telescopes (NTs):
 can search for v's produced by WIMP annihilations in the Sun

Uncertainties in the signal prediction

- Non-detection of any new signal in DD and NT experiments
 ⇒ upper-limits on WIMP-nucleus interaction
- Two classes of major uncertainties in the signal prediction:
 - The nature of the WIMP-nucleus interaction
 - ullet The WIMP speed distribution f(u) (in the Solar reference frame) that determines the WIMP flux
- WIMP-nucleus interaction:

Most common choice: standard spin-independent (SI) or spin-dependent (SD) interactions

 WIMP speed distribution f(u):
 Most common choice: a Maxwell-Boltzmann (MB) speed distribution in the Galactic frame (and boosted to the Solar frame)
 Standard Halo Model (SHM)

 $[u \equiv WIMP \text{ speed in the halo (w.r.t. the Solar frame)}]$

WIMP speed distribution: Halo-independent approach

- MB distribution (based on Isothermal Model) provides a zero-order approximation to f(u)
 - Numerical simulations of Galaxy formation can only tell us about statistical average properties of halos
 - Merger events can add sizeable non-thermal components in f(u)
 - Growing number of observed dwarf galaxies suggests that our halo is not perfectly thermalized
- Halo-independent approach:
 - ightarrow A strategy to find the most conservative bound with the constraint:

$$\int_{u=0}^{u_{\text{max}}} f(u) \ du = 1, \quad f(u) \Rightarrow \text{any possible speed distribution}$$

```
• DD experiments are only sensitive to u>u_{\rm th}^{\rm DD} [ u_{\rm th}^{\rm DD}=\sqrt{\frac{m_T}{2\mu_{\chi_T}^2}} {\it E}_{R{\rm th}}] \Rightarrow can not cover the full WIMP speed range [0, u_{\rm max}] \{u_{\rm max}\equiv Galactic escape speed (in solar frame)}
```

- DD experiments are only sensitive to $u>u_{\rm th}^{\rm DD}$ [${\it u}_{\rm th}^{\rm DD}=\sqrt{\frac{m_T}{2\mu_{\chi T}^2}{\it E}_{R{\rm th}}}$] \Rightarrow can not cover the full WIMP speed range [0, $u_{\rm max}$] $\{u_{\rm max}\equiv$ Galactic escape speed (in solar frame)}
- Capture in the Sun is favoured for low (even vanishing) WIMP speeds.

- DD experiments are only sensitive to $u>u_{\rm th}^{\rm DD}$ [$u_{\rm th}^{\rm DD}=\sqrt{\frac{m_T}{2\mu_{\chi T}^2}} {\it E}_{\it Rth}$] \Rightarrow can not cover the full WIMP speed range [0, $u_{\rm max}$] $\{u_{\rm max}\equiv$ Galactic escape speed (in solar frame)}
- Capture in the Sun is favoured for low (even vanishing) WIMP speeds.

Possible solution to the Halo-independent approach:
 Direct detection (DD) "+" Neutrino Telescope (NT)

- DD experiments are only sensitive to $u>u_{\rm th}^{\rm DD}$ [$u_{\rm th}^{\rm DD}=\sqrt{\frac{m_T}{2\mu_{\chi T}^2}} {\it E}_{\it Rth}$] \Rightarrow can not cover the full WIMP speed range [0, $u_{\rm max}$] $\{u_{\rm max}\equiv$ Galactic escape speed (in solar frame)}
- Capture in the Sun is favoured for low (even vanishing) WIMP speeds.

Possible solution to the Halo-independent approach:
 Direct detection (DD) "+" Neutrino Telescope (NT)

Extra assumptions: (1) Equilibrium between capture and annihilation (2) primary annihilation channel of WIMP

• The complementarity between DD and NT was used to develop a straightforward method that gives conservative constraints on WIMP interactions independent of f(u)

```
[Ferrer et al. (JCAP09(2015)052)]
```

Halo-independent upper-limits

 The halo-independent method was applied to the case of standard SI/SD scenario without assuming any general structure for the WIMP-nucleus interaction

Effective theory of WIMP-nucleon scattering

- Non-observation of new physics predicted by popular extensions of the Standard Model (e.g., SUSY)
 - \Rightarrow motivation for bottom–up approaches that go beyond the standard SI/SD scenario
- Usually the WIMP scattering process is **non-relativistic**In general the WIMP-nucleon interaction can be parameterized with an effective Hamiltonian \mathcal{H} , complies with Galilean symmetry:

$$\mathcal{H} = \sum_{ au=0,1} \sum_i c_i^ au \mathcal{O}_i$$

 \mathcal{O}_i : Galilean-invariant operators

 c_i^{τ} : Wilson coefficients, with τ (= 0,1) the isospin

$$c_i^p = c_i^0 + c_i^1$$
, $c_i^n = c_i^0 - c_i^1$

Non-relativistic effective theory (NREFT)

Non-relativistic effective theory (NREFT)

NR Galilean invariant operators for a WIMP of spin 1/2 (up to linear terms in the WIMP velocity \vec{v})

[Fitzpatrick et al. (JCAP02(2013)004)], [Anand et al. (PRC 89, 065501 (2014))]

$$\begin{array}{|c|c|c|} \hline \mathcal{O}_1 = 1_\chi 1_N \text{ (standard SI)} & \mathcal{O}_9 = i \vec{S}_\chi \cdot (\vec{S}_N \times \frac{\vec{q}}{m_N}) \\ \mathcal{O}_3 = i \vec{S}_N \cdot (\frac{\vec{q}}{m_N} \times \vec{v}^\perp) & \mathcal{O}_{10} = i \vec{S}_N \cdot \frac{\vec{q}}{m_N} \\ \mathcal{O}_4 = \vec{S}_\chi \cdot \vec{S}_N \text{ (standard SD)} & \mathcal{O}_{11} = i \vec{S}_\chi \cdot \frac{\vec{q}}{m_N} \\ \mathcal{O}_5 = i \vec{S}_\chi \cdot (\frac{\vec{q}}{m_N} \times \vec{v}^\perp) & \mathcal{O}_{12} = \vec{S}_\chi \cdot (\vec{S}_N \times \vec{v}^\perp) \\ \mathcal{O}_6 = (\vec{S}_\chi \cdot \frac{\vec{q}}{m_N}) (\vec{S}_N \cdot \frac{\vec{q}}{m_N}) & \mathcal{O}_{13} = i (\vec{S}_\chi \cdot \vec{v}^\perp) (\vec{S}_N \cdot \vec{w}^\perp) \\ \mathcal{O}_7 = \vec{S}_N \cdot \vec{v}^\perp & \mathcal{O}_{14} = i (\vec{S}_\chi \cdot \frac{\vec{q}}{m_N}) (\vec{S}_N \cdot \vec{v}^\perp) \\ \mathcal{O}_8 = \vec{S}_\chi \cdot \vec{v}^\perp & \mathcal{O}_{15} = -(\vec{S}_\chi \cdot \frac{\vec{q}}{m_N}) ((\vec{S}_N \times \vec{v}^\perp) \cdot \frac{\vec{q}}{m_N}) \\ \hline \end{array}$$

 $m_N \equiv$ nucleon mass ; $\vec{q} \equiv$ transferred momentum ; \vec{v}^{\perp} . $\vec{q} = 0$

- \bullet \mathcal{O}_i 's are the most general building blocks of the low-energy theory
- Discussion of the halo-independent method when the WIMP–nucleus interaction is driven by each \mathcal{O}_i is crucial for understanding the more general scenarios involving the sum of several NR operators

WIMP-nucleus scattering in NREFT

• Differential cross-section of WIMP-nucleus scattering $\frac{d\sigma_T}{dE_R}$: (required for calculating both WIMP DD signal and capture rate in the Sun)

$$\frac{d\sigma_T}{dE_R} = \frac{2m_T}{4\pi v^2} \left[\frac{1}{2j_\chi + 1} \frac{1}{2j_T + 1} |\mathcal{M}_T|^2 \right]$$

[Fitzpatrick et al. (JCAP02(2013)004)], [Anand et al. (PRC 89, 065501 (2014))]

$$\left|\mathcal{M}_{\mathcal{T}}\right|^{2} = 4\pi(2j_{\chi}+1)\sum_{ au=0,1}\sum_{ au'=0,1}\sum_{k}R_{k}^{ au au'}\left[(c_{i}^{ au})^{2},(v^{\perp})^{2},rac{q^{2}}{m_{N}^{2}}
ight]W_{Tk}^{ au au'}(q)$$

$$(v^{\perp})^2 = v^2 - v_{\min}^2$$
, $v_{\min}^2 = \frac{q^2}{4\mu_{\chi T}^2} = \frac{m_T E_R}{2\mu_{\chi T}^2}$, $q^2 = 2m_T E_R$

WIMP response functions:
$$R_k^{\tau \tau'} = R_{0k}^{\tau \tau'} + R_{1k}^{\tau \tau'} (\mathbf{v}^2 - \mathbf{v}_{\min}^2)$$

Nuclear response functions (form factor): $W_{Tk}^{\tau\tau'}(q)$

$$k = M$$
, Φ'' , $\tilde{\Phi}'$, Σ'' , Σ' , Δ (index representing different effective nuclear operators)

Direct detection events & capture rate in NREFT

Number of expected events in a DD experiment:

$$R_{\mathrm{DD}} = M \tau_{\mathrm{exp}} \left(\frac{\rho_{\odot}}{m_{\chi}} \right) \int du \, f(u) \, u \sum_{T \in \mathrm{DD}} N_{T} \int_{E_{R \, \mathrm{th}}}^{2\mu_{\chi T}^{2} u^{2}/m_{T}} dE_{R} \, \epsilon(E_{R}) \underbrace{\left[\frac{d\sigma_{T}}{dE_{R}} \right]}_{\mathcal{H} = \sum_{\tau = 0, 1} \sum_{i} c_{i}^{\tau} \mathcal{O}_{i}^{\tau} \mathcalOO_{i}^{\tau} \mathcalO$$

Capture rate of WIMPs in the Sun:

$$\begin{array}{lcl} C_{\odot} & = & \left(\frac{\rho_{\odot}}{m_{\chi}}\right) \int du \, f(u) \, \frac{1}{u} \int_{0}^{R_{\odot}} dr \, 4\pi r^{2} \, w^{2} \\ \\ & \times \sum_{T \, \in \, \mathrm{Solar \, nuclei}} \eta_{T}(r) \, \Theta(u_{T}^{\mathrm{C-max}} - u) \int_{m_{\chi}u^{2}/2}^{2\mu_{\chi}^{2} - w^{2}/m_{T}} dE_{R} \underbrace{\left[\frac{d\sigma_{T}}{dE_{R}}\right]}_{\mathcal{H} = \sum_{\tau = 0, 1} \sum_{i} c_{i}^{\tau} \mathcal{O}_{i}} \end{array}$$

$$w^2=u^2+v_{\rm esc}^2(r)$$
 (enhanced WIMP speed in the gravitational field of the Sun) $u_T^{\rm C-max}=v_{\rm esc}(r)\sqrt{\frac{4m_\chi m_T}{(m_\chi-m_T)^2}}$ (maximum WIMP speed for which capture via scattering off target T is kinematically possible)

- We assume equilibrium between WIMP capture and annihilation in the Sun $(\Gamma_{\odot}=C_{\odot}/2)$
 - $\Rightarrow \nu$ -flux from WIMP annihilations in the Sun is determined by C_{\odot}

Single-stream halo-independent bound

 $c_{i_{\max}}(u) \equiv$ upper-limit on c_i when all WIMPs are in a single speed stream u

The halo-independent upper-limit:

$$c^2 \le 2 c_*^2$$

NT: IceCube, Super-K $[\chi\chi\to b\bar{b}]$ DD: Xe1T, PICO-60(C_3F_8), PICO-60(CF_3I)

[S. Kang, AK, S. Scopel, (JCAP03(2023)011)]

- Halo-independent bound is obtained for each pairs of NT & DD
- The most constraining limit is taken

Halo-independent bounds on couplings

[S. Kang, AK, S. Scopel, (JCAP03(2023)011)]

Halo-independent bounds on couplings

Relaxing factor

relaxing factor
$$\equiv \frac{(c_i)\text{halo-indep.}}{(c_i)\text{SHM}} \left(\simeq \frac{\sqrt{2}c_*}{(c_i)\text{SHM}} \right)$$

- $(c_i)_{halo-indp.} \equiv halo-independent upper-limit on coupling <math>c_i$
- $(c_i)_{\mathsf{SHM}} \equiv \mathsf{strongest}$ upper-limit on c_i for a standard MB speed distribution

relaxing factor for WIMP-proton couplings

[S. Kang, AK, S. Scopel, (JCAP03(2023)011)]

- ullet Moderate relaxing factors for low and high m_χ
- Moderate relaxing factors (in the intermediate m_{χ} range) for "spin-dependent" ("SD") operators: \mathcal{O}_4 , \mathcal{O}_7 (g^0); \mathcal{O}_9 , \mathcal{O}_{10} , \mathcal{O}_{14} (g^2); \mathcal{O}_6 (g^4)
- Small relaxing factor ⇒ MB (SHM) is not an optimistic assumption

continued....

Explanation for the low relaxing factors (in the intermediate m_χ range) for "SD" WIMP-proton couplings:

- WIMP capture is strongly enhanced due to scattering off abundant ¹H
 [more prominent for O₇ ("SD", no momentum suppression,
 velocity-dependent)]
 - $\Rightarrow c_*$ (peak value of the convolution of NT and DD limits) is low
 - ⇒ smaller relaxing factor

Summary

- ullet Combining direct detection and u-search results we obtain halo-independent bounds on each coupling of the NR effective $\mathcal H$ that drives the WIMP(spin 1/2)—nuclei scattering
- One single coupling is considered at a time

 (a first step towards more general scenarios involving several NR operators at the same time)
- For most of the couplings the relaxation of the halo-independent bounds compared to those obtained for the SHM is relatively moderate in the low and high m_{χ} regimes
- More moderate values of the bound relaxation is observed for "SD"-type WIMP-proton couplings with comparatively small momentum suppression
 - ⇒ SHM is not a very optimistic choice
- Other cases are sensitive on the WIMP speed distribution

Thank You

Backup slides

Details of the Operator structure in NREFT

operator	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$	operator	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$
1	$M(q^0)$	-	3	$\Phi''(q^4)$	$\Sigma'(q^2)$
4	$\Sigma''(q^0), \Sigma'(q^0)$	-	5	$\Delta(q^4)$	$M(q^2)$
6	$\Sigma''(q^4)$	-	7	-	$\Sigma'(q^0)$
8	$\Delta(q^2)$	$M(q^0)$	9	$\Sigma'(q^2)$	-
10	$\Sigma''(q^2)$	-	11	$M(q^2)$	-
12	$\Phi''(q^2), \tilde{\Phi}'(q^2)$	$\Sigma''(q^0), \Sigma'(q^0)$	13	$\tilde{\Phi}'(q^4)$	$\Sigma''(q^2)$
14	-	$\Sigma'(q^2)$	15	$\Phi''(q^6)$	$\Sigma'(q^4)$

index k corresponding to each operator \mathcal{O}_i , for the velocity-independent and the velocity-dependent components parts of the WIMP response function. The power of q in the WIMP response function is in parenthesis.

Single stream method

Considering one effective coupling (c_i) at a time, expected number of events in a DD experiment/the expected WIMP capture rate in the Sun:

$$R_{\mathrm{exp}}(c_i^2) = \int du \, f(u) \, H_{\mathrm{exp}}(c_i^2, u) \leq R_{\mathrm{max}}$$

 $R_{
m max} \equiv$ corresponding experimental bound

Define

$$c_{i \max}^2(u) = \frac{R_{\max}}{H(c_i = 1, u)}$$

Using $H(c_i^2, u) = c_i^2 H(c_i = 1, u)$,

$$H(c_{i\,\max}^2(u),u)=R_{\max}$$

 $c_{i_{\max}}(u) \equiv$ upper-limit on c_i when all WIMPs are in a single speed stream u

Methodology

$$R(c_i^2) = \int_0^{u_{\text{max}}} du \, f(u) \, H(c_i^2, u) \le R_{\text{max}}$$

Since $H(c_i^2, u) = c_i^2 H(c_i = 1, u)$, one can write

$$R(c_i^2) = \int_0^{u_{\text{max}}} du \, f(u) \, H(c_i^2, u)$$

$$= \int_0^{u_{\text{max}}} du \, f(u) \, \frac{c_i^2}{c_{i \, \text{max}}^2(u)} H(c_{i \, \text{max}}^2(u), u)$$

$$= \int_0^{u_{\text{max}}} du \, f(u) \, \frac{c_i^2}{c_{i \, \text{max}}^2(u)} R_{\text{max}} \leq R_{\text{max}}$$

upper bound on the coupling c_i :

$$c_i^2 \le \left[\int_0^{u_{\text{max}}} du \frac{f(u)}{c_{i \text{ max}}^2(u)} \right]^{-1}$$

Methodology

$$c_i^2 \leq \left[\int_0^{u_{\max}} du \frac{f(u)}{c_{i\max}^2(u)}\right]^{-1}$$

$$\begin{array}{lll} \left(c^{\rm NT}\right)^2_{\rm max}(u) & \leq & c_*^2 & & \text{for } 0 \leq u \leq \tilde{u} \\ \left(c^{\rm DD}\right)^2_{\rm max}(u) & \leq & c_*^2 & & \text{for } \tilde{u} \leq u \leq u_{\rm max} \end{array}$$

$$c^{2} \leq c_{*}^{2} \left[\int_{0}^{\tilde{u}} du f(u) \right]^{-1} = \frac{c_{*}^{2}}{\delta} \qquad \text{with} \quad \delta = \int_{0}^{\tilde{u}} du f(u)$$

$$c^{2} \leq c_{*}^{2} \left[\int_{\tilde{u}}^{u_{\text{max}}} du f(u) \right]^{-1} = \frac{c_{*}^{2}}{1 - \delta} \qquad \text{with} \quad 1 - \delta = \int_{\tilde{u}}^{u_{\text{max}}} du f(u)$$

$$\Rightarrow \delta = 1/2$$

$$c^{2} \leq 2 c_{*}^{2}$$

Methodology

For a choice of a large $u_{\rm max}$ it may happen that

$$\left(c^{\rm DD}\right)^2_{\rm max}\left(u_{\rm max}\right)>c_*^2$$

[Mainly due to the suppression of the scattering amplitude by the nuclear form factor at large recoil energies (large WIMP speeds)]

$$c^{2} \leq c_{*}^{2} \left[\int_{0}^{\tilde{u}} du f(u) \right]^{-1} = \frac{c_{*}^{2}}{\delta}$$
 $c^{2} \leq (c^{\mathrm{DD}})^{2}_{\mathrm{max}} (u_{\mathrm{max}}) \left[\int_{\tilde{u}}^{u_{\mathrm{max}}} du f(u) \right]^{-1} = \frac{(c^{\mathrm{DD}})^{2}_{\mathrm{max}} (u_{\mathrm{max}})}{1 - \delta}$
 $c^{2} \leq (c^{\mathrm{DD}})^{2}_{\mathrm{max}} (u_{\mathrm{max}}) + c_{*}^{2}$

• A larger escape speed $u_{
m max}$ (much larger than \sim 800 km/s) is also considered

Relaxing factor (WIMP-neutron couplings)

relaxing factor
$$\equiv \frac{(c_i)_{\mbox{halo-indep.}}}{(c_i)_{\mbox{SHM}}} \left(\simeq \frac{\sqrt{2}\,c_*}{(c_i)_{\mbox{SHM}}} \right)$$

 $(c_i)_{halo-indp.} \equiv halo-independent upper-limit on coupling <math>c_i$

 $(c_i)_{SHM} \equiv strongest upper-limit on <math>c_i$ for a standard MB speed distribution

Explanation for the general pattern of the relaxing factor:

Small relaxing factor \Rightarrow MB (SHM) is not a very optimistic assumption

Equilibrium between WIMP capture & annihilation in Sun

Searches for solar ν 's at neutrino telescopes (NTs) put bounds on Γ_{\odot}

$$\frac{d\phi_{\nu}}{dE_{\nu}} = \frac{\Gamma_{\odot}}{4\pi d_{\odot}^2} \sum_{f} B_{f} \left(\frac{dN_{\nu}}{dE_{\nu}}\right)_{f}$$

$$\Gamma_{\odot} = (C_{\odot}/2) \tanh^{2}(t_{\odot}/\tau_{\odot})
\frac{t_{\odot}}{\tau_{\odot}} = 330 \left(\frac{C_{\odot}}{\mathrm{s}^{-1}}\right)^{1/2} \left(\frac{\langle \sigma v \rangle}{\mathrm{cm}^{3} \mathrm{s}^{-1}}\right)^{1/2} \left(\frac{m_{\chi}}{10 \,\mathrm{GeV}}\right)^{3/4}$$

For the present sensitivities of IceCube and Super-Kamiokande and assuming $\langle \sigma v \rangle \simeq 3 \times 10^{-26}~{\rm cm^3~s^{-1}}$ (thermal WIMP)

$$rac{t_{\odot}}{ au_{\odot}}\gg 1$$
 [Equilibrium] $\Rightarrow \Gamma_{\odot}\simeq C_{\odot}/2$

 \Rightarrow The upper-limits on Γ_{\odot} , provided by NTs (assuming a particular WIMP annihilation channel), are converted directly into the upper-limits on C_{\odot} and hence on the WIMP-nucleon couplings that drive C_{\odot}