## SUSY2023

## Quantum information \& CP measurement in Higgs to tau tau at future lepton colliders

$$
\text { [Phys.Rev.D } 107 \text { (2023) 9, 093002] }
$$

Mohammad Mahdi Altakach

In collaboration with: P. Lamba, F. Maltoni, K. Mawatari and K. Sakurai

18 Jul. 2023

## Part I

## Introduction

## Spin

- In classical mechanics, the components of angular momentum $\left(I_{x}, I_{y}, I_{z}\right)$ take continuous real numbers.
- A striking fact, found in the Stern-Gerlach experiment, is that the measurement outcome of spin component is either +1 or -1 (in the $\hbar / 2$ unit).



## Alice \& Bob



- Alice and Bob receive particles $\alpha$ and $\beta$, respectively, and measure the spin $z$-component of their particles. Repeat the process many times.
- Alice and Bob will find their results are completely random (+1 and -1, 50-50\%).
- Nevertheless, their result is $100 \%$ anti-correlated due to the angular momentum conservation. If Alice's result is +1 , Bob's result is always -1 and vice versa.

| Alice + + - + - - + + + - +  <br> $S_{z}^{\alpha} \cdot S_{z}^{\beta}$ - - - + - + + - - - + - |  |
| ---: | :--- |
|  | $\left\langle<S_{z}^{\alpha} \cdot S_{z}^{\beta}\right\rangle=-1$ |

## Hidden variable theory



| Alice | + | + | - | + | - | - | + | + | + | - | + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bob | - | - | + | - | + | + | - | - | - | + | - |
| $S_{z}^{\alpha} . S_{z}^{\beta}$ | - | - | - | - | - | - | - | - | - | - | - |

## Hidden variable theory



| Alice | + | + | - | + | - | - | + | + | + | - | + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bob | - | - | + | - | + | + | - | - | - | + | - |
| $S_{z}^{\alpha} . S_{z}^{\beta}$ | - | - | - | - | - | - | - | - | - | - | - |

## Hidden variable theory



- Particles have definite properties regardless of the measurement.
- Alice's measurement has no influence on Bob's particle.
(realism)
(locality)


## Quantum mechanics (QM)

- Although their outcomes are different in each decay, QM says the state of the particles are exactly the same for all decays:
- Before the measurements, particles have no definite spin. Outcomes are undetermined.
- At the moment when Alice makes her measurement, the state collapses into:


Bob's outcome is completely determined (before his measurement) and $100 \%$ anti-correlated with Alice's.

## Entanglement

- The origin of this bizarre feature is entanglement.


Bob's measurement collapses the state of $\boldsymbol{\beta}$ to $|+\rangle_{z}$ or $|-\rangle_{z}$ but does not influence the state of $\boldsymbol{\alpha}$.

## Bell inequalities

- It seems difficult to experimentally discriminate QM and general hidden variable theories.
- John Bell (1964) derived simple inequalities that can discriminate QM from any local-real hidden variable theories: Bell inequalities.



## Bell inequalities



- Finally we construct:

$$
R_{\mathrm{CHSH}} \equiv \frac{1}{2}\left|\left\langle s_{a} s_{b}\right\rangle-\left\langle s_{a} s_{b^{\prime}}\right\rangle+\left\langle s_{a} s_{b}\right\rangle+\left\langle s_{a^{\prime}} s_{b^{\prime}}\right\rangle\right|
$$

One can show in hidden variable theories that: $R_{\text {CHSH }} \leq 1$ [Clauser, Horne, Shimony, Holt, 1969].

## Bell inequalities

- In QM, for: $\left|\Psi^{(0,0)}\right\rangle \doteq \frac{|+-\rangle_{z}-|-+\rangle_{z}}{\sqrt{2}}$
- One can show: $\left\langle s_{a} s_{b}\right\rangle=\left\langle\Psi^{(0,0)}\right| s_{a} s_{b}\left|\Psi^{(0,0)}\right\rangle=(\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})$
- Therefore:

$$
\begin{aligned}
R_{\mathrm{CHSH}} & \left.=\frac{1}{2} \right\rvert\,\left\langle s_{a} s_{b}\right\rangle-\left\langle s_{a} s_{b}\right\rangle+\left\langle s_{a^{\prime}} s_{b}\right\rangle+\left\langle s_{\left.a^{\prime} s_{b^{\prime}}\right\rangle}\right| \\
& =\frac{1}{2} \left\lvert\, \underbrace{(\hat{\mathrm{a}} \cdot \hat{\mathbf{b}})}-(\underbrace{}_{-\frac{1}{\sqrt{2}} \cdot\left(\hat{\mathrm{~b}}^{\prime}\right)}+\underbrace{\left(\hat{\mathrm{a}}^{\prime} \cdot \hat{\mathbf{b}}\right)}_{-\frac{1}{\sqrt{2}}}+(\underbrace{\left(\hat{\mathrm{a}}^{\prime} \cdot \hat{\mathrm{b}}^{\prime}\right)}_{\frac{1}{\sqrt{2}}})\right.
\end{aligned}
$$

violates the upper bound of hidden variable theories!


Part II

## Spin 1/2 biparticle system

## Density operator

## $\checkmark$ Probability of having $\left|\psi_{1}\right\rangle$

- For a statistical ensemble $\left\{\left\{p_{1}:\left|\psi_{1}\right\rangle\right\},\left\{p_{2}:\left|\psi_{2}\right\rangle\right\},\left\{p_{3}:\left|\psi_{3}\right\rangle\right\}, \ldots\right\}$, we define the density operator/matrix:

$$
\begin{aligned}
& \qquad \hat{\rho} \equiv \sum_{k} p_{k}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right| \quad \rho_{a b} \equiv\left\langle e_{a}\right| \hat{\rho}\left|e_{b}\right\rangle \\
& \text { Density matrices satisfy the conditions: }
\end{aligned} \begin{gathered}
0 \leq p_{k} \leq 1 \\
\sum_{k} p_{k}=1 \\
\left\langle e_{a} \mid e_{b}\right\rangle=\delta_{a b}
\end{gathered}
$$

$$
\left[\begin{array}{l}
\hat{\rho}^{\dagger}=\hat{\rho} \\
\operatorname{Tr} \hat{\rho}=1 \\
\hat{\rho} \text { is positive definite, that is }{ }^{\forall}|\varphi\rangle ;\langle\varphi| \hat{\rho}|\varphi\rangle \geq 0 .
\end{array}\right.
$$

- The expectation of an observable $\mathbf{0}$ is calculated by:

$$
\langle\hat{O}\rangle=\operatorname{Tr}[\hat{O} \hat{\rho}]
$$

## Spin 1/2 biparticle system

- The spin system of $\alpha$ and $\beta$ particles has 4 independent bases:
$\left(\left|e_{1}\right\rangle,\left|e_{2}\right\rangle,\left|e_{3}\right\rangle,\left|e_{4}\right\rangle\right)=(|++\rangle,|+-\rangle,|-+\rangle,|--\rangle)$
- ==> $\rho_{a b}$ is a $4 \times 4$ matrix (hermitian, $\mathrm{Tr}=1$ ). It can be expanded as

$$
\rho=\frac{1}{4}\left(1 \otimes 1+B_{i} \cdot \sigma_{i} \otimes 1+\bar{B}_{i} \cdot 1 \otimes \sigma_{i}+C_{i j} \cdot \sigma_{i} \otimes \sigma_{j}\right), \quad B_{i}, \bar{B}_{i}, C_{i j} \in \mathbb{R}
$$

- For the spin operators $\hat{S}^{\alpha}$ and $\hat{S}^{\beta}$ :

$$
\left\langle\left\langle\hat{s}_{i}^{\alpha}\right\rangle=\operatorname{Tr}\left[\hat{s}_{i}^{\alpha} \hat{\rho}\right]=B_{i} \quad\left\langle\hat{s}_{i}^{\beta}\right\rangle=\operatorname{Tr}\left[\hat{s}_{i}^{\beta} \hat{\rho}\right]=\bar{B}_{i} \quad\left\langle\hat{s}_{i}^{\alpha} \hat{S}_{j}^{\beta}\right\rangle=\operatorname{Tr}\left[\hat{s}_{i}^{\alpha} \hat{S}_{j}^{\beta} \hat{\rho}\right]=C_{i j}\right.
$$

## Entanglement

- If the state is separable (not entangled):

$$
\rho=\sum_{k} p_{k} \rho_{k}^{\alpha} \otimes \rho_{k}^{\beta}, \quad 0 \leq p_{k} \leq 1 \text { and } \sum_{k} p_{k}=1
$$

- Then, a modified matrix by the partial transpose:
$\rho^{T_{\beta}}=\sum_{k} p_{k} \rho_{k}^{\alpha} \otimes\left[\rho_{k}^{\beta}\right]^{T}$
is also a physical density matrix, i.e. $\operatorname{Tr}=1$ and non-negative.
- For biparticle systems, entanglement $\Longleftrightarrow \rho^{T_{\beta}}$ to be non-positive. [PeresHorodecki $(1996,1997)]$.
- A simple sufficient condition for entanglement is:
$E \equiv C_{11}+C_{22}-C_{33}>1$
[Eur. Phys. J. C 82, 666 (2022)]

$$
H \rightarrow \tau^{+} \tau^{-}
$$

- Generic $\mathrm{H} \tau \tau$ interaction:

$$
\begin{gathered}
\mathscr{L}_{i n t}=-\frac{m_{\tau}}{v_{S M}} \kappa H \bar{\Psi}_{\tau}\left(\cos \delta+i \gamma_{5} \sin \delta\right) \Psi_{\tau} \\
\rho_{m n, \bar{m} \bar{n}}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & e^{-i 2 \delta} & 0 \\
0 & e^{-i 2 \delta} & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

SM: $(\kappa, \delta)=(1,0)$

$$
B_{i}=\bar{B}_{i}=0, C_{i j}=\left(\begin{array}{ccc}
\cos 2 \delta & \sin 2 \delta & 0 \\
-\sin 2 \delta & \cos 2 \delta & 0 \\
0 & 0 & -1
\end{array}\right), E=2 \cos 2 \delta+1
$$

## Estimation of $\mathrm{C}_{\mathrm{ij}}$

- Let's suppose a spin $1 / 2$ particle $\boldsymbol{\alpha}$ is at rest and spinning in the $\mathbf{s}$ direction.
- $\alpha$ decays into a measurable particle $I_{\alpha}$ and the rest $\mathrm{X}: \alpha \rightarrow \boldsymbol{l}_{\boldsymbol{\alpha}}+(\mathrm{X})$
- The decay distribution is generally given by $: \frac{d \Gamma}{d \Omega} \propto 1+x_{\alpha}\left(\hat{I}_{\alpha} \cdot s\right)$
$x \in[-1,1]$ is called spin-analysing power and depends on the decay

Unit direction vector of $I_{\alpha}$ measured at the rest frame of $\boldsymbol{a}$

## Part III

## Higgs to tau tau @ lepton colliders

## Why lepton colliders?

- Background $Z / \gamma \rightarrow \tau^{+} \tau^{-}$is much smaller at lepton colliders
- We need to reconstruct each $\tau$ rest frame to measure $\hat{I}$. This is challenging at hadron colliders since partonic CoM energy is unknown for each event

LHC



## Simulation

|  | ILC | FCC-ee |
| ---: | :---: | :---: |
| energy $(\mathrm{GeV})$ | 250 | 240 |
| luminosity $\left(\mathrm{ab}^{-1}\right)$ | 3 | 5 |
| beam resolution $e^{+}(\%)$ | 0.18 | $0.83 \times 10^{-4}$ |
| beam resolution $e^{-}(\%)$ | 0.27 | $0.83 \times 10^{-4}$ |
| $\sigma\left(e^{+} e^{-} \rightarrow H Z\right)(\mathrm{fb})$ | 240.1 | 240.3 |
| \# of signal $(\sigma \cdot \mathrm{BR} \cdot L \cdot \epsilon)$ | 385 | 663 |
| \# of background $(\sigma \cdot \mathrm{BR} \cdot L \cdot \epsilon)$ | 20 | 36 |

- Events were generated with Madgraph5
- We incorporate the detector effect by smearing energies of visible particles

$$
E^{\text {true } \rightarrow E^{o b s}=\left(1+\sigma_{E} \cdot \omega\right) . E^{\text {true }} \quad \sigma_{E}=0.03}
$$

- We perform 100 pseudo-experiment to estimate the statistical uncertainties


## Solving kinematical constraints

- To determine the tau momenta, we have to reconstruct the unobserved neutrino momenta: $\left(p_{x}^{\nu}, p_{y}^{\nu}, p_{z}^{\nu}\right),\left(p_{x}^{\bar{\nu}}, p_{y}^{\bar{\nu}}, p_{z}^{\bar{\nu}}\right)$.
- 6 unknowns can be constrained by 2 massshell conditions and 4 energy-momentum conservation:


$$
\begin{aligned}
& m_{\tau}^{2}=\left(p_{\tau^{+}}\right)^{2}=\left(p_{\pi^{+}}+p_{\bar{\nu}}\right) \\
& m_{\tau}^{2}=\left(p_{\tau^{-}}\right)^{2}=\left(p_{\pi^{-}}+p_{\nu}\right) \\
& \left(p_{e e}-p_{Z}\right)^{\mu}=p_{H}^{\mu}=\left[\left(p_{\pi^{-}}+p_{\nu}\right)+\left(p_{\pi^{+}}+p_{\bar{\nu}}\right)\right]^{\mu}
\end{aligned}
$$

- With the reconstructed momenta, we define $(\hat{r}, \hat{\boldsymbol{n}}, \hat{\boldsymbol{k}})$ basis at the Higgs rest frame.

$$
\left(\begin{array}{l}
\binom{C_{i j}=\left\langle\hat{S}_{i}^{\left(\tau^{-}\right)} \hat{S}_{j}^{\left(\tau^{+}\right)}\right\rangle=-9 .\left\langle\hat{I}_{i}^{-} \hat{I}_{j}^{+}\right\rangle}{i, j=r, n, k)} .
\end{array}\right.
$$


helicity basis $(\hat{\mathbf{r}}, \hat{\mathbf{n}}, \hat{\mathbf{k}})$

## Impact parameter (IP)

- We use the information of the impact parameter $\vec{b}_{ \pm}$measurement of $\pi^{ \pm}$to "correct" the observed energies of $\tau^{ \pm}$and $Z$ decay products.
- We check whether the reconstructed $\tau$ momenta are consistent with the measured impact parameters.
- We construct the likelihood function and search for the most likely $\tau$ momenta.


$$
\begin{aligned}
& E_{\alpha}\left(\delta_{\alpha}\right)=\left(1+\sigma_{\alpha}^{E} \cdot \delta_{\alpha}\right) \cdot E_{\alpha}^{\mathrm{obs}} \\
& \vec{b}_{+}=\left|\vec{b}_{+}\right|\left(\sin ^{-1} \Theta_{+} \cdot \vec{e}_{\tau^{+}}-\tan ^{-1} \Theta_{+} \cdot \vec{e}_{\pi^{+}}\right) \\
& \vec{\Delta}_{b_{+}}^{i}(\{\delta\}) \equiv \vec{b}_{+}-\left|\vec{b}_{+}\right|\left(\sin ^{-1} \Theta_{+}^{i}(\{\delta\}) \cdot \vec{e}_{\tau^{+}}^{i}(\{\delta\})-\tan ^{-1} \Theta_{+}^{i}(\{\delta\}) \cdot \vec{e}_{\pi^{+}}\right) \\
& L_{ \pm}^{i}(\{\delta\})=\frac{\left[\Delta_{b_{ \pm}}^{i}(\{\delta\})\right]_{x}^{2}+\left[\Delta_{b_{ \pm}}^{i}(\{\delta\})\right]_{y}^{2}}{\sigma_{b_{T}}^{2}}+\frac{\left[\Delta_{b_{ \pm}}^{i}(\{\delta\})\right]_{z}^{2}}{\sigma_{b_{z}}^{2}}
\end{aligned}
$$

$$
L^{i}(\{\delta\})=L_{+}^{i}(\{\delta\})+L_{-}^{i}(\{\delta\})
$$

## Results

|  | ILC |  | FCC-ee |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\left(\begin{array}{ccc}0.830 \pm 0.176 & 0.020 \pm 0.146 & -0.019 \pm 0.159 \\ -0.034 \pm 0.160 & 0.981 \pm 0.1527 & -0.029 \pm 0.156 \\ -0.001 \pm 0.158 & -0.021 \pm 0.155 & -0.729 \pm 0.140\end{array}\right)$ | $\left(\begin{array}{ccc}0.925 \pm 0.109 & -0.011 \pm 0.110 & 0.038 \pm 0.095 \\ -0.009 \pm 0.110 & 0.929 \pm 0.113 & 0.001 \pm 0.115 \\ -0.026 \pm 0.122 & -0.019 \pm 0.110 & -0.879 \pm 0.098\end{array}\right)$ |  |  |
| $C_{i j}$ | $2.567 \pm 0.279$ | $>5 \sigma$ |  | $2.696 \pm 0.215$ |
| $E_{k}$ | $1.103 \pm 0.163$ |  | $1.276 \pm 0.094$ | $\sim 3 \sigma$ |
| $R_{\text {CHSH }}$ |  |  |  |  |

SM values: $\quad C_{i j}=\left(\begin{array}{ccc}1 & & \\ & 1 & \\ & & -1\end{array}\right)$

$$
\begin{aligned}
E=3 & \text { Entanglement } \Longrightarrow E>1 \\
R_{\mathrm{CHSH}}=\sqrt{2} \simeq 1.414 & \text { Bell-nonlocal } \Longrightarrow R_{\mathrm{CHSH}}>1
\end{aligned}
$$

The superiority of FCC-ee over ILC is due to a better beam resolution

|  | ILC | FCC-ee |
| ---: | :---: | :---: |
| energy $(\mathrm{GeV})$ | 250 | 240 |
| luminosity $\left(\mathrm{ab}^{-1}\right)$ | 3 | 5 |
| beam resolution $e^{+}(\%)$ | 0.18 | $0.83 \cdot 10^{-4}$ |
| beam resolution $e^{-}(\%)$ | 0.27 | $0.83 \cdot 10^{-4}$ |

## CP measurement

- Under CP, the spin correlation matrix transforms: $C \xrightarrow{C P} C^{T}$
- This can be used for a model-independent test of CP violation. We define:

$$
A \equiv\left(C_{r n}-C_{n r}\right)^{2}+\left(C_{n k}-C_{k n}\right)^{2}+\left(C_{k r}-C_{r k}\right)^{2} \geq 0
$$

Observation of $A \neq 0$ immediately confirms CP violation

- From our simulation, we observe:

$$
A= \begin{cases}0.168 \pm 0.131 & \text { (ILC) } \\ 0.081 \pm 0.061 & \text { (FCC-ee) }\end{cases}
$$

Consistent with the absence of CPV

## CP measurement

- This model independent bounds can be translated to the constraint on the CP-phase $\delta$ :
$\mathscr{L}_{\mathrm{int}} \propto H \bar{\psi}_{\tau}\left(\cos \delta+i \gamma_{5} \sin \delta\right) \psi_{\tau} \longmapsto C_{i j}=\left(\begin{array}{ccc}\cos 2 \delta & \sin 2 \delta & 0 \\ -\sin 2 \delta & \cos 2 \delta & 0 \\ 0 & 0 & -1\end{array}\right) \longmapsto A(\delta)=4 \sin ^{2} 2 \delta$
- Focusing on the region near $|\delta|=0$, we find the $1-\sigma$ bounds:

$$
\delta< \begin{cases}7.9^{\circ} & (\text { ILC }) \\ 5.4^{\circ} & \text { (FCC-ee })\end{cases}
$$

## Part IV

## Summary

## Summary

- High energy tests of entanglement and Bell inequality has recently attracted an attention.
- We investigated feasibility of quantum property tests @ ILC and FCCee.
- Quantum tests require a precise reconstruction of the $\tau$ rest frames and IP information is crucial to achieve this.
- Spin correlation is sensitive to CP-phase and we can measure the CPphase as a byproduct of the quantum property measurement.

|  | Entanglement | Bell-inquality | CP-phase |
| :---: | :---: | :---: | :---: |
| FCC-ee | $>5 \sigma$ | $\sim 3 \sigma$ | $7.9^{\circ}$ |
| ILC | $>5 \sigma$ |  | $5.4^{\circ}$ |

