The decay $A^0 \rightarrow h^0 Z^*$ in the inverted hierarchy and the production for A^0 at the LHC in normal hierarchy in 2HDM.

Sarah Alanazi

Southampton University

19.07.2023

- Motivation
- 2 Two Higgs Doublet Model (2HDM)
- 3 Searches for $A^0 \rightarrow h^0 Z$ at the LHC
- Results
- Conclusion

- Motivation
- 2 Two Higgs Doublet Model (2HDM)
- 3 Searches for $A^0 \rightarrow h^0 Z$ at the LHC
- 4 Results
- Conclusion

Motivation

Investigating the decay $A^0 \to h^0 Z^{(*)}$ in 2HDM Type I in the inverted hierarchy scenario ($m_{H^0}=125~GeV>m_{h^0}$), arXiv:2301.00728 (to appear in J.Phys.G).

Why?

- No experimental results by ATLAS and CMS in this scenario.
- Has not been studied by Monte Carlo Simulation.
- Promising for new physics.

Figure: Feynman diagram for the process $gg \to A^0 \to h^0 I^+ I^-$.

- Motivation
- 2 Two Higgs Doublet Model (2HDM)
- 3 Searches for $A^0 \rightarrow h^0 Z$ at the LHC
- 4 Results
- Conclusion

Two Higgs Doublet Model (2HDM)

- Two-Higgs-doublet model (2HDM)
 - A simple extension of the SM
 - ② Contains 4 more scalars CP-even (H^0) , CP-odd (A^0) and charged Higgs bosons (H^\pm)
 - Leads to some interesting properties, such as Flavour Changing Neutral Currents (FCNCs)
 - Avoided if all fermions with the same quantum number interact with no more than one Higgs doublet.
 - Produce 4 types: type I, type II, type X and type Y.

Types	$y_{A^0}^d$	$y_{A^0}^u$	$y_{A^0}^I$
1	-cot eta	cot eta	$-cot\beta$
П	taneta	$cot\beta$	taneta
Х	$-\cot\beta$	$cot \beta$	taneta
Y	taneta	$cot\beta$	$-\cot\beta$

Inverted hierarchy

Inverted hierarchy

- **1** The SM Higgs boson is measured to be CP-even, so either h^0 or H^0 can be interpreted as the observed 125 GeV boson ($m_{H^0} > m_{h^0}$).
- ② Normal hierarchy: $cos(\beta \alpha) \rightarrow 0, H_{SM}^0 \equiv h^0$.
- 3 Inverted hierarchy: $sin(\beta \alpha) \rightarrow 0$, $H_{SM}^0 \equiv H^0$.

- Motivation
- 2 Two Higgs Doublet Model (2HDM)
- 3 Searches for $A^0 \rightarrow h^0 Z$ at the LHC
- 4 Results
- Conclusion

Searches for $A^0 \rightarrow h^0 Z$ at the LHC

- The ATLAS and CMS investigated the decay channel $A^0 \to h^0 Z$ on the Normal Hierarchy (NH) scenario ($m_{h^0} = 125\,\text{GeV}$) and an on-shell Z boson, arXiv:1712.06518, arXiv:1903.00941 and arXiv:1910.11634.
- These searches primarily explore the region of parameter space where $m_{A^0} > 225$ GeV.
- In this study, we investigate the decay process $A^0 \to h^0 Z^{(*)}$ in the scenario of inverted hierarchy and it includes the possibility of an off-shell Z boson (130 GeV $\leq m_{h^0} + m_{A^0} \leq$ 400 GeV).

- Motivation
- 2 Two Higgs Doublet Model (2HDM)
- 3 Searches for $A^0 \rightarrow h^0 Z$ at the LHC
- 4 Results
- Conclusion

Results

- Determining suitable regions: The parameter space must respect all theoretical and experimental constraints.
 - 2HDMC
 - HiggsBounds and HiggsSignal.
 - SuperIso.
- Calculating the signal cross section in IH Type I.

$$\sigma(gg \to A^0) \times BR(A^0 \to h^0Z^*) \times BR(h^0 \to b\bar{b}).$$
 (1)

• Comparing the magnitude with the corresponding cross section in the NH scenario. arXiv:1903.00941.

Components	$\sigma(gg o A^0)$	$BR(A^0 \rightarrow h^0 Z^*) = \frac{\Gamma(A^0 \rightarrow h^0 Z^{(*)})}{\Gamma^{total}_{A^0}}$	$BR(h^0 o bar{b}) = rac{\Gamma(h^0 o bar{b})}{\Gamma_{h^0}^{total}}$
Parameters	m_{A^0} and $taneta$	m_{A^0} , m_{h^0} and $cos^2(eta-lpha)$	m_{h^0} , $tan\beta$ and $cos^2(\beta-\alpha)$

Table: The components and the parameters they depend on.

Figure: The $BR(A^0 \to h^0Z^*)$, $(gg \to A^0)$ and the $\sigma(gg \to A^0) \times BR(A^0 \to h^0Z^*) \times BR(h^0 \to b\bar{b})$ as functions of m_{A^0} for NH with Type I and Type II and for IH with Type I.

The results demonstrate that:

- $m{\Theta}$ the decay $A^0 o h^0 Z$ in IH has very little suppression from the coupling $A^0 h^0 Z$, in contrast to the case of NH.
- **②** the cross section for signal events in the Two Higgs Doublet Model (Type I) can be as high as a few pb in IH for the experimentally unexplored region of $m_{A^0} < 225\,GeV$. These cross sections are significantly higher than those in NH.

- Motivation
- 2 Two Higgs Doublet Model (2HDM)
- 3 Searches for $A^0 \rightarrow h^0 Z$ at the LHC
- 4 Results
- Conclusion

Conclusion

- A search for $A^0 \to h^0 Z^*$ in the 2HDM type I inverted hierarchy has not been done experimentally.
- In inverted hierarchy, there can be significantly larger cross sections for $A^0 \to h^0 Z^*$ events than in the normal hierarchy case.

Thanks for listening

Backup

$$\Gamma(A^0 \to h^0 Z^*) = \frac{m_{A^0}^3 \cos^2(\beta - \alpha) \lambda^{3/2}}{v^2} \left(\frac{m_{h^0}^2}{m_{A^0}^2}, \frac{m_Z^2}{m_{A^0}^2}\right)$$
(2)

- (a) The BRs of A^0 in the 2HDM (Type II) as a function of $tan\beta$ in the NH
- (b) The BRs of A^0 in the 2HDM (Type I) as a function of $tan\beta$ in the NH.
- (c) The BRs of A^0 in the 2HDM (Type I) as a function of $tan\beta$ in the IH.

Figure: The BRs of A^0 in the 2HDMs as functions of $tan\beta$.

Backup

Figure: Observed and expected upper limits on $\sigma(gg \to A^0)B(A^0 \to h^0Z)B(h^0 \to b\bar{b})$, arXiv:1903.00941.