

### SUSY2023 17 - 21 July University of Southampton Southampton, UK

The XXX International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY2023)



# Higgs boson coupling and cross section measurements at CMS

#### Andrea Cardini\*

on behalf of the CMS collaboration

\* Deutsches Elektronen-Synchrotron (DESY)



#### 11 years of Higgs physics



- The Higgs discovery has been one of the highlights of the LHC program
- The discovery in the H  $\rightarrow$  4 lepton and H  $\rightarrow \gamma \gamma$  final states was followed by 11 years of

discoveries and observations:

- > Production mechanisms
- Decays
- > Anomalous couplings







#### Single Higgs production mechanisms



- Single Higgs production mechanisms probe both **bosonic** and **fermionic** couplings
  - > Dominant production mechanisms observed: ggH, VBF, VH, ttH
  - > Pieces of the puzzle missing: bbH + observation of tH



**CMS** 138 fb<sup>-1</sup> (13 TeV) SD (stat) Observed 1 SD (stat ⊕ svst) ±1 SD (syst) ±2 SDs (stat ⊕ syst) Stat Syst Parameter value

All observations consistent with the SM



#### Higgs decays



- Direct Higgs decays to vector bosons and fermions
- Loop decays to γγ, γZ and gg final states
- Other decays considered:
  - Lepton flavor violating couplings to eμ final state.
  - Higgs to invisible



All observed couplings consistent with SM expectations



doi:10.1038/s41586-022-04892-x



#### $H \rightarrow ZZ^* \rightarrow 4$ leptons differential cross-section

- Higgs decays to 4 leptons were used already in the Higgs discovery
- Excellent handle to measure Higgs properties: mass, spin, width, and CP properties
- Differential measurement performed with respect to angular variables, Higgs momentum, and accompanying jet  $pT \rightarrow sensitivity$  to loop correction and BSM operators







#### $H \rightarrow ZZ^* \rightarrow 4$ leptons differential cross-section

Differential measurement performed with respect to 4 lepton kinematics, Higgs boson momentum, and discriminators sensitive to HVV anomalous couplings







doi:10.48550/arXiv.2305.07532

All differential distributions agree with the latest SM predictions



#### $H \rightarrow Z\gamma$ combination





- Searches for Higgs decays to a Zγ pair have been performed separately by CMS and ATLAS
- Both analyses achieved a significance above 2 standard deviations:

| > | Experiment | Observed sig. | Expected sig. |
|---|------------|---------------|---------------|
|   | ATLAS      | 2.2σ          | 1.2σ          |
|   | CMS        | 2.6σ          | 1.1σ          |

- Their combination with the LHC Run 2 data allowed to declare an evidence for H → Zγ decays!
- First CMS+ATLAS combination to achieve evidence for a process!





#### $H \rightarrow Z\gamma$ combination





• Both experiments found a signal strength above 1 resulting in the higher observed significance

| Experiment  | Obs. sig. strength  | Exp. sig. strength  |
|-------------|---------------------|---------------------|
| ATLAS       | $2.0^{+1.0}_{-0.9}$ | $1.0^{+0.9}_{-0.9}$ |
| CMS         | $2.4^{+1.0}_{-0.9}$ | $1.0^{+1.0}_{-0.9}$ |
| Combination | $2.2^{+0.7}_{-0.7}$ | $1.0^{+0.6}_{-0.6}$ |

- The combined result of 2.2±0.7 is compatible with the SM at 95% CL
- Further studies are needed during the LHC Run 3 in order to measure more precisely the effective H → Zγ coupling





#### Search for H → invisible



• Search for Higgs decays to invisible particle performed by studying hadronic recoil in ttH and VH topologies





doi:10.48550/arXiv.2303.01214

Hadronic recoil (GeV)



#### Search for H → invisible



• Analysis combined with previous results for different production mechanisms to provide



 Results interpreted as limits for the production of DM candidates having masses between 1 and 10 GeV and compared with other measurements



#### H → eμ LFV decays





- Higgs fermionic decays are mediated by the Yukawa interaction
  - > Lepton flavor is conserved → the Yukawa matrix is diagonal wrt lepton generations
- In BSM theories which include more Higgs doublets, or a composite Higgs state, the Yukawa matrix acquires off-diagonal elements
  - A search for H → eµ decays can hint towards sources of new physics
  - > Search performed in mass window 110< m<sub>eu</sub> <160 GeV
  - Analysis exploits BDT to improve S/B ratio in two signal categories: ggH and VBF



doi:10.48550/arXiv.2305.18106



#### H → eμ LFV decays





- Constraints on the  $H \rightarrow e\mu$  branching fraction determined for SM-like H(125) and more generally for generic scalar particle X of mass between 110 and 160 GeV
  - > First direct search for eµ resonance in chosen mass range
- Observed (expected) limit on  $\mathcal{B}(H \to e\mu) < 4.4 (4.7) \times 10^{-5}$  at 95% for a SM-like Higgs
- The X  $\rightarrow$  e $\mu$  search presents a local (global) excess of 3.8 $\sigma$  (2.8 $\sigma$ ) for the 146 GeV mass point  $_{\text{CMS}}$
- The best fit signal for this mass point has a crosssection of 3.89±1.25 fb
- More data is needed to investigate this excess







#### Higgs pair production





- Precise single Higgs production can help constraining the Higgs self-coupling
- However the Higgs pair production offers the highest sensitivity to **Higgs self coupling + quartic coupling to vector bosons**



Upper limits on the Higgs production cross-section have remarkably improved with the LHC Run 2 but require more statistic



bb ZZ

bb yy

bb ττ

bb bb



#### Higgs pair production



- The Higgs pair production is one of the main goals for the HL-LHC operation
- Measuring the Higgs self-coupling will improve our understanding of the Higgs potential







#### The future for Higgs physics



• The LHC Run 2 was marked by a leap in analysis techniques and furthered our understanding of the

Higgs boson

 The progress will continue with the LHC Run3 and HL-LHC

 The HL-LHC will provide enough statistics to constrain most Higgs couplings at percent level







## SUSY2023 17 - 21 July University of Southampton Southampton, UK

The XXX International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY2023)



# Thanks for the attention.

#### Andrea Cardini\*

on behalf of the CMS collaboration

\* Deutsches Elektronen-Synchrotron (DESY)



#### CP violation in HVV (and ggH)



- Investigating CP violation in HVV with an EFT approach
  - > Amplitude for Higgs coupling to two spin 1 particles (VV= WW, ZZ, Zγ, γγ, gg etc.) with operators up to dimension 6

Tree level CP-even coupling (=0 if absent in SM)

**CP-even anomalous higher order couplings** 

- > Effect on cross-section parametrized as the fractional contribution of the anomalous coupling to the total cross-section
- Theoretical approach includes also Hγγ and Hgg with tree level coupling being set to 0