Searches for Higgs bosons beyond the Standard Model

Higgs, as a gateway to BSM

- In a decade, the journey of the SM Higgs boson:
 - signal
 - background (e.g Rare SM measurements, eg. VVV)
 - discovery tool
- H serves as a "standard candle" in BSM analyses
 - known mass, known decays $ex/H \rightarrow bb$ tagging
- Particles in an extended scalar sector
 (with hidden dynamics) could mix with the SM Higgs
 - → Higgs-like decays of the new exotic particles
- **Higgs has** sufficient **freedom** for exotic couplings BR(H \rightarrow non-SM) could be up to $\mathcal{O}(10)\,\%$
 - → Can act as portal to hidden sectors

CMS-HIG-22-001

The extended scalar sector

(aka the many ways to add spin-0 states)

Search for XФ→ℓℓ

- Search for a new spin-0 particle in associated production with a W/Z boson or a tt pair
 - signal width is assumed to be smaller than detector resolution
 - target mass range: 15-350 GeV
- Model independent analysis:
 - all lepton **flavor** pairs (ee, $\mu\mu$, $\tau\tau$)
 - all possible **coupling** types (scalar, pseudoscalar, Higgs-like production/decay) \rightarrow **24 different scenarios**

$$\frac{1}{\Lambda_{\rm S}} \phi_{\rm S} F^{a\mu\nu} F^a_{\mu\nu} + \frac{1}{\Lambda_{\rm PS}} \phi_{\rm PS} F^{a\mu\nu} \tilde{F}^a_{\mu\nu} \qquad \qquad -\frac{g_{\psi \rm S}}{\sqrt{2}} \phi_{\rm S} \bar{\psi} \psi - \frac{g_{\psi \rm PS}}{\sqrt{2}} \phi_{\rm PS} \bar{\psi} i \gamma_5 \psi \qquad \qquad -2 \sin \theta \; \frac{\phi_{\rm H}}{v} \left(m_{\rm W}^2 \, {\rm W}^{+\mu} {\rm W}^-_{\mu} + \frac{1}{2} \, m_{\rm Z}^2 \, {\rm Z}^{\mu} {\rm Z}_{\mu} \right)$$

Search for XФ→ℓℓ

- Builds on an inclusive multilepton analysis with many categories
 - 3 and 4 lepton final states (e, μ, τ) are used
 - dilepton resonance in multilepton events
 - first of its type "bump-hunt" at the LHC!
- A variety of SM backgrounds: WZ, ZZ, ttZ, ttW, Zγ, VVV, ...
 - data driven estimation of backgrounds with $j
 ightarrow {
 m e}/\mu/ au$

Charge,	/mass/flavor/
9	

9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7											
		OSSF0			OSSF1			OSSF2			
		BelowZ	AboveZ	SS	OnZ	BelowZ	AboveZ	MixedZ	Single-OnZ	Double-OnZ	OffZ
3L	Low $p_{\rm T}/M_{\rm T}$	A1	A1	A2	A3	A4	A5	A6			
SL	High $p_{\rm T}/M_{\rm T}$	A7	A7	A8	A9	A10	A11	A12			
2L1T	Low $p_{\rm T}$	B1	B2	B3	B4	B5	B6				
ZL11	High p_{T}	B7	B8	B9	B10	B11	B12				
1L2T		C1	C2	C3		C4	C5				
4L		D1	D1	D1	D2	D3	D3	D3	D4	D5	D6
3L1T		E1	E1	E1	E2	E3	E3	E3			
2L2T		F1	F1	F1	F2	F2	F2		F3		F4
1L3T		G1	G1	G1	_	G1	G1			_	_

Search for ZФ→ℓℓ

- Probes **9 different scenarios** (only $Z\phi \rightarrow ee$ scalar is shown)
- 4-lepton channels dominate
- A binned maximum likelihood fit is performed on the dilepton mass

Excess at $m_{\phi} = 156 \text{ GeV}$ 2.9 (1.4) sigma local (global)

Search for WФ→ℓℓ

- 9 different scenarios are probed (only $W\phi \to \tau\tau$ scalar is shown)
- 3 lepton channels dominate (mostly with two hadronic tau candidates)
- $\rightarrow \tau\tau$ decays produce **broad 'resonances'** (e μ , $\ell\tau_h$, $\tau_h\tau_h$)
- τ_h reconstruction degrades at low p_T , impacts sensitivity at low mass

Search for ttф→ℓℓ

- 6 scenarios are probed (only $\mu\mu$ scalar/pseudoscalar is shown)
- Combination of 3 and 4 lepton channels contribute
- Analysis sensitivity at low mass is **different between PS and S**:
 - fermionic couplings both in production and decay
 - **boosted** ϕ **decays** help in the PS scenario (esp. for e/μ)

Alternate bounds on couplings in various models are coming soon (HEPData):

- Higgs-mixed scalar
- axion like particles
- dilaton like particles

Light pseudoscalars: H→aa

- Exotic Higgs boson decays to new lighter states are still allowed
- Probing a light pseudoscalar in the mass range 15 62.5 GeV $(m_a < m_H/2)$
- Pseudoscalar-fermion couplings are inherited via mixing with the SM Higgs
 - bb, $\tau\tau$, $\mu\mu$ decay modes dominate at low masses

Type I Type III, $\tan \beta = 5$

Other CMS results: $\mu\mu\mu\mu$, $\tau\tau\tau\tau$, $\mu\mu\tau\tau$, $\gamma\gamma\gamma\gamma$ etc

Signal model includes ggF (~48 pb) and the VBF (~3.9 pb) contributions

$$H \rightarrow aa \rightarrow \mu\mu bb / \tau\tau bb$$

Two complementary decay modes are targeted, leading to 4 distinct final states:

Part 1: H→aa→µµbb

- Final state with 2 muons and 2 b-tagged jets
 - 5 distinct categories are defined, based on jet qualities
- Dominant SM tt background is reduced by MET<60 GeV requirement
- Mass resolution is used to define "double resonance consistency cuts"

$$\chi_{\rm tot}^2 = \chi_{\rm bb}^2 + \chi_{\rm H}^2$$
 where $\chi_{\rm bb} = (m_{\rm bb} - m_{\mu\mu})/\sigma_{\rm bb}$ and $\chi_{\rm H} = (m_{\mu\mu \rm bb} - 125)/\sigma_{\rm H}$

HIG-21-021	

HIG-22-007

Categories for selected events

at least one b-jet with p_T < 20 GeV $Low p_T$ two add. jets with $p_T > 30 \,\text{GeV}$, $|\eta| < 4.7$, and $m_{\rm ii} > 250\,{
m GeV}$ **VBF** TLlooser b jet passes L but fails M looser b jet passes M but fails T TMTT looser b jet passes T

Improves low mass sensitivity

 $\chi_{\rm H}$ and $\chi_{\rm bb}$ are corrected and decorrelated.

Part 1: H→aa→µµbb

Unbinned maximum likelihood fit is performed on the dimuon mass - fully data driven background estimation!

Part 2: H→aa→ttbb

- 6 categories, with one or two b-tagged jets
 - $-\tau_{\rm e}\tau_{\mu}{
 m b}$ $\tau_{\rm e}\tau_{h}{
 m b}$ $\tau_{\mu}\tau_{h}{
 m b}$
 - $\tau_{\rm e} \tau_{\it u} bb$ $\tau_{\rm e} \tau_{\it h} bb$ $\tau_{\it u} \tau_{\it h} bb$ (full signal reconstruction)
- A **DNN** is used to define multiple subcategories in each (**15 total**):
 - momentum vectors: p_{T} and η of leptons and jets
 - mass: $m(b\tau\tau)$, $M_{\rm T}$ (W $\rightarrow \ell \nu$ is at larger values) $\Delta m = (m_{\rm bb} - m_{\tau\tau})/m_{\tau\tau}$
 - angular: ΔR , $D_{\mathcal{C}}$ (Z ightarrow au au is at large values, collinear MET and ditau)
- Data driven "fake factor" method is used to estimate contributions from $j \to \tau_h$ processes (jets misidentified as hadronic taus).

Part 2: H→aa→ttbb

Binned maximum likelihood fit is performed on the ditau mass - SVfit algorithm is used to improve sensitivity (~30%)

Light pseudoscalars: H→aa

 $e\mu (\mu\tau)$ final state drives sensitivity at low mass (overall)

- The results are obtained independent of the 2HDM type and $\tan \beta$ parameter.
 - SM H production is assumed
 - Statistical uncertainties dominate
 - Improvement of sensitivity over the earlier CMS results by a factor of ~2
- Model dependent limits are also available.

two b-jets start to

boosted $H \rightarrow aa$

decays

Light Higgs to diphotons

- Probing a "lighter" scalar state: $H \rightarrow \gamma \gamma$
 - Assumes natural width is small compared to the detector resolution.
 - diphoton mass resolution is 1-3%
- Targets the mass range 70-110 GeV
 - lower mass bound is defined to avoid trigger turn-on effects.
 - higher masses are covered by the $H(125) \rightarrow \gamma\gamma$ analyses
- MVA techniques are used both for photon ID and event classification.
 - Photon MVA: lateral shower shape, isolation, energy density, η related variables (prompt vs nonprompt)
- Search for narrow signal peak over smoothly-falling background.
 - parametric fit to the diphoton mass spectrum is used

Light Higgs to diphotons

Prompt low mass dimuons

- Probing 1.1-7.9 GeV mass range with muon $p_T > 3$ GeV
 - events are directly reconstructed in the HLT The high-rate trigger stream: 4-8kB/event at ~ 2 kHz

→ CMS scouting dataset

*for comparison, regular dimuon trig. rate is <0.5 kHz

- Two custom MVA selections are defined for low and "high" masses:
 - boost of dimuon pairs ↔ uncertainty on vertex position
 - improves sensitivity by ~30% w.r.t previous efforts
- Promptness cuts on the dimuon vertex beam spot distance:
 - L < 0.015 0.2 cm and $L/\sigma_L < 3.5$ (depending on mass and p_T)
- Simultaneous **S+B fits** to the dimuon invariant mass distribution.
 - fully data driven background estimation!
 - assumes **narrow** resonance (CMS dimuon mass resolution ≈1.3%).
 - fit window ±5x the mass resolution around the resonance mass.

Dedicated MVAs for muon identification:

- quality of the muon tracks, the relative muon isolation and the vertex that the muons are associated with.

See EXO-20-014 for the CMS long-lived dimuon analysis

Halil Saka (University of Cyprus)

Prompt low mass dimuons

The background model fit on the mass continuum becomes unreliable over the J/ ψ , ψ' resonances, hence this region is omitted. Model dependent limits are also available.

LFV decays of a new scalar

- Exotic decay: $H \rightarrow e\mu$
 - can emerge in various BSM models with more than one Higgs boson doublet, composite Higgs models, MSSM, etc.
- Targets both the ggF and VBF production modes.
 - these are targeted by 2 experimental categories, based on jets
- BDTs are used to further define subcategories in signal purity
 - MET, boost, angular variables of MET and dilepton system ($\Delta\eta$), N_i , p_T ratios, ..

Completely data driven background estimation

LFV decays of a new scalar

The first direct search for $X \rightarrow e\mu$ in this mass range.

- i.e. with m_X below twice the W boson mass.

LFV decays of H(125)

Sets the most stringent "direct" limit on the LFV decay of SM Higgs: BR(H $\to e\mu$) < 4.4 · 10⁻⁵ at 95% CL

See <u>CMS-HIG-20-009</u> for direct bounds on $BR(H \rightarrow e\tau/\mu\tau)$

Conclusions

- Extensive BSM scalar sector program at CMS / LHC
 - $W\phi/Z\phi/tt\phi \to \ell\ell$
 - $-h/H \rightarrow aa$
 - $-H o \gamma \gamma$
 - $-h/H \rightarrow e\mu$
 - $-X \rightarrow VV$
 - $-X \rightarrow HH$
 - $-H^+ \rightarrow H^0/hW, tb, ...$
 - ...
- Focused on the recent searches from the CMS experiment
- Run3 is underway, at 13.6 TeV
 - expected to more than double the Run2 luminosity
 - BSM scalar sector is a **natural target** as the LHC dataset grows Relatively low production rate Next-to-minimal models significantly change detector phenomenology Variety of final states from standard to very exotic/soft/collimated..
- Stay tuned!

https://www.symmetrymagazine.org/article/four-things-physicists-still-wonder-about-the-higgs-boson https://www.symmetrymagazine.org/article/what-the-higgs-boson-tells-us-about-the-universe

Search for Xφ→ll (all PS results)

Search for Zφ→ℓℓ

3-body decays of Z are more significant in the Higgs-like coupling

Light Higgs to diphotons

100 105 110

m_H (GeV)

95

90

100 105 110

m_H (GeV)

Light Higgs to diphotons

LFV decays of a new scalar

Relatively small excesses in multiple categories

$H \rightarrow aa \rightarrow \mu\mu bb$

Unbinned maximum likelihood fit is performed on the dimuon mass in each of the categories

Light pseudoscalars: H→aa

Model dependent interpretations in 2HDM+S type III and IV scenarios.

H2DM Pseudoscalar BRs

Light pseudoscalars: H→aa

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Summary2HDMSRun2

Prompt low mass dimuons

Model specific Type-IV 2HDM+S reinterpretation of the high p_T limit - ggF production mode yields higher boost than does the DY mode.

Search for XФ→ℓℓ

Label	Channels	Q_{ℓ}	OSSFn	$M_{ m OSSF}$	$N_{\rm b}$	S_{T}	p_{T}^{3}	M_ℓ	Dilepton mass
$\overline{W\phi(ee/\mu\mu)}$ SR1Low	3L(eeμ/eμμ)	1	1	OffZ	0	_	_	< 76, > 106	$M_{\rm ee}$ / $M_{\mu\mu}$
$W\phi(ee/\mu\mu)$ SR2Low	3L(eee/μμμ)	1	1	OffZ	0	_	_	< 76, > 106	$M_{ m ee}^{ m min}/M_{\mu\mu}^{ m min}$
$W\phi(ee/\mu\mu)$ SR1High	$3L(ee\mu/e\mu\mu)$	1	1	OffZ	0	> 200	> 15	> 150	$M_{ m ee}$ / $M_{\mu\mu}$
$W\phi(ee/\mu\mu)$ SR2High	$3L(eee/\mu\mu\mu)$	1	1	OffZ	0	> 200	> 15	> 150	$M_{\mathrm{ee}}^{\mathrm{max}}/M_{\mu\mu}^{\mathrm{max}}$
$Z\phi(ee/\mu\mu)$ SRLow	4L+3L1T+2L2T	0	≥ 1	Not double-OnZ	0	_	_	_	$M_{ m ee}^{ m min}/M_{\mu\mu}^{ m min}$
$Z\phi(ee/\mu\mu)$ SRHigh	4L+3L1T+2L2T	0	≥ 1	Not double-OnZ	0	> 200	_	> 150	$M_{\rm ee}^{\rm max}/M_{\mu\mu}^{\rm max}$
$t\bar{t}\phi(ee/\mu\mu)$ SR1Low	$3L(ee\mu/e\mu\mu)$	1	1	OffZ	≥ 1	> 350	_	> 100	$M_{ m ee}$ / $M_{\mu\mu}$
$t\bar{t}\phi(ee/\mu\mu)$ SR2Low	$3L(eee/\mu\mu\mu)$	1	1	OffZ	≥ 1	> 350	_	> 100	$M_{\mathrm{ee}}^{\mathrm{min}}/M_{\mu\mu}^{\mathrm{min}}$
$t\bar{t}\phi(ee/\mu\mu)$ SR1High	$3L(ee\mu/e\mu\mu)$	1	1	OffZ	≥ 1	> 400	> 15	> 100	$M_{ m ee}$ / $M_{\mu\mu}$
$t\bar{t}\phi(ee/\mu\mu)$ SR2High	3L(eee/μμμ)	1	1	OffZ	≥ 1	> 400	> 15	> 100	$M_{\rm ee}^{\rm max}/M_{\mu\mu}^{\rm max}$
$t\bar{t}\phi(ee/\mu\mu)$ SR3Low	4L+3L1T+2L2T	0	≥ 1	OffZ	_	> 350	_	_	$M_{ m ee}^{ m min}/M_{\mu\mu}^{ m min}$
$t\bar{t}\phi(ee/\mu\mu)$ SR3High	4L+3L1T+2L2T	0	≥ 1	OffZ		> 400		_	$M_{\rm ee}^{\rm max}/M_{\mu\mu}^{\rm max}$

Label	Channels	Q_{ℓ}	OSSFn	$M_{ m OSSF}$	$N_{\rm b}$	S_{T}	N_{j}	p_{T}^{3}	M_ℓ	Dilepton mass
$W\phi(\tau\tau)$ SR1	3L	1	0	_	0	> 200	_	> 15	> 150	$M_{\mathrm{e}\mu_{.}}^{\mathrm{min}}$
$\mathrm{W}\phi(au au)$ SR2	2L1T+1L2T	1	0	_	0	> 200	_	> 30	> 150	$M_{\ell au}^{ m min}$
$W\phi(au au)$ SR3	1L2T	1	1	_	0	> 200	_	> 30	> 150	$M_{ au au}^{ ext{min}}$
$Z\phi(au au)$ SR1	4L+2L2T	0	1	_	0	> 200	_	_	_	$M_{\mathrm{e}\mu}^{\mathrm{min}}$
$Z\phi(au au)$ SR2	3L1T	0	1	_	0	> 200	_	_	_	$M_{\ell au_{.}}^{ m min}$
$Z\phi(au au)$ SR2	2L2T	0	0	_	0	> 200	_	_	_	$M_{\ell au_{.}}^{ ext{min}}$
$Z\phi(au au)$ SR3	2L2T	0	2	_	0	> 200	_	_	_	$M^{min}_{ au au}$
$t\bar{t}\phi(au au)$ SR1	3L	1	0	_	0	> 400	> 1	> 15	> 100	$M_{\mathrm{e}\mu}^{\mathrm{min}}$
$t\bar{t}\phi(au au)$ SR2	2L1T+1L2T	1	0	_	0	> 400	> 1	> 30	> 100	$M_{\ell au_{.}}^{ m min}$
$t\bar{t}\phi(au au)$ SR3	1L2T	1	1	_	0	> 400	> 1	> 30	> 100	$M_{ au au}^{ ext{min}}$
$t\bar{t}\phi(au au)$ SR4	3L	1	1	OffZ	> 0	> 400	> 1	> 15	> 100	$M_{\mathrm{e}\mu_{.}}^{\mathrm{min}}$
$t\bar{t}\phi(au au)$ SR4	3L	1	0	_	> 0	> 400	> 1	> 15	> 100	$M_{\mathrm{e}\mu_{.}}^{\mathrm{min}}$
$t\bar{t}\phi(au au)$ SR5	2L1T+1L2T	1	0	_	> 0	> 400	> 1	> 30	> 100	$M_{\ell au}^{ m min}$
$t\bar{t}\phi(au au)$ SR6	1L2T	1	1	_	> 0	> 400	> 1	> 30	> 100	$M_{ au au}^{ ext{min}}$
$t\bar{t}\phi(au au)$ SR7	3L1T	0	1	OffZ	_	> 400	_	_	_	$M_{\ell au/ au au}^{ m min}$
$t\bar{t}\phi(au au)$ SR7	3L1T	0	0	_	_	> 400	_	_	_	$M_{\ell au/ au au}^{ m min}$
$t\bar{t}\phi(au au)$ SR7	2L2T	0	2	OffZ	_	> 400	_	_	_	$M_{\ell au/ au au}^{ m min}$
$t\bar{t}\phi(au au)$ SR7	2L2T	0	< 2	_	_	> 400	_	_	_	$M_{\ell au/ au au}^{ ext{min}}$
$t\bar{t}\phi(au au)$ SR7	1L3T	0	1	_	_	> 400	_	_	_	$M_{\ell au/ au au}^{ m min}$

Higgs production and decay

ggF and VBF are the dominant production modes at the LHC.

The scalar landscape in MSSM

https://twiki.cern.ch/twiki/pub/CMSPublic/SummaryResultsHIG/MSSM_limits_hMSSM_Mar2023.png

Tau embedding

Embedding technique eliminates possible issues with underlying event description, pileup contributions, or production of associated jets.

