(Updated) Global bounds on heavy neutrino mixing

Based on:
M. Blennow, E. Fernández Martínez, J. Hernández-García, J. López-Pavón, X. Marcano, DN [2306.0 I 040]

UÁM
Universidad Autónoma de Madrid
ift
Instituto de Teórísica UAM-CSIC

SUSY2O23 - Daniel Naredo-19/07/2023

Motivation

Neutrinos are massive \qquad need a mechanism to generate their (tiny) masses

O Seesaw mechanism via heavy neutrinos

Searches for heavy neutrinos

Plethora of searches for heavy neutrinosHowever, experimental bounds die off for $M_{N}>M_{W}$

Searches for heavy neutrinos

Plethora of searches for heavy neutrinos
© However, experimental bounds die off for $M_{N}>M_{W}$

Why update the global fit?

Updates on key observables:* New measurements of M_{W} (CDF-II, ATLAS)
\star Anomaly $(\sim 2-3 \sigma)$ in the extraction of CKM elements $\left|V_{u d}\right|$ and $\left|V_{u s}\right|$
\star LEP anomaly ($\sim 2 \sigma$) in N_{ν} is now gone
(Improvement of the analysis:
\star Correlations
* Deviations from Wilks' theorem: Bootstrapping

Non-unitarity in general

Precision observables are modified by leptonic non-unitarityIn general:$$
N=(1-\eta) \underset{\text { Diagonalises } m_{\nu}}{U,} \quad \eta^{\dagger}=\eta
$$

O Convenient: η has flavor indices

OGenerally, mass eigenstates are summed over:

$$
\sum_{i=1}^{3}(N)_{\alpha i}\left(N^{\dagger}\right)_{i \beta}=\delta_{\alpha \beta}-2 \eta_{\alpha \beta}+O\left(\eta^{2}\right)
$$

Heavy neutrinos and non-unitarity

O In general:

$$
N=(1-\eta) \underline{U}, \quad \eta^{\dagger}=\eta
$$

Diagonalises m_{ν}
O In the context of heavy neutrinos $N \sim(1,1,0)$: $-\mathscr{L} \supset Y_{\nu} \bar{L}_{L} \tilde{H} N+\frac{1}{2} M_{M} \overline{N^{c}} N$

$$
\mathscr{M}=\left(\begin{array}{cc}
0 & Y_{\nu} \nu / \sqrt{2} \\
Y_{\nu}^{T} \nu / \sqrt{2} & M_{M}
\end{array}\right)
$$

Diagonalised by:

$$
V=\left(\begin{array}{cc}
1-\frac{1}{2} \Theta \Theta^{\dagger} & \Theta \\
-\Theta^{\dagger} & 1-\frac{1}{2} \Theta^{\dagger} \Theta
\end{array}\right)\left(\begin{array}{cc}
U & 0 \\
0 & U^{\prime}
\end{array}\right)
$$

Heavy neutrinos and non-unitarity

O In general:

$$
N=(1-\eta) \frac{U,}{} \quad \eta^{\dagger}=\eta
$$

Diagonalises m_{ν}
© In the context of heavy neutrinos $N \sim(1,1,0): \quad-\mathscr{L} \supset Y_{\nu} \bar{L}_{L} \tilde{H} N+\frac{1}{2} M_{M} \overline{N^{c}} N$

$$
\mathscr{M}=\left(\begin{array}{cc}
0 & Y_{\nu} \nu / \sqrt{2} \\
Y_{\nu}^{T} \nu / \sqrt{2} & M_{M}
\end{array}\right)
$$

Diagonalised by:

Heavy neutrinos and non-unitarity

© In the Type-I seesaw:

$$
N=\left(1-\frac{1}{2} \Theta \Theta^{\dagger}\right) U
$$

$$
\underbrace{\eta=\frac{1}{2} \Theta^{\dagger}}_{\text {Mass-independent }}
$$

η is positive-definite $\left\{\begin{array}{l}\eta_{\alpha \alpha} \geq 0 \\ \left|\eta_{\alpha \beta}\right| \leq \sqrt{\eta_{\alpha \alpha} \eta_{\beta \beta}} \text { (Schwarz inequality) }\end{array}\right.$
© Additionally: $m_{\nu} \simeq-\Theta M_{M} \Theta^{T}$ can impose correlations within η

Precision observables and non-unitarity

\bigcirc SM inputs $\left\{\begin{array}{c}\alpha \\ M_{Z} \\ G_{F}\end{array}\right.$
$\bigcirc G_{F}$ is extracted from μ-decay \longrightarrow Modified by lepton non-unitarity

$$
\begin{aligned}
& \Gamma_{\mu}=\frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}} \sum_{i=1}^{3}\left|N_{\mu i}\right|^{2} \sum_{j=1}^{3}\left|N_{e j}\right|^{2} \simeq \frac{G_{F}^{2} m_{\mu}^{5}}{192 \pi^{3}}\left(1-2 \eta_{e e}-2 \eta_{\mu \mu}\right) \equiv \frac{G_{\mu}^{2} m_{\mu}^{5}}{192 \pi^{3}}, \\
& G_{F} \simeq G_{\mu}\left(1+\eta_{e e}+\eta_{\mu \mu}\right) \longrightarrow \text { Modifies all EWPO }
\end{aligned}
$$

M_{W} and $s_{\text {eff }}^{2}$

© We consider only tree-level η-dependence and loop-level SM corrections

$$
M_{W}=M_{Z} \sqrt{\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{\pi \alpha\left(1+\eta_{e e}+\eta_{\mu \mu}\right)}{\sqrt{2} G_{\mu} M_{Z}^{2}(1-\Delta r)}}}
$$Similarly with $s_{\text {eff }}^{2}$

Z-pole observables

Z-boson partial widths also modified$\bigcirc \Gamma(Z \rightarrow f \bar{f})$ modified by G_{F} and $s_{e f f}^{2}$
$\bigcirc \Gamma_{i n v}$ modified by G_{F} and by $Z \rightarrow \nu \nu$ vertex

Z-pole observables

Z-boson partial widths also modified$\Gamma(Z \rightarrow f \bar{f})$ modified by G_{F} and $s_{e f f}^{2}$© $\Gamma_{i n \nu}$ modified by G_{F} and by $Z \rightarrow \nu \nu$ vertex

LEP precision measurements also constrain η

Z-pole observables

Z-boson partial widths also modified$\bigcirc \Gamma(Z \rightarrow f \bar{f})$ modified by G_{F} and $s_{e f f}^{2}$
$\bigcirc \Gamma_{i n v}$ modified by G_{F} and by $Z \rightarrow \nu \nu$ vertex

Lepton Flavor Universality (LFU)

$\bigcirc \rightarrow l \nu$ vertex modified by η

$$
\sum_{i=1}^{3}\left|N_{\alpha i}\right|^{2}=1-2 \eta_{\alpha \alpha}
$$

© Weak interactions are no longer flavor universal
(O) Ratios of π, K and τ decays constrain the universality of weak interactions

CKM unitarity

The CKM matrix remains unitary:$$
1=\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2},
$$

© But the extraction of $\left|V_{u d}\right|$ and $\left|V_{u s}\right|$ is affected

$$
\left|V_{u d}\right|=\sqrt{1-\left\lvert\, \frac{\left|V_{u s}\right|^{2}}{}\right.}
$$

Nuisance parameter (minimized over)
© $\left|V_{u d}\right|$ extracted from superallowed β-decays

CKM unitarity

© $\left|V_{u s}\right|$ extracted from K and τ semileptonic decays
© Cabibbo anomaly: $\left|V_{u d}\right|<\sqrt{1-\left|V_{u s}\right|^{2}}$ at $2-3 \sigma$ level
© Only worsened in presence of $\eta_{\mu \mu}>0$

Charged Lepton Flavor Violation (cLFV)

Previous observables are LFC: depend on $\eta_{\alpha \alpha}$O The off-diagonal elements $\eta_{\alpha \beta}$ induces LFV processes $\left\{\begin{array}{l}l_{\alpha} \rightarrow l_{\beta} \gamma \\ l_{\alpha} \rightarrow l_{\beta} l_{\beta} l_{\beta} \\ \mu-e\end{array}\right.$
For example: $\quad B R\left(l_{\alpha} \rightarrow l_{\beta \gamma}\right) \simeq \frac{3 \alpha}{2 \pi}\left|\eta_{\alpha \beta}\right|^{2}, \quad$ for $\quad M_{N} \gg M_{W}$The off-diagonal elements alternatively constrained via the Schwarz inequality:

$$
\left|\eta_{\alpha \beta}\right| \leq \sqrt{\eta_{\alpha \alpha} \eta_{\beta \beta}}
$$

The preference of the data

© $M_{W}, s_{e f f}^{2}$ showcase $\sim 1-2 \sigma$ preference for $\eta_{e e}+\eta_{\mu \mu}>0$LFU prefers $\eta_{e e}>\eta_{\mu \mu}$ at $\sim 1 \sigma$
(Cabibbo anomaly disfavors $\eta_{\mu \mu}>0$
© Observables constraining $\eta_{\tau \tau}$ show good agreement with SMSumming up: data prefers $\eta_{e e}>0, \eta_{\mu \mu}=0, \eta_{\tau \tau}=0$

Cases under study

Minimal scenario with 2 heavy neutrinos: 2 N -SS(Previously missing in the literature)

O Next-to-minimal scenario with 3 heavy neutrinos: 3 N -SS

O General scenario with arbitrary number of heavy neutrinos: G-SS

Cases under study

Minimal scenario with 2 heavy neutrinos: $2 \mathrm{~N}-\mathrm{SS}$(Previously missing in the literature)
\star Correlations from m_{ν}
$\star\left|\eta_{\alpha \beta}\right|=\sqrt{\eta_{\alpha \alpha} \eta_{\beta \beta}}$
\star LFV with LFC
(Next-to-minimal scenario with 3 heavy neutrinos: 3 N -SSGeneral scenario with arbitrary number of heavy neutrinos: G-SS

Cases under study

Minimal scenario with 2 heavy neutrinos: 2 N -SS(Previously missing in the literature)
\star Correlations from m_{ν}
$\star\left|\eta_{\alpha \beta}\right|=\sqrt{\eta_{\alpha \alpha} \eta_{\beta \beta}}$
$\star \mathrm{LFV}$ with LFC
O Next-to-minimal scenario with 3 heavy neutrinos: 3 N -SSGeneral scenario with arbitrary number of heavy neutrinos: G-SS
$\star \eta_{e e}, \eta_{\mu \mu}$ and $\eta_{\tau \tau}$ independent
$\star\left|\eta_{\alpha \beta}\right| \leq \sqrt{\eta_{\alpha \alpha} \eta_{\beta \beta}}$

* LFV decoupled from LFC

Results for the $\mathbf{2}$ heavy neutrino case

Very restrictive flavor structure

O cLFV bounds play a very important role

Results for the $\mathbf{2}$ heavy neutrino case

© Stringent bounds $\sim 10^{-5}-10^{-4}$

2N-SS	Normal Ordering		Inverted Ordering	
	$68 \% \mathrm{CL}$	$95 \% \mathrm{CL}$	$68 \% \mathrm{CL}$	$95 \% \mathrm{CL}$
$\left.\eta_{e e}=\frac{\left\|\theta_{e}\right\|^{2}}{2} \right\rvert\,$	$6.4 \cdot 10^{-6}$	$9.4 \cdot 10^{-6}$	$[0.98,4.4] \cdot 10^{-4}$	$5.5 \cdot 10^{-4}$
$\eta_{\mu \mu}=\frac{\left\|\theta_{\mu}\right\|^{2}}{2}$	$6.9 \cdot 10^{-5}$	$1.3 \cdot 10^{-4}$	$[0.20,1.0] \cdot 10^{-6}$	$3.2 \cdot 10^{-5}$
$\left.\eta_{\tau \tau}=\frac{\left\|\theta_{\tau}\right\|^{2}}{2} \right\rvert\,$	$8.6 \cdot 10^{-5}$	$2.1 \cdot 10^{-4}$	$[0.94,2.8] \cdot 10^{-5}$	$4.5 \cdot 10^{-5}$
$\operatorname{Tr}[\eta]=\frac{\|\theta\|^{2}}{2}$	$1.6 \cdot 10^{-4}$	$2.9 \cdot 10^{-4}$	$[1.1,4.8] \cdot 10^{-4}$	$6.0 \cdot 10^{-4}$
$\left\|\eta_{e \mu}\right\|=\frac{\left\|\theta_{e} \theta_{\mu}^{*}\right\|}{2}$	$8.3 \cdot 10^{-6}$	$1.2 \cdot 10^{-5}$	$[0.37,1.0] \cdot 10^{-5}$	$1.3 \cdot 10^{-5}$
$\left\|\eta_{e \tau}\right\|=\frac{\left\|\theta_{e} \theta_{\tau}^{*}\right\|}{2}$	$1.5 \cdot 10^{-5}$	$2.2 \cdot 10^{-5}$	$[0.25,1.2] \cdot 10^{-4}$	$1.4 \cdot 10^{-4}$
$\left\|\eta_{\mu \tau}\right\|=\frac{\left\|\theta_{\mu} \theta_{\tau}^{*}\right\|}{2}$	$7.2 \cdot 10^{-5}$	$1.3 \cdot 10^{-4}$	$[0.38,3.0] \cdot 10^{-6}$	$3.5 \cdot 10^{-5}$

Results for the $\mathbf{3}$ heavy neutrino case

More flexible flavor structure
© Easier to accommodate data and survive cLFV bounds

Results for the $\mathbf{3}$ heavy neutrino case

($\sim 10^{-3}$ bounds on $\eta_{e e}, \eta_{\tau \tau}$ and $\sim 10^{-5}$ bound on $\eta_{\mu \mu}$

3N-SS	Normal Ordering		Inverted Ordering	
	$68 \% \mathrm{CL}$	$95 \% \mathrm{CL}$	$68 \% \mathrm{CL}$	$95 \% \mathrm{CL}$
$\eta_{e e}=\frac{\left\|\theta_{e}\right\|^{2}}{2}$	$[0.28,0.99] \cdot 10^{-3}$	$1.3 \cdot 10^{-3}$	$[0.31,1.0] \cdot 10^{-3}$	$1.4 \cdot 10^{-3}$
$\eta_{\mu \mu}=\frac{\left\|\theta_{\mu}\right\|^{2}}{2}$	$1.3 \cdot 10^{-7}$	$1.1 \cdot 10^{-5}$	$1.2 \cdot 10^{-7}$	$1.0 \cdot 10^{-5}$
$\eta_{\tau \tau}=\frac{\left\|\theta_{\tau}\right\|^{2}}{2}$	$[0.3,3.9] \cdot 10^{-4}$	$1.0 \cdot 10^{-3}$	$1.7 \cdot 10^{-4}$	$8.1 \cdot 10^{-4}$
$\operatorname{Tr}[\eta]=\frac{\left\|\theta^{2}\right\|^{2}}{2}$	$[0.35,1.3] \cdot 10^{-3}$	$1.9 \cdot 10^{-3}$	$[0.33,1.0] \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$
$\left\|\eta_{e \mu}\right\|=\frac{\left\|\theta_{e} \theta_{\mu}^{*}\right\|}{2}$	$8.5 \cdot 10^{-6}$	$1.2 \cdot 10^{-5}$	$8.5 \cdot 10^{-6}$	$1.2 \cdot 10^{-5}$
$\left\|\eta_{e \tau}\right\|=\frac{\left\|\theta_{e} \theta_{\tau}^{*}\right\|}{2}$	$[1.3,5.1] \cdot 10^{-4}$	$9.0 \cdot 10^{-4}$	$3.3 \cdot 10^{-4}$	$8.0 \cdot 10^{-4}$
$\left\|\eta_{\mu \tau}\right\|=\frac{\left\|\theta_{\mu} \theta_{\tau}^{*}\right\|}{2}$	$5.0 \cdot 10^{-6}$	$5.7 \cdot 10^{-5}$	$3.8 \cdot 10^{-6}$	$1.8 \cdot 10^{-5}$

Results for arbitrary number of heavies

($\sim 10^{-3}$ bounds on $\eta_{e e}, \eta_{\tau \tau}$ and $\sim 10^{-4}$ bound on $\eta_{\mu \mu}$

© Physical boundary $\eta_{\alpha \alpha} \geq 0$ induces deviations from Wilks' theorem

Results for arbitrary number of heavies

© LFC bounds on $\left|\eta_{e \tau}\right|$ and $\left|\eta_{\mu \tau}\right|$ much stronger than the LFV ones

G-SS	LFC Bound		LFV Bound	
	$68 \% \mathrm{CL}$	$95 \% \mathrm{CL}$	$68 \% \mathrm{CL}$	$95 \% \mathrm{CL}$
$\eta_{e e}$	$[0.33,1.0] \cdot 10^{-3}$	$[0.081,1.4] \cdot 10^{-3}$	-	-
$\eta_{\mu \mu}$	$1.5 \cdot 10^{-5}$	$1.4 \cdot 10^{-4}$	-	-
$\eta_{\tau \tau}$	$1.6 \cdot 10^{-4}$	$8.9 \cdot 10^{-4}$	-	-
$\operatorname{Tr}[\eta]$	$[0.28,1.2] \cdot 10^{-3}$	$2.1 \cdot 10^{-3}$	-	-
$\left\|\eta_{e \mu}\right\|$	$1.4 \cdot 10^{-4}$	$3.4 \cdot 10^{-4}$	$\mathbf{8 . 4} \cdot \mathbf{1 0}^{-\mathbf{6}}$	$\mathbf{1 . 2 \cdot \mathbf { 1 0 } ^ { - \mathbf { 5 } }}$
$\left\|\eta_{e \tau}\right\|$	$\mathbf{4 . 2} \cdot \mathbf{1 0}^{-\mathbf{4}}$	$\mathbf{8 . 8} \cdot \mathbf{1 0}^{-\mathbf{4}}$	$5.7 \cdot 10^{-3}$	$8.1 \cdot 10^{-3}$
$\left\|\eta_{\mu \tau}\right\|$	$\mathbf{9 . 4 \cdot \mathbf { 1 0 } ^ { - \mathbf { 6 } }}$	$\mathbf{1 . 8} \cdot \mathbf{1 0}^{-\mathbf{4}}$	$6.6 \cdot 10^{-3}$	$9.4 \cdot 10^{-3}$

Conclusions

((Updated) Bounds obtained for different setups ($2 \mathrm{~N}-\mathrm{SS}, 3 \mathrm{~N}-\mathrm{SS}, \mathrm{G}-\mathrm{SS}$)
© Bounds substantially change between setups
© Quantified tension between CDF-II M_{W} and other observables: irreconcilableQuantified deviations from Wilks' theorem

Thanks for your attention!

Backup

Observable	SM prediction	Experimental value	
$\begin{gathered} M_{W} \simeq M_{W}^{\mathrm{SM}}\left(1+0.20\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \\ s_{\mathrm{eff}}^{2 \text { Tev }} \simeq s_{\mathrm{eff}}^{2 \mathrm{SM}}\left(1-1.40\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \\ s_{\mathrm{eff}}^{2 \mathrm{LHC}} \simeq s_{\mathrm{eff}}^{2 \mathrm{SM}}\left(1-1.40\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \end{gathered}$	$\begin{gathered} \hline 80.356(6) \mathrm{GeV} \\ 0.23154(4) \\ 0.23154(4) \end{gathered}$	$\begin{gathered} \hline 80.373(11) \mathrm{GeV} \\ 0.23148(33) \\ 0.23129(33) \end{gathered}$	[76] [76]
$\begin{gathered} \Gamma_{\text {inv }}^{\mathrm{LHC}} \simeq \Gamma_{\text {inv }}^{\mathrm{SM}}\left(1-0.33\left(\eta_{e e}+\eta_{\mu \mu}\right)-1.33 \eta_{\tau \tau}\right) \\ \Gamma_{Z} \simeq \Gamma_{Z}^{\mathrm{SM}}\left(1+1.08\left(\eta_{e e}+\eta_{\mu \mu}\right)-0.27 \eta_{\tau \tau}\right) \\ \sigma_{\text {had }}^{0} \simeq \sigma_{\text {had }}^{0 \mathrm{SM}}\left(1+0.50\left(\eta_{e e}+\eta_{\mu \mu}\right)+0.53 \eta_{\tau \tau}\right) \\ R_{e} \simeq R_{e}^{\mathrm{SM}}\left(1+0.27\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \\ R_{\mu} \simeq R_{\mu}^{\mathrm{SM}}\left(1+0.27\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \\ R_{\tau} \simeq R_{\tau}^{\mathrm{SM}}\left(1+0.27\left(\eta_{e e}+\eta_{\mu \mu}\right)\right) \end{gathered}$	$\begin{gathered} 0.50145(5) \mathrm{GeV} \\ 2.4939(9) \mathrm{GeV} \\ 41.485(8) \mathrm{nb} \\ 20.733(10) \\ 20.733(10) \\ 20.780(10) \end{gathered}$	$\begin{gathered} 0.523(16) \mathrm{GeV} \\ 2.4955(23) \mathrm{GeV} \\ 41.481(33) \mathrm{nb} \\ 20.804(50) \\ 20.784(34) \\ 20.764(45) \end{gathered}$	$[77]$ $[76]$ $[76]$ $[76]$ $[76]$ $[76]$
$\begin{aligned} & R_{\mu e}^{\pi} \simeq\left(1-\left(\eta_{\mu \mu}-\eta_{e e}\right)\right) \\ & R_{\tau \mu}^{\pi} \simeq\left(1-\left(\eta_{\tau \tau}-\eta_{\mu \mu}\right)\right) \\ & R_{\mu e}^{K} \simeq\left(1-\left(\eta_{\mu \mu}-\eta_{e e}\right)\right) \\ & R_{\mu e}^{\tau} \simeq\left(1-\left(\eta_{\mu \mu}-\eta_{e e}\right)\right) \\ & R_{\tau \mu}^{\tau} \simeq\left(1-\left(\eta_{\tau \tau}-\eta_{\mu \mu}\right)\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline 1.0010(9) \\ 0.9964(38) \\ 0.9978(18) \\ 1.0018(14) \\ 1.0010(14) \end{gathered}$	[78] [78] [78] [78] [78]
$\begin{aligned} &\left\|V_{u d}^{\beta}\right\| \simeq \sqrt{1-\left\|V_{u s}\right\|^{2}}\left(1+\eta_{\mu \mu}\right) \\ &\left\|V_{u s}^{\tau \rightarrow K \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{e e}+\eta_{\mu \mu}-\eta_{\tau \tau}\right) \\ &\left\|V_{u s}^{\tau \rightarrow K, \pi}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{\mu \mu}\right) \\ &\left\|V_{u s}^{K_{L} \rightarrow \pi e \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{\mu \mu}\right) \\ &\left\|V_{u s}^{K_{L} \rightarrow \pi \mu \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{e e}\right) \\ &\left\|V_{u s}^{K_{s} \rightarrow \pi e \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{\mu \mu}\right) \\ &\left\|V_{u s}^{K_{s} \rightarrow \pi \mu \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{e e}\right) \\ &\left\|V_{u s}^{K^{ \pm} \rightarrow \pi e \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{\mu \mu}\right) \\ &\left\|V_{u s}^{K^{ \pm} \rightarrow \pi \mu \nu}\right\| \simeq\left\|V_{u s}\right\|\left(1+\eta_{e e}\right) \\ &\left\|\frac{V_{u s}}{V_{u d}}\right\|^{K, \pi \rightarrow \mu \nu} \simeq \frac{\left\|V_{u s}\right\|}{\sqrt{1-\left\|V_{u s}\right\|^{2}}} \end{aligned}$	$\begin{gathered} \hline \sqrt{1-\left\|V_{u s}\right\|^{2}} \\ \left\|V_{u s}\right\| \\ \sqrt{1-\left\|V_{u s}\right\|^{2}} \end{gathered}$	$\begin{gathered} 0.97373(31) \\ 0.2236(15) \\ 0.2234(15) \\ 0.2229(6) \\ 0.2234(7) \\ 0.2220(13) \\ 0.2193(48) \\ 0.2239(10) \\ 0.2238(12) \\ 0.23131(53) \end{gathered}$	$[76]$ $[79]$ $[76]$ $[76]$ $[76]$ $[76]$ $[76]$ $[76]$ $[76]$ $[76]$

Backup

Backup

Backup

Backup

