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Introduction

o Effective action — Principal tool for studying phases of a QFT

@ Perturbative methods, to the leading order, involve the computation of one-loop
determinants.

@ This talk has two parts

© We describe a method for computing one-loop partition function for scalar and
fermionic fields in thermal AdS — Method of images and Eigenfunctions of Laplacian
and Dirac operators on Euclidean AdS.

@ We employ these to study phases of scalar and fermionic field theories in thermal
AdSgy1.

o Changes in infrared behaviour of theories in AdS space lead to deviations from flat
space results. AdS space acts like a box that regulates infrared behaviour. These
changes are captured by the Effective Potential. Ultraviolet behavior however
remains the same.
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Geometry of thermal AdS,,::

Thermal AdS, defined in terms of global coordinates by compactifying the time
circle, leads to H*!/Z identification in Poincaré coordinates.

The Poincaré metric on AdS; after an Euclidean continuation is
» L2y, _
ds? = = (dy n dzdz)
y

Coordinate transformation

t
) . e

z = tanhp e'*'f ) Z =tanhp ™" and =
P P Y cosh p

Metric obtained in global coordinates
ds® = cosh® pdt® + dp” +sinh® pd¢?, 0<p<oo, 0< ¢ <2r

The identification t ~ t + 3 and ¢ ~ ¢ + 0 with 7 = i(& + if3) translates into the
identification that leads to thermal AdS or ?/Z (can be generalized for all d).
The action of 4" € Z on coordinates is

V(,2) = (P, &772)



Methodology and Basic Setup

@ For a given action

5= [ @ xVE [FD + i+ 00 + 50,0 + V()

o Effective potential

1 1
Ver(dg) = ——logzV - v log Zl(yl) + V(da)
d+1 d+1

1 1
= — trlog[D + M¢(pa)] +
Py 718D + M (6] + 5 —

triog[—Og + V" (¢)] + V(34)

@ log of the trace can be obtained by integrating the following:

! tr { ! ] and ! tr { L ]
2Vd+1 _DE + V”(¢c/) Vd+1 D+ Mf(¢cl)

@ Solutions of eigenvalue equations corresponding to respective differential operators:

1/},‘(‘)\()?,_}/) = QS,\(y)ei"k')? ) ¢A(ky) = (ky)d/ZK,)\(k_y) —> Scalar wavefunction

> D (k ik.g 7 =
’l/),?’A(X,y) = ( irfz;t/:(,y()ky) ) e , , wi(ky) = (ky) 2 KiAI%(ky) —>  Spinor wavefunction

k




@ generalized eigenfunctions in thermal AdS obey respective periodicities under
thermal identification

1 & n
WE,A X =N Z R(y )wE,A(’Y x)

n=—oo

@ where R(7") is a one dimensional representation of the group Z and can be written
as R(y") = > with a = 1 for bosons and a =  for fermions.

e N is a normalization constant which regularizes the sum.



Partition Functions

Scalar Field:

@ Trace at zero temperature:

1 1 ~ Van T(d/2+v)T(1/2—d/2)
2 [—DE + v”(qsc,)] T LT (1 — d/2 + v) (4m)dHD)/2

@ One-loop partition function for even d at finite temperature:

7nBu d/2 ean

log Z = Z H |1 — e2minmi|?

@ One-loop partition function for odd d at finite temperature:

e—B(/24+v) @D/2 _ng
log Z = Z nll— nB‘ 11 |1 — e2mini|2




Fermion Field:

@ Trace at zero temperature:

Vd+12d+1 (4 + My ) ri- 7)

tr[#]—sn(M)
D+ M| " @@ 2 T T (I 4wy

@ One-loop partition function for even d at finite temperature:

2
—nB
a _ ( 1)” (—nBim| 2e7"
|Og ZT Z ' H |]_ e27rm7—,|2

@ One-loop partition function for odd d at finite temperature:

oo _ (d-1)/2 _
—1)" 2e nB(|M¢|+1/2) 2¢~ "8
log 20 = ~ 3
&< Z n |1 — e8|

n=1 i=1

|1 _ e27rin‘r,'|2




@ Unlike finite temperature part, zero temperature contribution to one-loop correction
is proportional to the divergent Vol(H?/Z).

o Regularized volume can be obtained using Euclidean metric in global coordinates
with radial coordinate cutoff p = po and thermal AdS period 6 = .

_mB
2

@ Or using dimensional regularization [C.R. Graham, 2000; D.E. Diaz and H. Dorn '07]
regularized volume of H*™ /Z is Vg1 = V(H*™)3/(27) where

Vol(H?/Z) = -8, Vol(H*/Z) =

. Vol(H/Z) = @

_r)d/2
V(H ) W [(1 + d/2) — log ] for even d
_ (L for odd d
= (-1 W or o

@ The phases depend on the sign of the renormalized volume: results using the two
regularization schemes match for odd d but differ for even d.



Applications: Phases of single scalar model in AdSs

o Lagrangian for the ¢* theory

E_(u¢)+7¢+¢

@ The effective potential for the ¢* at finite temperature can thus be written as

llog Z" + log ZM]

Vig(ba) = V(¢c,)_vj+1

@ where
A\ 1/2
=V1+M2 = [1+§¢§/+m2} :
@ The complete expression for the one-loop corrected effective potential is

—ﬁn(1+l/)

3
Veff(¢c/) m ¢c/ + = 41 ¢cl ]_27'(' ﬂ'ﬂ Z m



(a) Phases on the 8 — m? plane
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Figure: Phases and potentials for A = 0.1.



Applications: Phases of Large N O(N) model in AdS3

@ Lagrangian

Le= (H¢>) = m(¢) 12 [(¢)] where i=1,--- N

Large N 1 1 in2
—— (0, + - 4+ —o0
500’y (¢> )~ TN (¢")
o Effective potential to the leading order in 1/N
i Mm? M? — m?)? 1
Verr (der, 0c) = N | —(der)” — ( m) (log Z® + log ZM)
2 8\ Va1

o for AdS3

. 2 3 —nB(1+y/1+M2
Veoff(M2’¢'cl) :7(M2_m2) +1( i )2M27 (1+M2)2 7i G le ”B(+ i )
N S\ 2 cl 127 V3 p n |1 _ e27rin‘r|2

where M? = m? + 204/.
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(b) Roots of the saddle point equation, m?
B =1, n =10 and different values of ¢,.

(a) Phases on the 8 — m? plane.
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Figure: Phases and roots of saddle point equation for AdS3 with negative renormalized volume.
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Figure: Representative plots of the potential corresponding to different regions for A = 1.
— There exists a region in 8 — m? plane for the theory where both symmetry breaking and
symmetry preserving phases coexist.

— One gets a broken symmetry phase at high temperatures.



Applications: Phases of Large N O(N) model in AdS»

L - (/asiinlogd) |

(a) C:m?*=-03,8=30 D:m*=-048=12

Figure: (a) Phases in AdS; on the 3 — m? plane. Representative potential plots (extreme right)
corresponding to different regions for A = 0.5.

— In finite temperature theory in AdS; there occurs a symmetry breaking phase, unlike flat
space where Coleman-Mermin-Wagner theorem [N.D. Mermin and H. Wagner, 1966; S.R.
Coleman, 1973] prohibits continuous symmetry breaking (also noted in [T. Inami and H. Ooguri,
1985] and for large N O(N) model in [Carmi et al. '19 ]).



Applications: Phases of Yukawa Model in AdS3

@ The general form of the effective potential is

A
veff—f mey + 5 ¢3,+ 2o+ Mo —

r 2
—Op + M2

1 M¢
/ tr [
Vay1 Jo

1 2

s

} dMy + counterterms

@ For AdS3 we get

1 50 A3,3 M V3 1
Verr = 5”75(155/ + ad’c/ + Ed’i/ + Mg — om + o

|Me |Mf\)

3 4

where M = ms + A3¢q + “(bc, and Mr = m¢ + goa.




@ zero temperature results
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Figure: Regions in m¢-g plane for m? = —0.2 (a), and m¢-m? plane for g = 0.3 (b).

Representative potentials (extreme right) at zero temperature. B is potential plot at finite
temperature for region B in the first finite temperature phase plot.



@ At finite temperature

V. L2 Z 1 e~ (1+VIFME) - ii )7 = nB M)
eff — eff 6 n |1_e*n6|2 6 — n |l—e*"5‘2

(a) (b) (c)

Figure: Phase plots in m? — 3 plane for (a) mf = 0.2, g = 0.2 (b) mf = 0.1, g = 0.4
(c) mg =1, g = 0.8 which are points in region /, Il and Il of the zero temperature plot
respectively.



Applications: Phases of Gross Neveu Model in AdS;

o Effective potential as function of o at leading order in 1/N

2
= _%d — trlog (D + m¢ + o)
2g

AdS3

2
e

— 2 <

2g

+ — | zlms+oul” — = |ms+ 0o
3 f ! f cl

2w

@ At finite temperature

N

Verr _

Verr
N

—-1)" e~ MB(+Ime+ogl)

IR o
Wﬂ;

n

1= e




AN // //
® " - N
A
A:mf=0.1g=5 B: mf=0.4,g=5
@ 10
’ \ ///
/ \ /
B ——— -
0 “ o ” o " C:mf=08,g=5 Al: mf=08,g=15 =4

my

Figure: Regions (left) corresponding to various representative potentials (right). Solid lines
correspond to boundaries at zero temperature and the dashed lines for
B =4 and n=10.

— The discrete chiral symmetry, restored at high temperatures in flat space [K.G.
Klimenko,1988; Rosenstein, 1989], remains broken at all temperatures in AdSs. Also, no
first order transition exists.



AdS,
—
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Figure: Regions in (mr, g) space (left) and potential plots (right). The solid boundary separates
the regions A and B for 3 = 4. The corresponding boundaries for 3 = 3,5 appear as dashed lines.



Summary

@ We gave a derivation for one-loop partition functions using eigenfunctions of Laplacian and
Dirac operators in Euclidean AdS and method of images applied to Green’s function.

@ We studied phases of scalar and fermionic theories on thermal AdS, ; and identified regions
in corresponding parameter spaces for d = 1,2, 3.

@ We confirmed for a finite temperature theory in AdS for the O(N) model there occurs a
symmetry breaking phase in two dimensions, in contrast to flat space where the
Coleman-Mermin-Wagner theorem prohibits continuous symmetry breaking.

@ Scalars can have negative mass upto the Breitenlohner-Freedman (BF) bound — Unlike flat
space, there exists a region in AdS where both symmetry breaking and symmetry preserving
phases coexist.

@ Symmetry breaking occurs at high temperature for cases with negative renormalized
volume.

@ For the Yukawa theories, for all cases at zero temperature we found a phase boundary where
the two minima exchange dominance. At finite temperature this is observed in AdS5 3.

@ The discrete chiral symmetry in the Gross Neveu model, restored at high temperatures in
flat space, remains broken at all temperatures in AdS> 3.



Further Directions of Work

@ Further research involves other theories of fermion and vector fields in thermal AdS
spaces.

@ An interesting exercise would be to consider asymptotically AdS black hole
geometry.

@ Another direction of research is the study of correlation functions in thermal AdS
and to understand the implications of this study on dual boundary theory.
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o For scalars the zero temperature trace can be computed as follows

L [;}
L2 Oe + V"' (¢a)
_ d+1 1 v vd
- / xf/cmm)/ oy T K | By D0 A K
dX p(A d9k

Vo T(d/2+v)T 1/2—d/2)
LT T (1= d/2 + v) (4m)(@1)/2

o Where v = 4/ ( ) + L2V (¢g) and pu(N) = S|nh(7r)\)

@ This expression has been derived using various approaches before, for example in
[C. P. Burgess and C. A. Lutken, 1985 ; R. Camporesi, 1990 etc].
@ normalizations

Il
—

[ d* vl

, 2Nk = e T (ky)?2 Kix(ky)

) =1%) @1y)

@ Thus

d
(:ﬂf W/d/\ w(A) KN Ky =1



@ For fermions

1

1
AT Gy e

n(A) =

@ We can thus compute the required zero temperature fermion trace as follows

1 e [ L Gk 1 e dAu) }
tr|l—| = [d
r[D+MJ / VE | Gy k@ OCIA+MfwM( WA %Y)

_ d+1 < dX p(A)
= Mf/d Xf/ 27rdkd 7007)\2+M2X
f

X )[Ry Ky () Koy (K3 ()]

_ Vo125 My /oo dh T (ER +iN) T (452 —i)
T @R () L XM (T (G )

Va125 T(4 M T = 9)
@m)@ 072 (3= ¢+ M)

= sgn(Mys)



To make the method of images manifest consider the two-point function,
1 /
| =gy )

d\ p(A), _, _n —n —n’ _iE. (%) ik 7
- mZ/ 27r)2/ )\2+(l,2)(e “y) (e Py YKin (ke =" y)Kia (ke " Py je OO

- NZ/ @ny ) ey Y Hir ki (ke ™"y e )

= 60"

N S - L 3x X, "X

tr|:7DE+ V//(¢cl):| - N;/H?’d \/E G( 7’7 )
3 n

;/H3/de\/§ G(x,7"x)

Each copy of the fundamental region gives the same answer. This cancels the
normalization N in the denominator.



Applications: Phases of Large N O(N) model in AdS3 with
positive volume

05 A

+m?=21/2m

(b) Roots of the saddle point equation, m*> = —0.5,
(a) Phases on the g — m? plane. B =1, n =10 and different values of ¢,.

Figure: Phases and roots of saddle point equation for AdS3 with positive renormalized volume.

@ The saddle point equation has a solution for all values of ¢, m? and S.

@ The corresponding C and D regions of the negative volume case are thus absent
here.

@ The phase boundary given by M? = 0 asymptotes to m> = \/(27).



AdS,

o Expanding trace at zero temperature and adding counter-terms

N 8\
@ renormalization conditions (at zero temperature)

Vo (&l M2 — 22 MR . 1 Sm?
e (depoa) m°) n 7(%)2 _ (log 20 + |0gzél)) Y 4’2 M (

Va1

1.8 0 (i _ m? 192 0 (i 1
N oz Verr (Pcrs 0ct) Me=gi o X and y M2 Verr (0cr, 0ct) V2o ax
@ renormalized effective potential at zero temperature
V(M2 ' M2 —m?? 1 ; 1 M2 1 M4
( o) m) Lol + 7/ aMPer _
N 8A 2 2 Jo —Op +M2 ], 962
@ where,

2
_ @2+ M) [w(") (V7%>+w(°) <V+g>+2'yf

tr [—DE T /\/12} ren 1672
@ The saddle point equation

Nom2 ax 2 3272

2 so B+ 3M2)

B0 + 0@+ >
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Figure: Phases and roots of saddle point equation for AdSs.

@ On boundary separating regions A and B, the m? value approaches zero for large 8 as in AdS,.
Corresponding value on boundary separating regions A and C at zero temperature is obtained from the

condition that the two roots of saddle point equation coincide. For A = 70 this gives m?> ~ 1.734.



Applications: Gross Neveu model in AdS,.

@ Counterterms have the following form oo A1 + 02 1 ( ) + 3,0 o3 + 4,0 OAg.

@ renormalization conditions at oy = 0

1 0VY% 0 1 02VS% 1 1 0%V5% N 1 0*Ve \
il = - —_= - =\ il = s
N doy N 80’3, g N 80'3/ N 80'3/
@ zero temperature effective potential
ol Mg Mg(My — 1)

0 _ cl cl M (0) 0)
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272

3
3
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(m? — mf
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2! 4r2 47
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leading behavior for large values of o
M Me(M? —1
[ ML (40 (g = 1)+ 5O (1M +2)) by ~ o log ()
me 472
adding kinetic term for the o field
o3 ot
£ = @D+ mp+go) + = (8u0)2+ m2o? 4 A3 ? +/\4I
— Gross-Neveu-Yukawa model [Zinn-Justin, 1991].

To study the large N behavior we re-scale o — v No, g— g/\m A3 — )\3/\/N,
A4 — Aa/N, write 0 = o + do and integrate over the fluctuations

Ve _ 1 +§3+>\44_ 1 /°° 1 2
N 2 7T g Wy I | —Og+M2|
1 Me 1
— / tr [7] dMy + counterterms
Vs D+ My

with Ms2 = mg + A30¢ + >\4a§//2 and Mf = my + go, which is essentially same as the
Yukawa model.
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