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Introduction

Effective action → Principal tool for studying phases of a QFT

Perturbative methods, to the leading order, involve the computation of one-loop
determinants.

This talk has two parts

1 We describe a method for computing one-loop partition function for scalar and
fermionic fields in thermal AdS → Method of images and Eigenfunctions of Laplacian
and Dirac operators on Euclidean AdS.

2 We employ these to study phases of scalar and fermionic field theories in thermal
AdSd+1.

Changes in infrared behaviour of theories in AdS space lead to deviations from flat
space results. AdS space acts like a box that regulates infrared behaviour. These
changes are captured by the Effective Potential. Ultraviolet behavior however
remains the same.
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Figure: Partition Function on Hd+1/Z



Geometry of thermal AdSd+1:

Thermal AdS, defined in terms of global coordinates by compactifying the time
circle, leads to Hd+1/Z identification in Poincaré coordinates.

The Poincaré metric on AdS3 after an Euclidean continuation is

ds2 =
L2

y 2

(
dy 2 + dzdz

)
Coordinate transformation

z = tanh ρ et+iθ , z = tanh ρ et−iθ and y =
et

cosh ρ

Metric obtained in global coordinates

ds2 = cosh2 ρdt2 + dρ2 + sinh2 ρdϕ2, 0 < ρ <∞, 0 ≤ ϕ ≤ 2π

The identification t ∼ t + β and ϕ ∼ ϕ+ θ with τ = 1
2π
(θ + iβ) translates into the

identification that leads to thermal AdS or H3/Z (can be generalized for all d).

The action of γn ∈ Z on coordinates is

γn(y , z) = (e−nβy , e2πinτz)



Methodology and Basic Setup
For a given action

S = −
∫

dd+1x
√
g

[
ψ̄(D +mf + gϕ)ψ +

1

2
(∂µϕ)

2 + V (ϕ)

]
Effective potential

Veff (ϕcl ) = −
1

Vd+1

log Z
(1)
f −

1

Vd+1

log Z
(1)
b + V (ϕcl )

= −
1

Vd+1

tr log[D + Mf (ϕcl )] +
1

2Vd+1

tr log[−□E + V ′′(ϕcl )] + V (ϕcl )

log of the trace can be obtained by integrating the following:

1

2Vd+1

tr

[
1

−□E + V ′′(ϕcl)

]
and

1

Vd+1

tr

[
1

D +Mf (ϕcl)

]

Solutions of eigenvalue equations corresponding to respective differential operators:

ψk⃗,λ(x⃗ , y) = ϕλ(y)e
±i k⃗ .⃗x

, ϕλ(ky) = (ky)d/2Kiλ(ky) → Scalar wavefunction

ψk⃗,λ(x⃗ , y) =
(

ψ̃+(ky)
iΓi ki
k
ψ̃−(ky)

)
e i k⃗ .⃗x , ψ̃±(ky) = (ky)

d+1
2 Kiλ∓ 1

2
(ky) → Spinor wavefunction



generalized eigenfunctions in thermal AdS obey respective periodicities under
thermal identification

Ψk⃗,λ(x) =
1

N

∞∑
n=−∞

R(γn) ψk⃗,λ(γ
nx)

where R(γn) is a one dimensional representation of the group Z and can be written
as R(γn) = e2πina with a = 1 for bosons and a = 1

2
for fermions.

N is a normalization constant which regularizes the sum.



Partition Functions

Scalar Field:

Trace at zero temperature:

1

L2
tr

[
1

−□E + V ′′(ϕcl)

]
=

Vd+1

Ld+1

Γ (d/2 + ν) Γ(1/2− d/2)

Γ (1− d/2 + ν) (4π)(d+1)/2

One-loop partition function for even d at finite temperature:

logZ =
∞∑
n=1

e−nβν

n

d/2∏
i=1

e−nβ

|1− e2πinτi |2

One-loop partition function for odd d at finite temperature:

logZ =
∞∑
n=1

e−nβ(1/2+ν)

n|1− e−nβ |

(d−1)/2∏
i=1

e−nβ

|1− e2πinτi |2



Fermion Field:

Trace at zero temperature:

tr

[
1

D +Mf

]
= sgn(Mf )

Vd+12
d+1
2

(4π)(d+1)/2

Γ
(
d+1
2

+ |Mf |
)
Γ
(
1
2
− d

2

)
Γ
(
1
2
− d

2
+ |Mf |

)
One-loop partition function for even d at finite temperature:

logZ (1)
τ = −

∞∑
n=1

(−1)n

n
e−nβ|Mf |

d/2∏
i=1

2e−nβ

|1− e2πinτi |2

One-loop partition function for odd d at finite temperature:

logZ (1)
τ = −

∞∑
n=1

(−1)n

n

2e−nβ(|Mf |+1/2)

|1− e−nβ |

(d−1)/2∏
i=1

2e−nβ

|1− e2πinτi |2



Unlike finite temperature part, zero temperature contribution to one-loop correction
is proportional to the divergent Vol(Hd/Z).
Regularized volume can be obtained using Euclidean metric in global coordinates
with radial coordinate cutoff ρ = ρ0 and thermal AdS period θ = β.

Vol(H2/Z) = −β , Vol(H3/Z) = −πβ
2

, Vol(H4/Z) = 2πβ

3

Or using dimensional regularization [C.R. Graham, 2000; D.E. Diaz and H. Dorn ’07]
regularized volume of Hd+1/Z is Vd+1 = V(Hd+1)β/(2π) where

V(Hd+1) =
(−π)d/2

Γ((d + 2)/2)
[ψ(1 + d/2)− log π] for even d

= (−1)(d+1)/2 π(d+2)/2

Γ((d + 2)/2)
for odd d

The phases depend on the sign of the renormalized volume: results using the two
regularization schemes match for odd d but differ for even d .



Applications: Phases of single scalar model in AdS3

Lagrangian for the ϕ4 theory

LE =
1

2
(∂µϕ)

2 +
1

2
m2ϕ2 +

λ

4!
ϕ4

The effective potential for the ϕ4 at finite temperature can thus be written as

Veff (ϕcl) = V (ϕcl)−
1

Vd+1
[logZ (1) + logZ (1)

τ ]

where

ν =
√

1 +M2 =

[
1 +

λ

2
ϕ2
cl +m2

]1/2

.

The complete expression for the one-loop corrected effective potential is

Veff (ϕcl) =
1

2
m2ϕ2

cl +
λ

4!
ϕ4
cl −

ν3

12π
+

2

πβ

∞∑
n=1

e−βn(1+ν)

n(1− e−βn)2
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(a) Phases on the β − m2 plane
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(c) B: m2 = −0.5, β = 2.0

Figure: Phases and potentials for λ = 0.1.



Applications: Phases of Large N O(N) model in AdS3

Lagrangian

LE =
1

2
(∂µϕ

i )2 +
1

2
m2(ϕi )2 +

λ

4

[
(ϕi )2

]2
where i = 1, · · · ,N

Large N−−−−→ 1

2
(∂µϕ

i )2 +
m2

2
(ϕi )2 − 1

2λ
σ2 +

1√
N
σ(ϕi )2

Effective potential to the leading order in 1/N

Veff (ϕ
i
cl , σcl) = N

[
M2

2
(ϕi

cl)
2 − (M2 −m2)2

8λ
− 1

Vd+1
(logZ (1) + logZ (1)

τ )

]

for AdS3

V 0
eff (M

2, ϕicl )

N
= −

(
M2 −m2

)2
8λ

+
1

2
(ϕicl )

2M2 −
(1 +M2)

3
2

12π
−

1

V3

∞∑
n=1

1

n

e
−nβ

(
1+

√
1+M2

)
|1− e2πinτ |2

where M2 = m2 + 2σcl .



(a) Phases on the β − m2 plane.
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(b) Roots of the saddle point equation, m2 = −0.8,
β = 1, n = 10 and different values of ϕcl .

Figure: Phases and roots of saddle point equation for AdS3 with negative renormalized volume.
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Figure: Representative plots of the potential corresponding to different regions for λ = 1.

−−→ There exists a region in β −m2 plane for the theory where both symmetry breaking and
symmetry preserving phases coexist.

−−→ One gets a broken symmetry phase at high temperatures.



Applications: Phases of Large N O(N) model in AdS2
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Figure: (a) Phases in AdS2 on the β −m2 plane. Representative potential plots (extreme right)
corresponding to different regions for λ = 0.5.

−−→ In finite temperature theory in AdS2 there occurs a symmetry breaking phase, unlike flat

space where Coleman-Mermin-Wagner theorem [N.D. Mermin and H. Wagner, 1966; S.R.

Coleman, 1973] prohibits continuous symmetry breaking (also noted in [T. Inami and H. Ooguri,

1985] and for large N O(N) model in [Carmi et al. ’19 ]).



Applications: Phases of Yukawa Model in AdS3

The general form of the effective potential is

Veff =
1

2
m2

sϕ
2
cl +

λ3

3!
ϕ3cl +

λ4

4!
ϕ4cl + λ1ϕcl −

1

2Vd+1

∫ ∞

M2
s

tr

[
1

−□E +M2
s

]
dM2

s

−
1

Vd+1

∫ Mf

0
tr

[
1

D +Mf

]
dMf + counterterms

For AdS3 we get

Veff =
1

2
m2

sϕ
2
cl +

λ3

3!
ϕ3cl +

λ4

4!
ϕ4cl + λ1ϕcl −

ν3

12π
+

1

2π

(
|Mf |3

3
−

|Mf |
4

)

where M2
s = m2

s + λ3ϕcl +
λ4
2
ϕ2
cl and Mf = mf + gϕcl .



zero temperature results
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Figure: Regions in mf -g plane for m2
s = −0.2 (a), and mf -m

2
s plane for g = 0.3 (b).

Representative potentials (extreme right) at zero temperature. B is potential plot at finite
temperature for region B in the first finite temperature phase plot.



At finite temperature

Veff = V 0
eff +

2

πβ

∞∑
n=1

1

n

e
−nβ

(
1+
√

1+M2
s

)
|1− e−nβ |2 − 4

πβ

∞∑
n=1

(−1)n

n

e−nβ(1+|Mf |)

|1− e−nβ |2

(a) (b) (c)

Figure: Phase plots in m2
s − β plane for (a) mf = 0.2, g = 0.2 (b) mf = 0.1, g = 0.4

(c) mf = 1, g = 0.8 which are points in region I , II and III of the zero temperature plot
respectively.



Applications: Phases of Gross Neveu Model in AdS3,2

Effective potential as function of σcl at leading order in 1/N

Veff

N
= −

σ2
cl

2g
− tr log (D + mf + σcl )

AdS3−−−→ −
σ2
cl

2g
+

1

2π

(
1

3
|mf + σcl |3 −

1

4
|mf + σcl |

)

At finite temperature

Veff

N
=

V 0
eff

N
− 4

πβ

∞∑
n=1

(−1)n

n

e−nβ(1+|mf +σcl |)

|1− e−nβ |2 .
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Figure: Regions (left) corresponding to various representative potentials (right). Solid lines
correspond to boundaries at zero temperature and the dashed lines for
β = 4 and n = 10.

−−→ The discrete chiral symmetry, restored at high temperatures in flat space [K.G.
Klimenko,1988; Rosenstein, 1989], remains broken at all temperatures in AdS3. Also, no
first order transition exists.
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the regions A and B for β = 4. The corresponding boundaries for β = 3, 5 appear as dashed lines.



Summary

We gave a derivation for one-loop partition functions using eigenfunctions of Laplacian and
Dirac operators in Euclidean AdS and method of images applied to Green’s function.

We studied phases of scalar and fermionic theories on thermal AdSd+1 and identified regions
in corresponding parameter spaces for d = 1, 2, 3.

We confirmed for a finite temperature theory in AdS for the O(N) model there occurs a
symmetry breaking phase in two dimensions, in contrast to flat space where the
Coleman-Mermin-Wagner theorem prohibits continuous symmetry breaking.

Scalars can have negative mass upto the Breitenlohner-Freedman (BF) bound → Unlike flat
space, there exists a region in AdS where both symmetry breaking and symmetry preserving
phases coexist.

Symmetry breaking occurs at high temperature for cases with negative renormalized
volume.

For the Yukawa theories, for all cases at zero temperature we found a phase boundary where
the two minima exchange dominance. At finite temperature this is observed in AdS2,3.

The discrete chiral symmetry in the Gross Neveu model, restored at high temperatures in
flat space, remains broken at all temperatures in AdS2,3.



Further Directions of Work

Further research involves other theories of fermion and vector fields in thermal AdS
spaces.

An interesting exercise would be to consider asymptotically AdS black hole
geometry.

Another direction of research is the study of correlation functions in thermal AdS
and to understand the implications of this study on dual boundary theory.
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For scalars the zero temperature trace can be computed as follows

1

L2
tr

[
1

−□E + V ′′ (ϕcl )

]

=
1

L2

∫
dd+1x

√
g

∫
dλ µ(λ)

∫
ddk

(2π)d
1

(Ld+1kd )
⟨λ, k|

[
1

−□E + V ′′ (ϕcl )

]
|y , x⃗⟩⟨y , x⃗|λ, k⟩

=
1

Ld+1

∫
dd+1x

√
g

∫
dλ µ(λ)

λ2 + ν2

∫
ddk

(2π)d
ydK 2

iλ(ky)

=
Vd+1

Ld+1

Γ (d/2 + ν) Γ(1/2 − d/2)

Γ (1 − d/2 + ν) (4π)(d+1)/2

Where ν =

√(
d
2

)2
+ L2V ′′ (ϕcl ) and µ(λ) = 2λ

π2 sinh(πλ)

This expression has been derived using various approaches before, for example in
[C. P. Burgess and C. A. Lutken, 1985 ; R. Camporesi, 1990 etc].

normalizations ∫
dd+1x

√
g |x⟩⟨x | = 1 ; |x⟩ = |x⃗⟩ ⊗ |y⟩

⟨y , x⃗ |λ, k⃗⟩ = e i k⃗ .⃗x (ky)d/2 Kiλ(ky)

Thus ∫
ddk

(2π)d
1

(Ld+1kd )

∫
dλ µ(λ)⟨λ, k⃗|λ

′
, k⃗

′
⟩ = 1



For fermions

µ(λ) =
1

πΓ
(
1
2
+ iλ

)
Γ
(
1
2
− iλ

) =
1

π2
cosh(πλ)

We can thus compute the required zero temperature fermion trace as follows

tr

[
1

D + Mf

]
=

∫
dd+1x

√
g

∫
ddk

(2π)d
1

kd

∫ ∞

−∞

dλ µ(λ)

iλ + Mf

ψ
†
k⃗,λ

(x⃗, y)ψk⃗,λ(x⃗, y)

= 2
d−1
2 Mf

∫
dd+1x

√
g

∫
ddk

(2π)d
1

kd

∫ ∞

−∞

dλ µ(λ)

λ2 + M2
f

×

× (ky)d+1
[
K

iλ− 1
2
(ky)K−iλ− 1

2
(ky) + K

iλ+ 1
2
(ky)K−iλ+ 1

2
(ky)

]

=
Vd+12

d+1
2 Mf

(4π)(d+1)/2Γ
(
d+1
2

) ∫ ∞

−∞

dλ

λ2 + M2
f

Γ
(
d+1
2 + iλ

)
Γ
(
d+1
2 − iλ

)
Γ
(
1
2 + iλ

)
Γ
(
1
2 − iλ

)
= sgn(Mf )

Vd+12
d+1
2

(4π)(d+1)/2

Γ
(
d+1
2 + |Mf |

)
Γ
(
1
2 − d

2

)
Γ
(
1
2 − d

2 + |Mf |
)



To make the method of images manifest consider the two-point function,

⟨x|
[

1

−□E + V ′′ (ϕcl )

]
|x′⟩

=
1

N 2

∑
n,n′

∫
d2k

(2π)2

∫
dλ µ(λ)

λ2 + ν2
(e−nβy)(e−n′βy ′)Kiλ(ke

−nβy)Kiλ(ke
−n′βy ′)e−i k⃗.(γnx⃗)e i k⃗.(γ

n′ x⃗′)

=
1

N
∑
n

∫
d2k

(2π)2

∫
dλ µ(λ)

λ2 + ν2
(y)(e−nβy ′)Kiλ(ky)Kiλ(ke

−nβy ′)e−i k⃗ .⃗xe i k⃗.(γ
nx⃗′)

=
1

N
∑
n

G(x, γnx′)

Thus,

tr

[
1

−□E + V ′′(ϕcl)

]
=

1

N
∑
n

∫
H3

d3x
√
g G(x , γnx)

=
∑
n

∫
H3/Z

d3x
√
g G(x , γnx)

Each copy of the fundamental region gives the same answer. This cancels the
normalization N in the denominator.



Applications: Phases of Large N O(N) model in AdS3 with
positive volume

(a) Phases on the β − m2 plane.
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(b) Roots of the saddle point equation, m2 = −0.5,
β = 1, n = 10 and different values of ϕcl .

Figure: Phases and roots of saddle point equation for AdS3 with positive renormalized volume.

The saddle point equation has a solution for all values of ϕcl , m
2 and β.

The corresponding C and D regions of the negative volume case are thus absent
here.

The phase boundary given by M2 = 0 asymptotes to m2 = λ/(2π).



AdS4
Expanding trace at zero temperature and adding counter-terms

Veff (ϕ
i
cl , σcl )

N
= −

(M2 − m2)2

8λ
+

M2

2
(ϕi

cl )
2 −

1

Vd+1

(log Z (1) + log Z
(1)
β ) + M2 δm

2

4λ
− M4

δ

(
1

8λ

)
renormalization conditions (at zero temperature)

1
N

∂
∂M2 V

0
eff (ϕ

i
cl , σcl )

∣∣∣
M2=ϕi

cl
=0

= m2

4λ and 1
N

∂2

∂(M2)2
V 0
eff (ϕ

i
cl , σcl )

∣∣∣
M2=0

= − 1
4λ

renormalized effective potential at zero temperature

V (M2, ϕi
cl )

N
= −

(M2 − m2)2

8λ
+

1

2
M2(ϕi

cl )
2 +

1

2

∫ M2

0
dM2tr

[
1

−□E + M2

]
ren

−
M4

96π2
[ψ(1)(1) + ψ(1)(3)]

where,

tr

[
1

−□E + M2

]
ren

=
(2 + M2)

16π2

[
ψ

(0)
(
ν −

1

2

)
+ ψ

(0)
(
ν +

3

2

)
+ 2γ −

3

2

]
.

The saddle point equation

0 =
1

N

∂V

∂M2
=

m2 − M2

4λ
+

(ϕi
cl )

2

2
+

(2 + M2)

32π2

[
ψ

(0)
(
ν −

1

2

)
+ ψ(0)

(
ν +

3

2

)
+ 2γ −

3

2

]

−
M2

48π2
[ψ(1)(1) + ψ(1)(3)] +

3

4π

∞∑
n=1

e
−nβ( 3

2
+
√

9
4
+M2)

|1 − e−nβ |3
√

9
4
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(b) Roots of the saddle point equation, m2 = −1,
β = 2, n = 10 and different values of ϕcl .

Figure: Phases and roots of saddle point equation for AdS4.

On boundary separating regions A and B, the m2 value approaches zero for large β as in AdS2.

Corresponding value on boundary separating regions A and C at zero temperature is obtained from the

condition that the two roots of saddle point equation coincide. For λ = 70 this gives m2 ∼ 1.734.



Applications: Gross Neveu model in AdS4.
Counterterms have the following form σcl δλ1 +

1
2
σ2
cl δ

(
1
g

)
+ 1

3!
σ3
cl δλ3 +

1
4!
σ4
cl δλ4.

renormalization conditions at σcl = 0
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1
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1
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∂4V 0
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∂σ4
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= λ4 .

zero temperature effective potential

V 0
eff = −

σ2
cl
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−
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ψ
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4!

[
3
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(
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9mf

2π2
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ψ
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)

+
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3m2
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ψ
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+
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(
ψ
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)

+
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(
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)

+
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(
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+
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(
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leading behavior for large values of σcl

−
∫ Mf

mf

Mf (M
2
f − 1)

4π2

(
ψ(0) (|Mf | − 1) + ψ(0) (|Mf |+ 2)

)
dMf ∼ −σ4

cl log(σcl )

adding kinetic term for the σ field

L′ = ψ̄i (D +mf + gσ)ψi +
1

2
(∂µσ)

2 +
1

2
m2

sσ
2 + λ3

σ3

3!
+ λ4

σ4

4!

→ Gross-Neveu-Yukawa model [Zinn-Justin, 1991].

To study the large N behavior we re-scale σ →
√
Nσ, g → g/

√
N, λ3 → λ3/

√
N,

λ4 → λ4/N, write σ = σcl + δσ and integrate over the fluctuations

V 0
eff

N
=

1

2
m2

sσ
2
cl +

λ3

3!
σ3
cl +

λ4

4!
σ4
cl −

1

2Vd+1

∫ ∞

M2
s

tr

[
1

−□E +M2
s

]
dM2

s

−
1

Vd+1

∫ Mf

0
tr

[
1

D +Mf

]
dMf + counterterms

with M2
s = m2

s + λ3σcl + λ4σ
2
cl/2 and Mf = mf + gσcl , which is essentially same as the

Yukawa model.
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