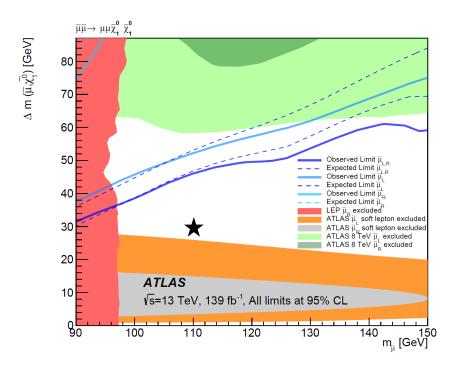


Applying ML Techniques to Searches for Lepton-Partner Pair-Production at Intermediate Mass Gap at the LHC

Jason Kumar
University of Hawaii
23xx.xxxxx

lepton partners at intermediate Δm

searches at the LHC

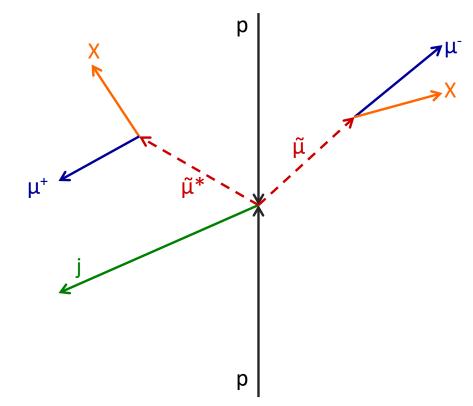

- pp
$$\rightarrow \gamma$$
,Z $\rightarrow \tilde{\ell} \ \tilde{\ell}^*$

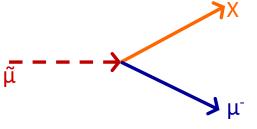
$$-\widetilde{\ell} \rightarrow \ell X$$

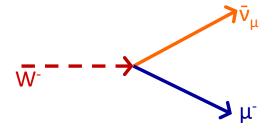
$$-\Delta m = m_{\ell} - m_{\chi} \sim 30 - 50 \text{ GeV}$$

- many models, including MSSM
 - $\tilde{\ell}$ = slepton, X = bino LSP
- tough to constrain
 - leptons tend to be soft
 - EW bgds produce ℓ and MET (v)
 with similar energies
- LHC mass reach no better than

LEP for
$$\tilde{\ell} = \tilde{\mu}_R$$




2209.13935



strategies and difficulties

- can demand a recoil jet to give leptons a transverse boost
- reduce threshold for lepton ID
- helps when mass splitting is small or large
- but hard when MPT of signal is similar to p_T of v from W/Z decay
- rely on kinematic/angular dists.
 which distinguish parent, MET
- detailed cuts, but hard to find overarching principle

machine learning

- can we make progress with machine learning?
- we use a boosted decision tree (BDT)
 - will give us feedback on which kinematic variables are useful
 - help us reconstruct what the machine learned
- rotate training sample with analysis sample for reliability

- details of the BDT implementation
- use XGBoost
- depth = 5
- maximum number of trees = 50
- learning rate = ½

signal and background

- signal topology is $\mu^+ \mu^-$, 1 non-b-jet, MET (hadronic τ veto)
- signal benchmark
 - $m_{\tilde{u}R} = 110 \text{ GeV}, m_{\chi} = 80 \text{ GeV}$
- leading backgrounds
 - μ⁺ μ⁻jjj (via Z,γ) (MET from missed jet)
 - τ⁺ τ⁻ jjj (via Z,γ) (MET, μ from τ decay)
 - Ttjj (t → b W, b missed/mistagged)
 - W⁺ W⁻ jj (W $\rightarrow \mu \nu$)
 - $ZZjj(Z \rightarrow \mu^+ \mu^-, Z \rightarrow \nu\nu)$
 - W Z jj (Z $\rightarrow \mu^+ \mu^-$, W $\rightarrow \tau \nu$, τ mistag)

- details of the simulation
- generate events → MadGraph 5
- showering, hadronization →
 Pythia8
- detector simulation → DELPHES
- b-tag efficiency → 85%
- hadronic τ -tag efficiency \rightarrow 85%

kinematic variables

- BDT uses high-level kinematic variables
- focus on variables distinguishing
 - mass/spin of parent
 - mass of invisible particle
- MET
- m_{μμ}
- $\cos \theta^*_{\mu 1 \mu 2}$
- m_j
- $M_{T2}^{0,100}$
- $(M_{T2}^{100} 100 \text{ GeV})/M_{T2}^{0}$

- Δφ_(j,μ1,μ2,MET)
- M_{eff}
- H_T
- m_{ττ}
- $p_{T}^{j,\mu 1,\mu 2}$
- $p_T^{j,\mu 1,\mu 2}$ / MET
- $\bullet \quad \eta_{\mu 1, \mu 2, j}$
- $tanh |\Delta \eta_{(\mu 1, \mu 2, j)}|$

the trouble with backgrounds

- several bgds are larger than signal, but have large hierarchies
- largest bgds are easy to remove
- pp \rightarrow Z j(jj) $\rightarrow \mu^+\mu^-$ j MET is the largest bgd by far ...
 - but easily removed using $m_{\mu\mu}$
- but can't proceed unless we can kill the harder backgrounds also
- should we curate data to focus the BDT on the hard tasks?

before precuts ...

process	cross section (fb)
signal	12.3
μ ⁺ μ ⁻ jjj	12500
τ+τ-jjj	589
ŧt jj	65.6
W⁺W⁻ jj	73.5
WZ jj	46.8
ZZ jj	26.6

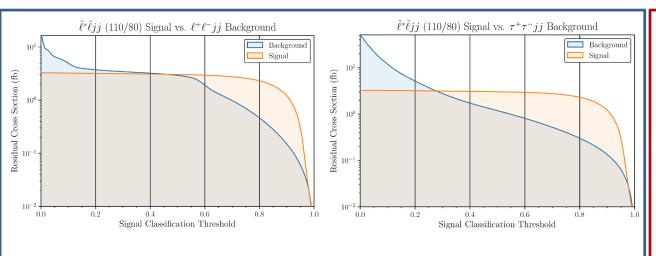
precuts and logic

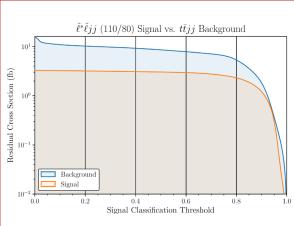
- veto m_{uμ} ∈ 91 ± 10 GeV
 - kill Z $\rightarrow \mu^+\mu^-$
- require MET > 75 GeV
 - kill MET via jet mismeasurement
- require $\cos \theta^*_{\mu\mu} < 0.5$
 - prefers a spin-0 parent
- rough goal
 - precuts we understand
 - all bgds have roughly comparable cross sections, and
 - ... not much more than 10-100 times larger than signal

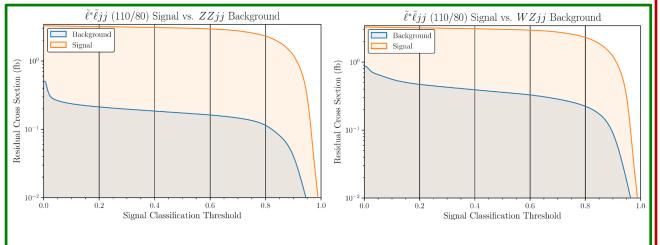
after precuts ...

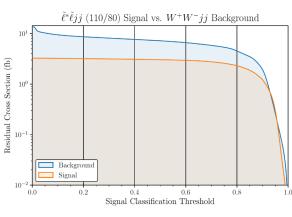
process	cross section (fb)
signal	3.27
μ ⁺ μ ⁻ jjj	15.7
τ+τ-jjj	48.7
ŧt jj	15.3
W⁺W⁻ jj	13.7
WZ jj	0.876
ZZ jj	0.512

the trouble with simulation

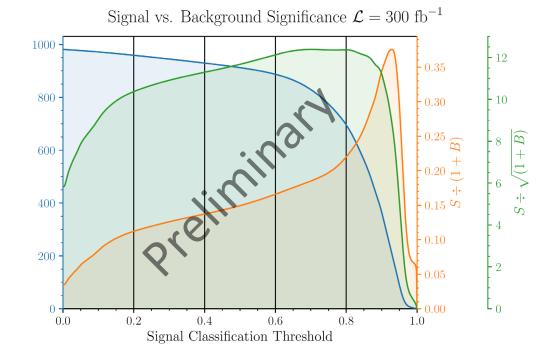

BDT works hardest on phase space regions w/ small cross sections


- easy to undersample these regions
 - not good if BDT training focused on only a few events


 generate signal and bgd simulation in kinematic tranches to ensure that tails are sufficiently sampled

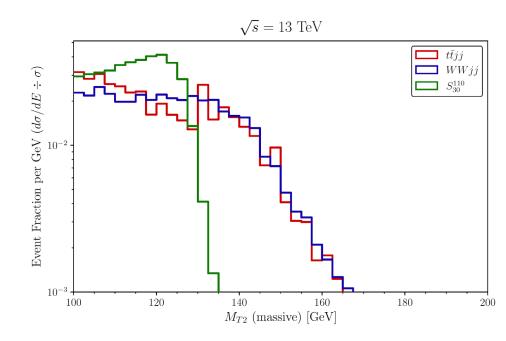


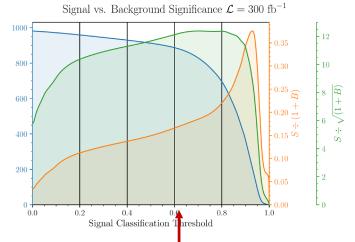
discriminating signal from bgd.



results

- precuts kill WZ and ZZ
- BDT easily kills μμ, ττ
 - little loss of signal
- BDT earns its pay w/ W⁺W⁻,
 tt
- roughly S = 300, $S/B \sim 0.5$, at best
- so expect maybe $\sim 10 \sigma$


$$m_{\tilde{\mu}R}$$
 =110 GeV m_x = 80 GeV


sensitivity scan upcoming!

what did the BDT learn?

- for W⁺W⁻ and tt bgd, M_{T2}¹⁰⁰ dominates the total gain
 - distinguishes mass of invisible particle
- assume we can kill all other bgd.
- 1000 signal, 4500 W⁺W⁻, 4500 tt after precuts
- cut on $m_{T2}^{100} < 130 \text{ GeV}$
- 1000 signal, 6000 bgd
- S/B \sim 0.15, signif \sim 10 σ
- BDT improves on just cutting on important variables
 - doubles S/B

conclusion

- lepton partner searches at LHC difficult when splitting with invisible particles is 30-50 GeV
- tough to beat electroweak backgrounds
- confront with boosted decision tree (BDT)

- can get large improvements
- BDT identifies the important variables and correlations

Mahalo!

Backup Slides

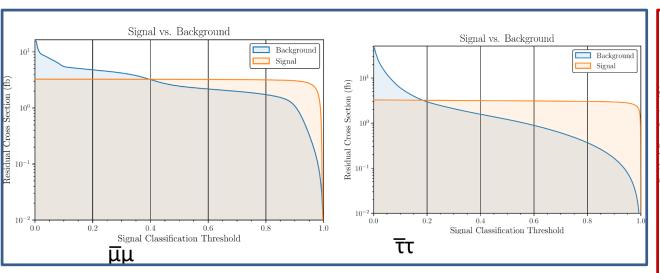
event topology

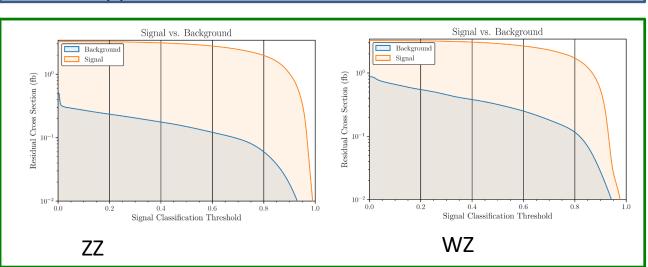
- exactly $1 \mu^+$ and $1 \mu^-$
 - muon threshold → $p_T > 3$ GeV (generator level)
- exactly 1 jet, not b-tagged
 - − jet threshold \rightarrow p_T > 30 GeV
- MET
- no hadronic τ–tag

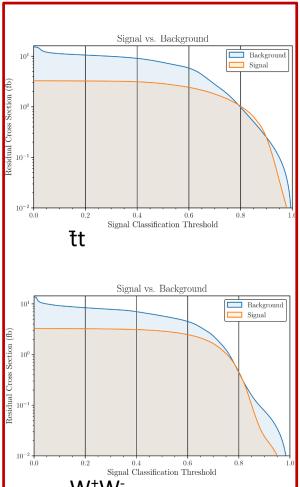
tranching

- variables to base tranching on ...
- $\mu\mu$ jjj $\rightarrow p_T^{\mu 1}$
- $\tau \tau jjj \rightarrow p_T^{\mu 1}$
- $\mathsf{tt}\;\mathsf{jj}\to\to\mathsf{p}_\mathsf{T}^\mathsf{t}\;(\mathsf{not}\;\mathsf{t})$
- WW jj $\rightarrow p_T^{\mu 1}$
- WZ jj $\rightarrow p_T^Z$
- ZZ jj \rightarrow decay one Z, tranche using p_T of remaining Z

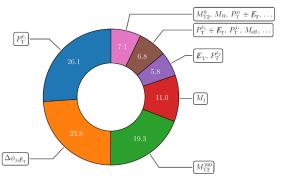
- bounds on variable for each tranche ...
- 0, 50, 100, 150, 200, 300, 400,
 500, 750, 1000, 1500 GeV

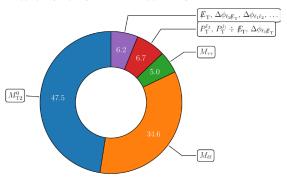



cos $\theta^*_{\mu\mu}$ and M_{T2}^{100}

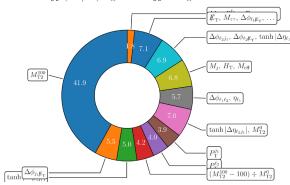

$$\cos \theta_{\mu\mu}^* = \tanh \left| \Delta \eta_{\mu 1 \mu 2} / 2 \right|$$

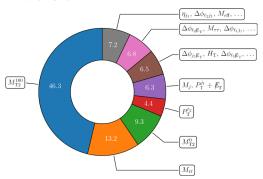
discriminating signal from bgd.

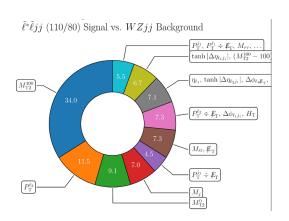




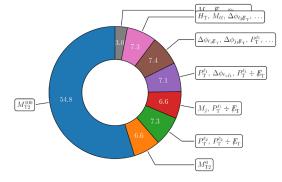
gain


 $\tilde{\ell}^*\tilde{\ell}jj$ (110/80) Signal vs. $\ell^+\ell^-jj$ Background


 $\tilde{\ell}^*\tilde{\ell}jj$ (110/80) Signal vs. $\tau^+\tau^-jj$ Background



 $\bar{\ell}^*\bar{\ell}jj$ (110/80) Signal vs. $t\bar{t}jj$ Background



 $\tilde{\ell}^*\tilde{\ell}jj$ (110/80) Signal vs. ZZjj Background

 $\mathring{\ell}^*\mathring{\ell}jj$ (110/80) Signal vs. W^+W^-jj Background

sensitivity scan