SUSY Conference 2023

Precise Estimate of Chargino Decay

Yuhei Nakayama (U. Tokyo, ICRR)

Based on

JHEP 01 (2023) 017 (arXiv: 2210.16035)

and work in progress

In Collaboration with Masahiro Ibe, Masataka Mishima, Satoshi Shirai

July 19th, 2023, University of Southampton

Plan of Talk

- 1. Introduction
- 2. Wino Decay and Mass Difference
- 3. EW Corrections in Single Pion Mode
- 4. Results and Summary

Plan of Talk

- 1. Introduction
- 2. Wino Decay and Mass Difference
- 3. EW Corrections in Single Pion Mode
- 4. Results and Summary

Dark Matter in SUSY

- The MSSM contains an attractive candidate of freeze-out DM
- The supersymmetric DM can be tested with experiments in various way

Wino and Higgsino

Wino

 \triangleright SU(2)_L triplet

Zero hypercharge

One charged Dirac+ One neutral Majorana

Higgsino

 \triangleright SU(2)_L doublet

$$Y = \pm 1/2$$

- One charged Dirac
 - + Two neutral Majorana

Today's discussion

Plan of Talk

- 1. Introduction
- 2. Wino Decay and Mass Difference
- 3. EW Corrections in Single Pion Mode
- 4. Results and Summary

Mass Splitting and Decay

- The charged Wino becomes heavier than the neutral one because of EW radiative corrections
- At one-loop level,

Charged Wino

$$\frac{W^{+}\sqrt{\sqrt{2}}}{\tilde{W}^{+}}$$

$$\frac{\gamma/Z}{\tilde{W}^{+}}$$

Neutral Wino

$$\frac{W^{\mp}}{\tilde{W}^0}$$
 \tilde{W}^{\pm}

Mass Splitting and Decay

The charged Wino can decay into the lighter neutral Wino through weak interaction

Dominant for $\Delta m \sim 160 \, \mathrm{MeV}$

Mass Splitting and Decay

The theoretical prediction of the charged Wino decay rate is very sensitive to the mass difference

$$\Gamma_{\text{tree}}(\chi^- \to \pi^- + \chi^0) \simeq \frac{4}{\pi} F_{\pi}^2 (G_{\pi}^0)^2 \Delta m^3 \left(1 - \frac{m_{\pi}^2}{\Delta m^2}\right)^{1/2}$$

2% error in $\Delta m \rightarrow$ about $3 \times 2\% \simeq 6\%$ in the decay rate

Experimental Constraint

Collider constraint on the Wino mass strongly depends on the rate of the single pion mode

NNLO Wino Mass Difference

Actually in literature the mass difference of SU(2) triplet has already been computed in two-loop level!

[M. Ibe, R. Sato, S. Matsumoto, Phys. Lett. B 721 (2013) 252-260]

Plan of Talk

- 1. Introduction
- 2. Wino Decay and Mass Difference
- 3. EW Corrections in Single Pion Mode
- 4. Results and Summary

Remaining Corrections

How about EW corrections to the decay process itself?

Scales of the problem

$$m_{\chi} \gg m_W \gg \Delta m \gtrsim m_{\pi}$$

Question

Is there large contribution such as $\log(m_{\chi}/m_{\pi})$?

How are experimental constraint changed?

Violation of Shift Symmetry

Pion's shift symmetry ensures that the decay amplitude is suppressed by Δm

$$\mathcal{L}_{\text{Wino-Pion}} = -2\sqrt{2} f_{\pi} G_{\pi}^{0} (\partial_{\mu} \pi^{-}) \times (\bar{\psi}_{-} \gamma^{\mu} \psi_{0}) + \text{h.c.}$$

$$p \sim \Delta m$$

But QED corrections break the symmetry:

$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} - ieA_{\mu}$$

mass correction to the Wino $m_{\chi}/\Delta m$ enhancement???

→ Cured by appropriate determination of CTs

Computational Scheme

Matching procedure à la Descotes-Genon and Moussallam

[S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C 42, 403 (2005)]

EW theory w/ Wino

$$\mathcal{L} = \mathcal{L}_{\text{EW}} + \mathcal{L}_{\text{Wino}}$$

Match free-quark decay rate

$$\Gamma(\chi^- \to \chi^0 + \bar{u} + d)$$
 @ 1-loop

Four-Fermi theory w/ Wino

$$\mathcal{L} = \mathcal{L}_{\text{Four-Fermi}} + \mathcal{L}_{\text{Wino}} + \mathcal{L}_{\text{CT}}$$

ChPT w/ Wino

$$\mathcal{L} = \mathcal{L}_{ChPT} + \mathcal{L}_{Wino} + \mathcal{L}_{CT}$$

Match the "current correlator"

Plan of Talk

- 1. Introduction
- 2. Wino Decay and Mass Difference
- 3. EW Corrections in Single Pion Mode
- 4. Results and Summary

Single Pion Mode (pure-Wino)

In total, ~ 0.03

$$\Gamma = \Gamma_{\text{tree}} \left\{ 1 + \frac{\alpha}{4\pi} \left[\sum_{n < 0} c^{(n)} \left(\frac{\Delta m}{m_\chi} \right)^n + c^{(\log)} \log \left(\frac{m_\chi}{\Delta m} \right) + \sum_{n = 0}^\infty c^{(n)} \left(\frac{\Delta m}{m_\chi} \right)^n \right] \right\}$$
 Exactly canceled by CT

Canceled between various contributions

Single Pion Mode (pure-Wino)

- ▶ Apart from uncertainties, Wino decay length become around 2-7% longer, depending on m_{γ}
- ▶ Radiative correction tends to be a constant as $m_{\chi} \rightarrow \infty$
- ▶ The 3-loop effect on Δm dominates the uncertainty

$$\delta \tau_{\chi}|_{\text{NLO}} \equiv \tau_{\chi}|_{\text{NLO}} - \tau_{\chi}|_{\text{LO}}$$

A New Theorem?

light particle emission

$$\Gamma = \sum_{n < 0} \left(\frac{\Delta m}{m_{\chi}}\right)^{n} \Gamma^{(n)} + \log\left(\frac{m_{\chi}}{\Delta m}\right) \Gamma^{(\log)} + \sum_{n=0}^{\infty} \left(\frac{\Delta m}{m_{\chi}}\right)^{n} \Gamma^{(n)}$$

should be zero at all order of α

Comment on Higgsino Case

Higgsino has larger mass difference, so various modes should be considered Updating the previous work in progress

Summary

- We computed the single pion mode at EW one-loop; and obtained O(1)% correction with 0.5% th. error
- No $m_{\chi}/\Delta m$ or $\log m_{\chi}$ enhancement at one-loop level; We conjecture that heavy external particles decouple from physical quantities at any order, although it has not been proofed rigorously
- Higgsino can decay into heavier state due to the larger mass difference. Stay tuned for our numerical estimate of Higgsino decay!

Back up

Mass Splitting

Chargino-neutralino mass matrices

$$M_{\tilde{N}} = \begin{pmatrix} M_1 & 0 & g_1 \langle H_d^0 \rangle / \sqrt{2} & -g_1 \langle H_u^0 \rangle / \sqrt{2} \\ 0 & M_2 & -g_2 \langle H_d^0 \rangle / \sqrt{2} & g_2 \langle H_u^0 \rangle / \sqrt{2} \\ g_2 \langle H_d^0 \rangle / \sqrt{2} & -g_2 \langle H_d^0 \rangle / \sqrt{2} & 0 & \mu \\ -g_2 \langle H_u^0 \rangle / \sqrt{2} & g_2 \langle H_u^0 \rangle / \sqrt{2} & \mu & 0 \end{pmatrix}$$

$$X = \begin{pmatrix} M_2 & -g_2 \langle H_u^0 \rangle \\ -g_2 \langle H_d^0 \rangle & -\mu \end{pmatrix}$$

induce tree-level mixing and mass splittings:

$$\mathcal{L}_{\text{MSSM}} \supset g_2 W_{\mu}^{-} (\bar{\Psi}_{\chi}^{-})_i \gamma^{\mu} (O_{ij}^L P_L + O_{ij}^R P_R) (\Psi_{\chi}^0)_j$$

$$m_{\tilde{N}_1} < m_{\tilde{N}_2} < m_{\tilde{N}_3} < m_{\tilde{N}_4}, \ m_{\tilde{C}_1} < m_{\tilde{C}_2}$$

Computational Scheme

The counterterm contribution to the Wino decay rate

Cancels the Δm enhancement

$$\frac{\delta\Gamma_{\chi}}{\Gamma_{\chi}}\Big|_{K,Y} = e^{2} \left[\frac{8}{3} (K_{1} + K_{2}) + \frac{20}{9} (K_{5} + K_{6}) + 4K_{12} - \hat{Y}_{6} - \frac{4}{3} (Y_{1} + \hat{Y}_{1}) - 4 \left(Y_{2} + \hat{Y}_{2} - \frac{m_{\chi}}{\Delta m} Y_{3} \right) \right]$$

Matching with the FF theory

(Pole of ChPT) + (Finite part of the FF theory's CT)

Matching with the EW theory

(Pole of ChPT) + (The EW theory's input parameters)

FF-ChPT Matching

Matching example
$$\langle 0|T\psi_{-}(x)\bar{\psi}_{0}(y)\pi^{3}(x)|0\rangle$$

In the ChPT w/ Wino:

In the FF theory w/ Wino:

requires $\langle \pi^a(r)|TJ_V^{b\mu}(x)J_A^{c\nu}(0)|0\rangle$

Theory Error

- Each band represents uncertainty from the minimal resonance model
- In the pure Wino theory, $\Delta m \sim 163 165 \, \mathrm{MeV}$ for $m_{\gamma} > 600 \, \mathrm{MeV}$
- For this mass difference, one-loop contribution reduces $\Gamma_{\gamma}/\Gamma_{\pi}$ about 2-4%

Updated ATLAS Constraint

Treatment of Hadronization

We have very similar decay process; tau decay

Nonperturbative QCD encoded

Data of Mass Distributions

Experimental data of non-strange spectral functions is available up to tau lepton mass squared

[ALEPH Collaboration, Phys. Rept. 421(2005) 191]

