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Dark Matter in SUSY

> The MSSM contains an attractive candidate
of freeze-out DM

» The supersymmetric DM can be tested with
experiments in various way

CMB/BBN/Cosmic Ray
—>

DM SM

Direct
Detections

DM SM

C————
Pair-production in collider A



Wino and Higgsino

Wino Higgsino
» SUQ), triplet » SU(2), doublet
» Zero hypercharge > Y=%x1/2
» One charged Dirac » One charged Dirac
+ One neutral Majorana + Two neutral Majorana

Today’s discussion
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Mass Splitting and Decay

» The charged Wino becomes heavier than the neutral
one because of EW radiative corrections
> At one-loop level,

+ /7
Charged Wino W% 7%

W+ o W+ W+

Neutral Wino W%

o W+




Mass Splitting and Decay

» The charged Wino can decay into the lighter neutral

Wino through weak interaction

X0

Dominant for Am ~ 160 MeV

X0



Mass Splitting and Decay

» The theoretical prediction of the charged Wino decay
rate Is very sensitive to the mass difference

X- X0

s

A m2 1/2
Ftree(X_ — T+ XO) - ;Fg(Gg)zATrﬁ (1 A’I?Zz)

2% error in Am — about 3 x2% ~ 6 % In the decay rate



Experimental Constraint

» Collider constraint on the Wino mass strongly
depends on the rate of the single pion mode
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NNLO Wino Mass Difference

» Actually In literature the mass difference of SU(2)
triplet has already been computed in two-loop level!
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[M. Ibe, R. Sato, S. Matsumoto, Phys. Lett. B 721 (2013) 252-260]
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Remaining Corrections

How about EW corrections to the decay process itself?

(. 0 () Nt
T L -
v (p) v (p) +@\\ Y- (p) —> Q
QEO(C]) 150(61) ZEo(q)

Scales of the problem
mX =>> TN =>> Am Z TN

Question e
( s there large contribution such as log(m,/m,)" |

£

How are experimental constraint changed?
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Violation of Shift Symmetry

Pion’s shift symmetry ensures that the decay amplitude is
suppressed by Am

LWino—Pion = —QﬁfﬂGg(@uﬂ_) X (?7;_’}/“?7@0) + h.c.

D ~ Am
But QED corrections break the symmetry:
0, — D, =0, —1ieA,

= (r) mass correction to the Wino
A m,/Am enhancement???

Y_(p) —p——> g .
ﬁ\ — Cured by appropriate
) determination of CTs
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Computational Scheme

Matching procedure a la Descotes-Genon and Moussallam
[S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C 42, 403 (2005)]

EW theory w/ Wino

_ Match free-quark decay rate
fZ — ng + gWino . Y
Iy~ = °+ii+d) @ 1-loop

Four-Fermi theory w/ Wino

L =2 Four—Fermi + Z Wino + Z CT

ChPT w/ Wino

: Match the “current correlator”
g — gChPT + gWino + gCT @ ]-'OOp
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Single Pion Mode (pure-Wino)

In total, ~ 0.03
A\
[ a | Am\" m - Am\"™|
P =Tyl 14 — (n) [ 2T (log) | ( x)J, (n) [ 21

Exactly canceled by CT |
v

Canceled between
various contributions
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Single Pion Mode (pure-Wino)

—_
OV

One-loop decay —— | » Apgrt from uncertainties,

Uncertainty from 6Am = £0.3 MeV
Uncertainty from QCD o

Tree-level decay ---- "] Wino decay |ength
become around 2-7%
longer, depending on m,

—_ =
S =N

cTy |cm]

» Radiative correction
tends to be a constant

I I I I IIII| I I I I T 1T 1 asm%ﬁw

> The 3-loop effect on Am

- dominates the uncertainty
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A New Theorem?

<qu1te he@ Small recoil energy

o — .

light particle emission

should be zero at all order of o
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Comment on Higgsino Case

Higgsino has larger mass difference,
SO various modes should be considered
Updating the previous work in progress

21
3m

hadron
hep-ph/9607421

Branching Fraction
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» We computed the single pion mode at EW one-loop;
and obtained O(1)% correction with 0.5% th. error

» No m,/Am or logm, enhancement at one-loop level;

We conjecture that heavy external particles decouple
from physical quantities at any order,
although 1t has not been proofed rigorously

» Higgsino can decay into heavier state due to
the larger mass difference.
Stay tuned for our numerical estimate of Higgsino decay!
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Mass Splitting

Chargino-neutralino mass matrices

(M 0 g1 (H)/V2  —gi(HD)/V2
Ve 0 M, ~g2(HD/V2  g2{H)/V2
N g2(H3) V2 —g2(HY)/V?2 0 u
\—92(HD)/V2  g2(HD)/V2 p 0 )
B Mo —92<H3>>
4= (—92<H3> —

iInduce tree-level mixing and mass splittings:
Lussu D 9W,, (U5) 7" (O35 Pr + 055 Pr) (V)

mg, < mg, < meg, < mg,, Mea, < me,
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Computational Scheme

The counterterm contribution to the Wino decay rate

Cancels the Am enhancement

Matching with the FF theory i

g o s o

Matching with the EW theory l

(Pole of ChPT) +!
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FF-ChPT Matching

Matching example  (0|T%_ (z)4o(y)7>(z)|0)

> In the ChPT w/ Wino:

() ,
ql (z) 7 (r)
Y
v-(p) ——=_ ab(x)a (o) / wx _
v_(p) > 5 »— o(q)
) Ay ()

| requires (x*(n[TI ()75 O)) |
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Theory Error
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Each band represents
uncertainty from the
minimal resonance model
In the pure Wino theory,
Am ~ 163 — 165 MeV

for m, > 600 MeV

For this mass difference,
one-loop contribution
reduces I, /T, about 2-4%
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Updated ATLAS Constraint
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Treatment of Hadronization

We have very similar decay process; tau decay

Interpolate
Extract or
mass distributions parametrize
data

Nonperturbative QCD encoded
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Data of Mass Distributions

Experimenta
IS avallable u
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data of non-strange spectral functions
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[ALEPH Collaboration, Phys. Rept. 421(2005) 191]
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