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Plan of talk

• From Einstein gravity to modified gravity in 4 spacetime dimensions
• Starobinsky model of inflation and CMB measurements

(Planck, BICEP/Keck, LiteBIRD)
• Starobinsky inflation in modified (old-minimal) supergravity
• Production of primordial black holes (PBH) in modified supergravity
• PBH dark matter, induced gravitational waves (GW) and their detection

(LISA, DECIGO, etc.), all beyond the Standard Model
• Spontaneous SUSY breaking in modified supergravity with chiral matter
• Conclusion
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Modified gravity

• Modified gravity theories are generally-covariant non-perturbative exten-
sions of Einstein-Hilbert gravity theory by the higher-order terms. These terms
are irrelevant in the low-curvature regime (Solar system) but are relevant in the
high-curvature regime (inflation, black holes).
• A modified gravity action has the higher-derivatives and generically suffers

from Ostrogradsky instability and ghosts. However, there are exceptions. For ex-
ample, in the modified gravity Largrangian quadratic in the spacetime curvature,
the only ghost-free term is given by R2 with a positive coefficient. It leads to the
Starobinsky model (1980) of modified gravity with the action

SStar. =
M2

Pl

2

∫
d4x

√−g
(
R+

1

6m2
R2
)
≡ M2

Pl

2

∫
d4x

√−g F(R) ,

having the only (mass) parameter m, where MPl = 1/
√
8πGN ≈ 2.4 × 1018

GeV, the spacetime signature is (−,+,+,+, ).
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Starobinsky model of inflation

• In the high-curvature regime, the EH term can be ignored and the action
becomes scale-invariant.
• Starobinsky gravity has the special (attractor) solution in the FLRW uni-

verse with the Hubble function

H(t) ≈
(
m

6

)2
(tend − t) ,

for m(tend − t) � 0. This solution spontaneously breaks the scale invari-
ance of R2-gravity and, hence, implies the existence of the associated Nambu-
Goldstone boson called scalaron.
• Scalaron is the physical (scalar) excitation of the higher-derivative gravity.

It can be revealed by rewriting the Starobinsky action into the quintessence form
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by the field redefinition (Legendre-Weyl transform)

ϕ =

√
3

2
MPl lnF

′(χ) and gµν → 2

M2
Pl

F ′(χ)gµν , χ = R ,

which leads to

S[gµν, ϕ] =
M2

Pl

2

∫
d4x

√−gR−
∫

d4x
√−g

[
1
2g
µν∂µϕ∂νϕ+ V (ϕ)

]
,

with the scalar potential V (ϕ) = 3
4M

2
Plm

2
[
1− exp

(
−
√

2
3ϕ/MPl

)]2
.

This potential is perfectly suitable for describing slow-roll inflation with scalaron
(NG boson) ϕ as the inflaton of mass m.
• However, the gravitational origin of inflaton/scalaron and its potential in the

quintessence picture is hidden.

The V is not renormalisable with Λ 
UV
 = M   .

Pl



Starobinsky model (1980) and CMB measurements (2018)

No phenomenological input was used so far. Nevertheless, Starobinsky model of 
inflation is still in very good agreement with current CMB measurements.

A duration of inflation is usually measured by the e-foldings number

Ne =
∫ tend
t∗

H(t)dt ≈ 1

M2
Pl

∫ ϕ∗
ϕend

V

V ′dϕ .

The standard slow roll parameters are defined by

εsr(ϕ) =
M2

Pl

2

(
V ′
V

)2
and ηsr(ϕ) =M2

Pl

(
V ′′
V

)
.
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The amplitude of scalar (curvature) perturbations at horizon crossing (with pivot
scale k∗ = 0.05 Mpc−1) is

As =
V 3∗

12π2M6
Pl(V∗

′)2
=

3m2

8π2M2
Pl

sinh4
(

ϕ∗√
6MPl

)
≈ 1.96 · 10−9

that implies (no free parameters!)

m ≈ 3 · 1013 GeV or
m

MPl
≈ 1.3 · 10−5 , and H ≈ O(1014) GeV .

CMB measurements give the tilt of scalar perturbations ns ≈ 1+2ηsr− 6εsr ≈
0.9649±0.0042 (68%CL) and restrict the tensor-to-scalar ratio as r ≈ 16εsr <

0.032 (95%CL). The Starobinsky inflation gives r ≈ 12/N2
e ≈ 0.003 and

ns ≈ 1− 2/Ne, with the best fit at Ne ≈ 55. The Lyth bound for EFT is satisfied.



Modified supergravity

Modified supergravity is the (old-minimal) N = 1 local SUSY extension of the
(R+ αR2) gravity. Manifest SUSY is achieved by using curved superspace. A
generic action is given by a sum of D-type and F-type terms,

S =
∫
d4xd4θE−1N(R, R̄) +

[∫
d4xd2Θ2EF(R) + h.c

]
,

where the covariantly chiral superfield R has the spacetime scalar curvature R
among its field component. See also Dalianis, Farakos, Kehagias, Riotto, Unge
(2015).
The Starobinsky inflation scale H ∼ 1014 GeV (close to the GUT scale) is the
scale where SUSY is expected to play a significant role.
The F-term can be included into the D-term (except a constant). We distinguish
them by collecting the R-symmetry preserving terms in the N -potential, and the
R-symmetry violating terms in the F-potential.
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Field content of modified supergravity

• vierbein eaµ, gravitino ψµ, complex scalar X, and real vector bµ,

• form the irreducible (off-shell) supergravity multiplet with linearly realized
SUSY and closed SUSY algebra,

• the fields (X, bµ) are known as the ”auxiliary” fields of the old-minimal
supergravity (in the textbooks),

• but in modified supergravity (the higher-derivative field theory beyond su-
pergravity textbooks) all these ”auxiliary” fields become physical (propagating).

• There are 4 physical scalars in modified supergravity: scalaron ϕ, complex
scalar X and D̂µbµ/M with the nearly equal effective masses of the order M .
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 Embedding Starobinsky model

Expand the functions N and F in Taylor series and keep only a few leading terms, 
(MPl = 1),

N =
12

M2
RR− ξ

2
(RR)2 , F = α+3βR ,

with real parameters M and ξ, and complex parameters α and β.
• The chiral superfields R and E read

R = X +Θ
(
−1

6σ
mσnψmn − iσmψmX − i

6ψmb
m
)
+

+Θ2
(
− 1

12R− i
6ψ

mσnψmn − 4XX − 1
18bmb

m+ i
6∇mb

m+

+ 1
2ψmψ

mX + 1
12ψmσ

mψnb
n − 1

48ε
abcd(ψaσbψcd+ ψaσbψcd)

)
,

2E = e
[
1 + iΘσmψm+Θ2(6X − ψmσ

mnψn)
]
,

• The standard supergravity is reproduced when N = 0 and F = −3R.
• Starobinsky inflation is realized when α = 0, β = −3, and M equals to

             the scalaron mass, and dynamics of (X,b) is suppressed (ξ>0 is needed).
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Effective two-scalar field Lagrangian

In the notation
M4ξ

144
≡ ζ and |X| ≡ M

2
√
6
σ ,

where σ is the radial part of the complex scalar X, after ignoring its angular part 
together with bm = 0 f o r  s i m p l i c i t y , the bosonic part of the 
Lagrangian in our model takes the form

e−1L =
1

2
f(R, σ)− 1

2(1− ζσ2)(∂σ)2 − U ,

where we have the specific functions dictated by modified supergravity,

f(R, σ) =
(
1+ 1

6σ
2 − 11

24ζσ
4
)
R+

1

6M2
(1− ζσ2)R2 ,

U =
1

2
M2σ2

(
1− 1

6σ
2 + 3

8ζσ
4
)
.
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(Standard) transfer to Einstein frame in field components

After introducing the auxiliary field χ and rewriting the Lagrangian as

e−1L = 1
2 [fχ(R− χ) + f ]− 1

2(1− ζσ2)(∂σ)2 − U ,

where fχ ≡ ∂f
∂χ and in f ≡ f(χ, σ), R was replaced by χ, varying w.r.t. χ gives

back the initial Lagrangian. On the other hand, after Weyl rescaling,

gmn → f−1
χ gmn , e→ f−2

χ e , efχR → eR− 3
2ef

−2
χ (∂fχ)

2 ,

with

fχ = A+Bχ A ≡ 1+ 1
6σ

2 − 11
24ζσ

4 , B ≡ 1

3M2
(1− ζσ2) ,

in terms of the canonically normalized scalaron ϕ defined by

fχ = exp
[√

2
3ϕ

]
, χ = 1

B


e
√

2
3ϕ − A


 , f =

1

2B


e2

√
2
3ϕ − A2


 , 

the Lagrangian in Einstein frame takes the form

e−1L = 1
2R− 1

2(∂ϕ)
2 − 1

2(1− ζσ2)e
−
√

2
3ϕ(∂σ)2 − V ,
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whose two-field scalar potential reads

V =
1

4B


1−Ae

−
√

2
3ϕ


2

+ e
−2
√

2
3ϕU =

=
3M2

4(1− ζσ2)


1− e

−
√

2
3ϕ − σ2

6

(
1− 11

4 ζσ
2
)
e
−
√

2
3ϕ


2

+
M2

2
e
−2
√

2
3ϕσ2

(
1− 1

6σ
2 + 3

8ζσ
4
)
.

When σ2 > 1/ζ, the scalar σ becomes a ghost. However, when approaching
σ2 = 1/ζ, the scalar potential becomes singular, so that it would take the infinite
amount of energy to turn σ into a ghost (assuming its starting value in the region
σ2 < 1/ζ).
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Scalar potential in Einstein frame

V =
1

4B
(1− Ax)2+x2U , e

−
√

2
3ϕ ≡ x ,



A = 1+ 1

6σ
2 − 11

24ζσ
4 ,

B = 1
3M2(1− ζσ2) ,

U = M2

2 σ2
(
1− 1

6σ
2 + 3

8ζσ
4
)
.

The scalar potential on the left with ζ = 1/54 ≈ 0.019 and three Minkowski 
minima; on the right with ζ = 0.027, a single Minkowski minimum at σ = 0 and 
two inflection points. In both cases M = 1.
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Superfield transfer to Einstein matter-coupled supergravity

After introducing the Lagrange multiplier superfield T as (Terada and SVK, 2013)

L =
∫
d2Θ2E

{
−1

8(D2 − 8R)N(S,S) + F(S) + 6T(S−R)
}
+h.c. ,

varying the Lagrangian w.r.t. the T gives back the original Lagrangian. On the 
other hand, the Lagrangian can be rewritten to the form

L =
∫
d2Θ2E

{
3
8(D2 − 8R)

[
T+T− 1

3N(S,S)
]
+ F(S) + 6TS

}
+h.c.

that can be put into the standard form in supergravity,

L =
∫
d2Θ2E

[
3
8(D2 − 8R)e−K/3 +W

]
+h.c. ,

where the Kähler potential K takes the no-scale supergravity form

K = −3 log(T+T− Ñ) , Ñ ≡ SS− 3
2ζ(SS)

2 ,

15

but the modified supergravity origin of K and W becomes hidden.
See also  Ellis, Nanopoulos and Olive (2013);  first observed by Cecotti (1987).



Two-field scalar Lagrangian

takes the form of a non-linear sigma-model (NLSM) minimally coupled to gravity,

e−1L = 1
2R− 1

2GAB∂φ
A∂φB − V ,

where φA = {ϕ, σ}, A = 1,2, and the NLSM target space metric is given by

GAB =


1 0

0 (1− ζσ2)e
−
√

2
3ϕ




With the FLRW spacetime metric gmn = diag(−1, a2, a2, a2) the EoM read

ϕ̈+3Hϕ̇+
1√
6
(1− ζσ2)e

−
√

2
3ϕσ̇2 + ∂ϕV = 0 ,

σ̈+3Hσ̇ − ζσσ̇2

1− ζσ2
−
√

2
3ϕ̇σ̇+

e

√
2
3ϕ

1− ζσ2
∂σV = 0 ,
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hyperbolic geometry: of negative curvature 

s i m i l a r  t o  h y b r i d  i n f l a t i o n 



Production of primordial black holes (PBH) in inflation

One needs large curvature fluctuations (>10^6 of CMB)!

• gravitational instabilities induced by scalar fields,

• bubble collisions from first order phase transitions,

• critical topological defects, such as cosmic strings and domain walls.

PBH formation due to amplification of the power spectrum (large peak) of scalar 
perturbations via tachyonic instabilities of the scalar fields present in modified 
supergravity, during multi-field inflation. This mechanism is different from the 
standard mechanism of PBH formation in single-field models of inflation with 
a near-inflection point in the inflaton scalar potential.

17

and collapse of large density fluctuations,

There are many proposals in the literature:



Isocurvature pumping mechanism during inflation

• decompose perturbations into adiabatic Qa (along inflationary trajectory)
and isocurvature Qs (orthogonal to inflationary trajectory);

•
••
Qa +3H

•
Qa +ΩQa = f̂(d/dt)(ωQs) ,

••
Qs +3H

•
Qs +m

2
sQs = 0

• When
••
Qs≈ 0, we find the solution Qs ≈ exp

[
− ∫

dt
m2
s

3H2

]
• when the isocurvature mass m2

s < 0 at the critical point, we get the exp-
amplification of Qs; since Qa are sourced by Qs in EoM, we also get an exp-
amplification of Qa when the inflationary trajectory has a sharp turn [Palma, Syp-

sas, Zenteno (2020); Fumagalli, Renaux-Petel, Ronayne, Witkwoski (2020)];
• after the critical point m2

s > 0 again, the isocurvature modes get sup-
pressed and, hence, no over-amplification (and no PBH overproduction): [Gundhi, 
Steinwachs, SVK (2021).
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Straightforward generalizations toward PBH

Adding the next-order terms to the modified supergravity potentials yields

N =
12

M2
|R|2 − 72

M4
ζ|R|4 − 768

M6
γ|R|6 ,

F = −3R+
3
√
6

M
δR2 .

The corresponding Lagrangian in Einstein frame reads

e−1L = 1
2R−1

2(∂ϕ)
2−3M2

2 Be
−
√

2
3ϕ(∂σ)2− 1

4B


1− Ae

−
√

2
3ϕ


2

−e−2
√

2
3ϕU ,

where the functions A,B,U are given by

A = 1− δσ+ 1
6σ

2 − 11
24ζσ

4 − 29
54γσ

6 ,

B =
1

3M2
(1− ζσ2 − γσ4) ,

U = M2

2 σ2
(
1+ 1

2δσ − 1
6σ

2 + 3
8ζσ

4 + 25
54γσ

6
)
.
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PBH in the γ-model  with δ = 0

Let us choose γ =  1  and ζ = −1.7774 for a numerical analysis. The scalar 
potential has two valleys and a single Minkowski minimum at σ = ϕ =  0. The
first slow-roll (SR) inflation is possible along either of the valleys. The valleys merge 
into the Minkowski minimum by passing through the critical points resulting 
in the so-called ultra-slow-roll (USR) stage.

After solving the equations of motion numerically, we plot the solutions. The total 
number of e-foldings is set to ∆N = 60. It leads to an enhancement in the scalar 
power spectrum after fine-tuning the free parameters. With the chosen parameters, 
the first stage lasts ∆N1 ≈ 50 e-foldings, whereas the second stage lasts for ∆N2 
≈ 10: the first stage of inflation is represented by the blue shaded region, whereas 
the second stage is marked by the green shaded region. The length of the second 
stage is controlled by the parameter ζ for a given γ.

20

We used the  usual (Bunch-Davies) initial conditions.



The scalar potential of the gamma-model, delta =0
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The solution, trajectory, Hubble function, e-foldings, and slow roll parameters



Our computational methods and strategy

We numerically computed the power spectrum of curvature perturbations by using 
the transport method (Mulryne, 2009-2010) with the Mathematica package of Dias 
(2015), around the pivot scale k∗ that leaves the horizon at the end of the first

stage, i.e. ∆N2 e-folds before the end of inflation (let us call this scale k∆N2
). 

The inflaton mass was adjusted in each case around ∼ 10−5MPl by requiring 
Pζ ≈ 2 × 10−9 for the mode k60, first studying various values of γ (at fixed
∆N2), and then various values of ∆N2 for some values of γ.

∆N2 10 20 23 26
ns 0.96 0.95 0.945 0.94

rmax 0.004 0.007 0.008 0.009
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Power spectrum at ∆N2 = 10 for various values of γ
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Power spectrum at γ = 0.1 (left) and γ = 1 (right) with changing ∆N2
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PBHs masses in the γ-model

The mass of PBH created by late-inflation overdensities was estimated by Pi, 
Zhang, Huang and Sasaki in arXiv:1712.09896:

MPBH � M2
Pl

H(tpeak)
exp

[
2(Nend −Npeak) +

∫ t60
tpeak

ε(t)H(t)dt

]
,

where tpeak is the time when the perturbation corresponding to the power spec-
trum peak (kpeak) exits the horizon, whereas t60 is the time when k60 exits the
horizon (the beginning of observable inflation). By using this equation, we 
estimated the values of MPBH for various values of ∆N2 in our model:

∆N2 10 20 23 26

MPBH, g 108 1016 1019 1021

ns 0.96 0.95 0.945 0.94
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Comments about the PBH masses

Our estimates are universal across the values of γ = 0.1,1, 10, 100. PBHs 
with masses smaller than ∼ 1016g would have already evaporated by now via 
Hawking radiation. Thus, we require ∆N2 > 20. On the other hand, the lower 
3σ limit on the spectral index, ns ≈ 0.946, requires ∆N2 < 23, so that viable 
PBH masses are restricted by O(1016g) < MPBH < O(1019g) even before 
considering observational constraints on PBH masses.

As regards the constraints on γ, the obtained power spectrum tells us for ∆N2 > 
20 that it is sufficient to have γ � O(1) in order to produce the required enhance-

ment in the spectrum.
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PBH density fraction

We numerically estimated the PBH density fraction by using Press-Schechter
(1973) formalism. The useful formulae include the PBH mass M̃PBH(k), the
production rate βf(k), and the density contrast σ(k) coarse-grained over k:

M̃PBH � 1020
(
7× 1012

k Mpc

)2
g , βf(k) � σ(k)√

2πδc
e
− δ2c

2σ2(k) ,

σ2(k) =
16

81

∫
dq

q

(
q

k

)4
e−q2/k2Pζ(q) .

We have chosen the Gaussian window function for the density contrast, and have 
introduced δc is a constant representing the density threshold for PBH formation. 
According to Carr (1975), the naive estimate is δc ≈ 1/3, while its more precise 
value depends upon details of the power spectrum. Then the PBH-to-DM density 
fraction is

ΩPBH(k)

ΩDM
≡ f(k) � 1.4× 1024βf(k)√

M̃PBH(k)g
−1

.
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Comparison with observations based on Kohri et al. (2020), gamma-model
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Comments on the comparison

The PBHs fraction was obtained with the parameters γ = 1, ∆N2 = 22, and 
δc = 0.275 (black curve). The shaded regions represent the observational 
constraints: from evaporation (red), lensing (purple), various dynamical effects 
(green), accretion (light blue), large-scale structure (dark blue), CMB distortions 
(orange), and background effects (grey). In the relevant regions, the notation F, 
WD, and NS is used to refer to femtolensing, white dwarfs, and neutron stars, 
respectively.

We choose the scale k60 to represent the largest observable scale today, which 
is around 10−4 Mpc−1. Our numerical evaluation shows, in order to obtain a 
substantial density fraction, we need a relatively small δc.

30

Warning:  a significant non-Gaussianity may change our results.



Comments about the δ-model vs. the γ-model

The scalar potential has only a single valley. The trajectories of solutions, Hubble 
functions, e-folding numbers and the slow-roll parameters are similar, as well as 
the power spectra, albeit with larger δc > 1/3, and larger PBHs masses (up to 
1023 g).
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Comparison with observations (Kohri et al. 2020), the δ-model
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The PBH  density  fraction in the models with γ=1, δ=0, ΔN_2=22.45 (solid 
line), and δ=0.58 , ΔN_2=23.36 (dotted line). In both cases  f_total=1.  
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Outlook towards observations

The exploration of cosmological predictions from modified supergravity provides 
a remarkable bridge between quantum gravity on one side and phenomenology of 
inflation and PBH on the other side.

• PBHs formation necessarily leads to Gravitational Waves (GWs) because

• Those GWs may be detected in the future ground-based experiments, such

34

as the Einstein telescope and the global network of GWs interferometers including 
advanced LIGO, Virgo and KAGRA, as well as in the space-based GWs interfer-
ometers such as LISA (or eLISA), TAIJI (old ALIA), and DECIGO.
Aldabergenov, Addazi, SVK(2021) for a derivation of GW from modified supergravity.

large scalar overdensities act as a source for GWs background. Frequencies of 
those GWs can be directly related to expected PBHs masses and duration of the 
second stage of inflation. Supported  by the NANOGrav 15 year data (2023).



Energy density of induced GW

The present-day GW density function ΩGW is given by (Espinosa, Racco, Riotto,
2018) in the 2nd order with respect to perturbations:

ΩGW(k)

Ωr
=

cg

72

∫ 1√
3

− 1√
3

dd
∫ ∞

1√
3

ds


(s2 − 1

3)(d
2 − 1

3)

s2 + d2


2

× Pζ(kx)Pζ(ky)
(
I2c + I2s

)
,

where the constant cg ≈ 0.4 in the SM, and cg ≈ 0.3 in the MSSM.

The present-day value of the radiation density Ωr is h2Ωr ≈ 2.47 × 10−5,
according to the CMB temperature. Here h is the reduced (present-day) Hubble
parameter that we took as h = 0.67 (ignoring the Hubble tension).
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The variables (x, y) are related to the integration variables (s, d) as

x =

√
3

2
(s+ d) , y =

√
3

2
(s− d) .

The functions Ic and Is of x(s, d) and y(s, d) are (Espinosa, Racco, Riotto,
2018)

Ic = −36π
(s2 + d2 − 2)2

(s2 − d2)3
θ(s− 1) ,

Is = −36
s2 + d2 − 2

(s2 − d2)2

[
s2 + d2 − 2

s2 − d2
ln

∣∣∣∣∣d
2 − 1

s2 − 1

∣∣∣∣∣+2

]
.

With these definitions, the GW density can be numerically computed for a given
power spectrum. In the pictures, the power-law integrated curves (Thrane, Ro-
mano, 2013) have been used.
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The density of stochastic gravitational waves induced by the power spectrum 
enhancement in the our supergravity models (solid+dashed+dotted black curves) 
against the expected sensitivity curves of the space-based GW interferometers.
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Spontaneous SUSY breaking after inflation

• can be realized ’built-in” by imposing the nilpotency condition on the chiral
goldstino superfield, S2 = 0 (it is equivalent to the Akulov-Volkov theory),

S(x,Θ) = S +
√
2Θχ+Θ2FS ,

with a solution S = χ2/(2FS), FS �= 0, which effectively eliminates two scalars
(sgoldstino). Equivalently, one can impose the nilpotency condition on the scalar
curvature chiral superfield of modified supergravity, R2 = 0, see Antoniadis,
Dudas, Ferrara, Sagnotti (2014). However, the origin of the nilpotency condition
remains obscure to me.

• It is possible to avoid nilpotent superfields and achieve spontaneous SUSY
breaking after inflation in modified supergravity by adding a chiral matter super-
field Φ (in the hidden sector), extending the potentials as

N(R,R) → N(R,R) + J(Φ,Φ) and F(R) → F(R) +Ω(Φ) ,

37

And it can only be used below the SUSY breaking scale.



and generalizing the standard (Polonyi, 1977) mechanism of spontaneous SUSY
breaking without a cosmological constant, with

J = Φ̄Φ− λ
2(Φ̄Φ)2 and Ω = bΦ+ cΦ2 + fΦ3 ,

while keeping all the already obtained results for inflation, primordial black holes
and dark matter (Aldabergenov, SVK, 2022).

• We found it requires the super-high scale of SUSY breaking with the grav-
itino mass of the order 1012 GeV. If this massive gravitino is LSP, then it is
the particle dark matter also. Given the composite dark matter (PBH+gravitino),
fine-tuning in our supergravity models is significantly relaxed.
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Conclusion

• Modified (Starobinsky-like) supergravity is theoretically well-motivated and
provides the single source for (i) viable inflation (consistent with the CMB mea-
surements), (ii) production of asteroid-size primordial black holes with the masses
up to 1021 g, (iii) spontaneous SUSY breaking after inflation and (iv) current dark
matter.
• Our approach is based on assuming the supergravitational origin of infla-

tion, primordial black holes and dark matter.
• The GW induced by inflation and PBH formation are within the reach (the

tensor-to-scalar-ratio) of the near-future detectors (LiteBIRD, etc.), and the sen-
sitivity curves of the future space-based gravitational interferometers (LISA, DE-
CIGO, etc.), respectively.
• Spontaneous SUSY breaking after inflation is possible without using the

nilpotent superfields and without a cosmological constant via an extension of the
Polonyi mechanism to modified supergravity.
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