SUSY 2023 @University of Southampton, July 17-21

Lepton asymmetry from Q-balls and enhancement of second order gravitational waves

Masahiro Kawasaki (ICRR, University of Tokyo)

Refs. MK, Murai arXiv:2203.09713 Kasuya, MK, Murai arXiv:2212.13370

1. Introduction

- He4 is produced in Big Bang Nucleosynthesis (BBN)
- Recent new measurements of He4 (together with previous data) determined primordial He4 abundance
 Matsumoto et al. arXiv: 2203.09617

 $Y_p = 0.2370^{+0.0034}_{-0.0033}$

$$Y=
ho_{^4{\sf He}}/
ho_B$$

- $\sim 1\sigma$ smaller than the previous results
- New Y_p (+D obs.) causes > 2σ tension between constraint on N_{eff} and the standard value $N_{\rm eff, standard} = 3.046$ **SBBN** Suggests asymmetry between ν_e and $\bar{\nu}_e$ 3.0F Neff Chemical potential parameter 2.5 $\xi_e = 0.05^{+0.03}_{-0.02}$ $N_{\text{eff}} = 3.11^{+0.34}_{-0.31}$ $n_{\nu_e} - n_{\bar{\nu}_e} \simeq \frac{T^3}{6} \xi_e = 2.0^{-1}$ 6.5 7.0 6.0 5 5 $\eta \times 10^{10}$ $\eta_L = \frac{n_L}{2} \simeq 5.3 \times 10^{-3}$ This implies the total lepton asymmetry

1. Introduction

• Lepton asymmetry is much larger than the baryon asymmetry

• If a lepton number is produced at $T \gtrsim 100$ GeV, it is partially converted to a baryon number through the sphaleron process

- Difficult to produce lepton asymmetry much larger than $|\eta_B|$
- We consider Q-ball (L-ball) formation
 - Q-ball is a non-topological soliton in a scalar theory with U(1)
 - Q-balls are produced in the Affleck-Dine leptogenesis
 - Produced lepton number is confined inside Q-balls and protected against the sphaleron process
- Subsequent Q-ball decay enhances GWs produced by the second order effect of curvature perturbations

2. Affleck-Dine mechanism

- Flat directions in the scalar potential of MSSM $\ni (\tilde{q}, \tilde{\ell}, H)$ Minimal SUSY standard model
- One of flat directions = AD field ϕ which has a B or L number
- Potential of AD field is lifted by SUSY breaking effect
- During inflation ($H \gg m_{\phi}$) ϕ has a large value by $-H^2 |\phi|^2$ term

 $n_L \sim |\phi|^2 \dot{\theta}$

AD field is kicked in phase direction due to A-term

Lepton number generation

AD leptogenesis

3.1 Formation of L-balls

- AD field oscillation has spatial instabilities if the potential is flatter than the quadratic one
- AD field fragments into spherical lumps (non-topological solitons) called Q-balls
 - For $U(1) = U(1)_L$, formed Q-balls are called L-balls
- L-ball formation depends on SUSY breaking
- We consider gauge-mediated SUSY breaking models

$$V_{\rm susy} = V_{\rm gauge} + V_{\rm grav} = M_F^4 \left[\log \left(\frac{|\phi|^2}{M_m^2} \right) \right]^2 + m_{3/2}^2 |\phi|^2 \left[1 + K \log \left(\frac{|\phi|^2}{M_*^2} \right) \right]$$

- L-balls are formed if K < 0 when V_{grav} dominates the potential
- \blacktriangleright L-balls are always formed when V_{gauge} dominates the potential
- We assume K > 0, so L-balls are formed when V_{gauge} dominates the potential

 $m_{3/2} < 1 \mathrm{GeV}$

3.1 L-ball formation

- AD field starts oscillation with amplitude $\varphi_{osc} > \varphi_{eq}$ at $H \sim m_{3/2}$
- For K > 0 L-balls do not form until $\varphi < \varphi_{eq} \Rightarrow n_L \simeq m_{3/2} \varphi_{osc}^2$
 - L-ball formation is delayed [delayed-type L-ball]
 - Lepton charge is confined inside L-balls
- Properties of delayed-type L-ball

Hisano Nojiri Okada (2001)

$$M_Q = \frac{4\sqrt{2}\pi}{3} \zeta M_F Q^{3/4} \qquad Q: \text{L-charge} \qquad \zeta \sim 2.5$$
$$R_Q = \frac{1}{\sqrt{2}\zeta} M_F^{-1} Q^{1/4} \qquad \omega_Q = dM_Q/dQ \simeq \sqrt{2}\pi \zeta M_F Q^{-1/4} \qquad \beta \simeq 6 \times 10^{-4}$$

3.2 L-ball evolution

- We assume that L-balls dominate the Universe
- L-balls decay emitting neutrinos with decay rate
- $\Gamma_Q \simeq \frac{1}{O} \frac{\omega_Q^3}{4\pi^2} 4\pi R_Q^2$ Lepton asymmetry is released Decay temperature $\gtrsim 1 {\rm MeV}$ for successful BBN $T_{\rm dec} \simeq 2.69 \ {
 m MeV} \left(\frac{m_{3/2}}{0.5 \ {
 m GeV}}\right)^{5/2} \left(\frac{M_F}{5 \times 10^6 \ {
 m GeV}}\right)^{-2}$ $\eta_L \simeq \frac{3T_{\rm dec}}{4m_{3/2}}$ Lepton asymmetry A fraction of L-charge inflaton is emitted by evaporation eRD eMD RD MD and converted into B-Energy density Radiation number $\eta_{B,Q} = -\frac{8}{23} \frac{\Delta Q_{\rm EW}}{O} \eta_L$ L-ball Radiation Matter $\Delta Q_{\rm FW}$: evaporated charge above EW scale $\eta_{\rm osc}$ $\eta_{\rm eq,1}$ $\eta_{\rm dec} \simeq \eta_{\rm eq,2}$ η_{eq} η_{R}

7

3.3 Constraints on model parameters

 Large lepton asymmetry suggested by the recent He4 observation is realized in L-ball scenario

4.1 Gravitational wave production

• GWs are produced by the 2nd order effect of scalar perturbations

Ananda Clarkson Wands (2007) Baumann Steinhardt Takahashi Ichiki (2007)

$$h_{ij}'' + 2\mathcal{H}h_{ij}' - \nabla^2 h_{ij} = \mathcal{O}(\zeta^2)$$

 h_{ij} : tensor perturbation = GW

Saito Yokoyama (2009) Bugaev Kulimai (2010)

$$\mathcal{H} = a'/a$$

 $\boldsymbol{\zeta}$: curvature perturbation

- GW production is enhanced when there exists an early MD era with a sharp transition to the RD era Inomata et al. (2020) Inomata Kohri Nakama Terada (2019)
- L-balls realize an early MD universe and decay rapidly

4.2 Enhancement of GWs at L-ball decay

- Power spectrum of curvature perturbations
 - $A_s \simeq 2 \times 10^{-9}$ (amplitude at CMB scale)

$$\mathcal{P}_{\zeta}(k) = C^2 A_s \,\theta(k_{\mathsf{NL}} - k)$$

- k_{NL} : cut-off scale where matter perturbations become nonlinear at L-ball decay (introduced to avoid considering non-linear evolution)
- GW spectrum C = 1 $\eta_{\rm dec}/\eta_{\rm eq,1} = 1000$ η_{dec} : decay time $- \eta_{\rm dec}/\eta_{\rm eq,1} = 225$ 10^{6} $\Omega_{\mathrm{GW,RD}}^{(\mathrm{res})}(\eta_c,k)/A_{\mathrm{s}}^2$ $-\eta_{\rm dec}/\eta_{\rm eq,1} = 100$ $\eta_{eq,1}$: early matter-radiation equality - $\eta_{\rm dec}/\eta_{\rm eq,1} = 75$ $\eta_{\rm dec}/\eta_{\rm eq,1} = {\rm duration~of~early~MD}$ GW amplitude is large for sufficiently long early MD (which applies to L-ball case) 10^{4} 100 10 1000 $k\eta_{\rm dec}$

4.2 Enhancement of GWs by L-balls

 Enhanced GW could give a significant contribution to the recent NANOGrav and other PTA signals for larger C

4.2 Enhancement of GWs by L-balls

We include the contribution beyond the cutoff scale

Bagla Padmanabhan astro-ph/9503077

• Enhanced GWs could account for the recent PTA signals for $T_{\rm dec} \sim 3$ MeV and $C \sim 300$

5. Summary

- Recent He4 measurement suggests that our universe has a large lepton asymmetry
- L-ball scenario successfully realizes a large lepton asymmetry suggested by the He4 measurement
- L-balls also dominate the universe and decay rapidly, which significantly enhances gravitational wave production from curvature perturbations.