Minimal FIMP models during reheating and inflationary constraints

Emanuele Copello

Johannes-Gutenberg Universität Mainz

Based on arXiv:2306.17238 in collaboration with

Mathias Becker (JGU), Julia Harz (JGU), Jonas Lang (TUM) and Yong Xu (JGU)

The Dark Matter puzzle

·'Local' matter density 1% Stars 7% Gas 7% Diffuse Gas Rotation Curves DARK MATTER 85% Clusters of galaxies ·CMB Credit: G. Bertone, Plenary ECFA meeting @ CERN 2015 See plenary talks by, e.g.: Leszek Roszkowski Manfred Lindner

What if DM is a FIMP?

What if DM interacts very feebly with the other particles?

Hall et al. (2010), arXiv:0911.1120 "Freeze-In Production of FIMP Dark Matter" Citations per year 150 100 50

2016

2012

2020

2023

Feebly Interacting (Massive) Particles (**FIMPs**) have gained increasing interest in the last decade

(non-exhaustive list)

Curtin et al. (2019), arXiv:1806.07396

Bélanger et al. *(2019),* arXiv:1811.05478

LLP@LHC White Paper (2020), arXiv:1903.04497

FIPs 2022 @CERN, Antel et al. (2023), arXiv:2305.01715

https://longlivedparticles.web.cern.ch/

...many more...

2008

DM production in minimal FIMP models

$$\mathcal{L}_{\mathrm{int}}\supset y\,P\chi B_{\mathrm{SM}} \qquad P o \chi + B_{\mathrm{SM}}$$
 $\mathcal{C}_{\mathrm{DM}}=rac{g_P}{2\pi^2}\Gamma_P\,m_P^2\,T\,K_1\left(rac{m_P}{T}
ight)$ $H=rac{\sqrt{
ho}}{\sqrt{3}M_{\mathrm{Pl}}}\simeqrac{T^2}{\sqrt{3}M_{\mathrm{Pl}}}$ (radiation domination)

Tiny coupling ⇒ long-lived parent particle!

How does this change if not in Radiation Domination?

Warm-up: RD or "non-standard" expansions?

No evidences to assume a radiation-dominated Universe prior to Big Bang Nucleosynthesis (BBN) $T > T_{\rm BBN} \simeq 4 \,{\rm MeV}$?

Arias et al. (2019), arXiv:1906.04183 Allahverdi et al. (2020), arXiv:2006.16182

What if reheating after inflation was a (very) prolonged phase?

What if FIMPs were produced in this "non-standard" scenario?

What is the impact on the LLP predictions and on inflationary models?

That's what I'm going to talk about today!

Chung et al. (1999), arXiv:hep-ph/9809453 Giudice et al. (2001), arXiv:hep-ph/0005123 Co et al. (2015), arXiv:1506.07532 Drees&Hajkarim (2018), arXiv:1711.05004 Calibbi et al. (2021), arXiv:2102.06221 Bernal and Xu (2022), arXiv:2209.07546 Bhattiprolu et al. (2022), arXiv:2210.15653 Cosme et al. (2023), arXiv:2306.13061 Silva-Malpartida et al. (2023), arXiv:2306.14943

Inflation and reheating

$$\ddot{\Phi} + (3H + \Gamma_{\Phi})\dot{\Phi} + V'(\Phi) = 0$$

Starobinsky (1980)

Ellis et al. (2013), arXiv:1307.3537 Kallosh & Linde (2013), arXiv:1306.5220 Kallosh & Linde (2013), arXiv:1307.7938 Ellis et al. (2020), arXiv:2009.01709 Kallosh & Linde (2021), arXiv:2110.10902

α -attractor E-models

$$V(\Phi) = \Lambda^4 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}} \frac{\Phi}{M_{\text{Pl}}}} \right)^k$$

α -attractor T-models

$$V(\Phi) = \Lambda^4 \left[\tanh \left(\frac{\Phi}{\sqrt{6\alpha} M_{\rm Pl}} \right) \right]^k$$

$$V(\Phi) = \lambda \frac{\Phi^k}{M_{\rm Pl}^{k-4}}$$

Reheating potential!

Dynamics of reheating

Garcia et al. (2020), arXiv:2004.08404 Garcia et al. (2020), arXiv:2012.10756 Bernal and Xu (2022), arXiv:2209.07546

$$\dot{\rho}_{\Phi} + \frac{6k}{k+2}H\,\rho_{\Phi} = -\frac{2k}{k+2}\Gamma_{\Phi}\,\rho_{\Phi}$$

$$\dot{\rho}_R + 4H\rho_R = \frac{2k}{k+2}\Gamma_\Phi \,\rho_\Phi$$

$$H^2 = \frac{\rho_{\Phi} + \rho_R}{3M_{\rm Pl}^2}$$

$$V(\Phi) = \lambda \frac{\Phi^k}{M_{\rm Pl}^{k-4}}$$

$$\rho_{\Phi}(a) \simeq \rho_{\Phi}(a_{\rm rh}) \left(\frac{a_{\rm rh}}{a}\right)^{\frac{6k}{k+2}} \qquad \langle w_{\Phi} \rangle = \frac{\langle \rho_{\Phi} \rangle}{\langle P_{\phi} \rangle} = \frac{k-2}{k+2}$$

$$\rho_R(a) \simeq \frac{2\sqrt{3} k}{k+2} \frac{M_{\text{Pl}}}{a^4} \int_{a_{\text{end}}}^a da' \Gamma_{\Phi}(a') \rho_{\Phi}^{1/2}(a') (a')^3$$

$$\text{BOSONIC reheating (BR)} \quad \Phi \to bb \qquad \Gamma_\Phi^{\text{BR}} = \frac{\mu^2}{8\pi \, m_\Phi(t)} \quad m_\Phi^2(t) = \partial_\Phi^2 V(\Phi) = k(k-1) \lambda \frac{\Phi^{k-2}(t)}{M_{\text{Pl}}^{k-4}}$$

$$\text{FERMIONIC reheating (FR)} \quad \Phi \to ff \qquad \Gamma_\Phi^{\text{FR}} = \frac{y^2}{8\pi} m_\Phi(t) \qquad \qquad \simeq k(k-1) \lambda^{\frac{2}{k}} M_{\text{Pl}}^{\frac{2(4-k)}{k}} \rho_\Phi^{\frac{k-2}{k}}(t)$$

Bosonic and fermionic reheating

Reheating defined by:

$$\rho_{\Phi}(a_{\rm rh}) = \rho_R(a_{\rm rh})$$

$$T(a) \simeq T_{\rm rh} \left(\frac{a_{\rm rh}}{a}\right)^{\frac{3}{4+2k}}$$

$$H(T) \simeq \frac{\sqrt{\rho_{\Phi}(T_{\rm rh})}}{\sqrt{3}M_{\rm Pl}} \left(\frac{T}{T_{\rm rh}}\right)^{2k}$$

$$T(a) \simeq T_{\rm rh} \left(\frac{a_{\rm rh}}{a}\right)^{\frac{3k-3}{4+2k}}$$

$$H(T) \simeq \frac{\sqrt{\rho_{\Phi}(T_{\rm rh})}}{\sqrt{3}M_{\rm Pl}} \left(\frac{T}{T_{\rm rh}}\right)^{\frac{2k}{k-1}}$$

DM production during BR and FR

 $\mathcal{L}_{\text{int}} \supset y P \chi f_{\text{SM}}$

$$Y_{\mathrm{DM}}(T) \sim Y_{\mathrm{DM}}^{\mathrm{RD}}(T)D(T) \sim \frac{\Gamma(T)}{H(T)} \frac{S(T)}{S(T_{\mathrm{rh}})}$$

$$D(T) = \frac{S(T)}{S(T_{\rm rh})} \simeq \begin{cases} \left(\frac{T_{\rm rh}}{T}\right)^{1+2k} & \text{BR} \\ \left(\frac{T_{\rm rh}}{T}\right)^{\frac{7-k}{k-1}} & \text{FR} \end{cases}$$

Type	$T_{\rm rh} \; [{ m GeV}]$	$c\tau$ [m]
k=2	10	2.23×10^{-7}
k = 4 BR	10	2.17×10^{-11}
k = 4 FR	10	2.01×10^{-3}

$$T_{\rm rh} \gg m_P$$

 $c\tau \simeq 0.15\,\mathrm{m}$

Lifetime of parent particle

Leptophilic Majorana DM with charged scalar

LLP limits from Calibbi et al. (2021)

Constraints on inflation from CMB

E models
$$V(\Phi) = \Lambda^4 \left(1 - e^{-\sqrt{\frac{2}{3\alpha}} \frac{\Phi}{M_{\rm Pl}}}\right)^k$$

Becker, EC, Harz, Lang, Xu (2023)

Constraints on inflation from CMB

T models
$$V(\Phi) = \Lambda^4 \left[\tanh \left(\frac{\Phi}{\sqrt{6\alpha} M_{\rm Pl}} \right) \right]^k$$

Becker, EC, Harz, Lang, Xu (2023)

Combined LLP+CMB constraints

k = 2

Becker, EC, Harz, Lang, Xu (2023)

Combined LLP+CMB constraints

CMB-S4 Science Book, arXiv:1610.02743

Conclusions

• DM production and the interpretation of collider limits in minimal FIMP models crucially depend on *i*) the reheating temperature, *ii*) the microscopic nature of the inflaton-matter coupling (BR vs. FR), *iii*) the form of the inflaton and reheating potentials.

 Inflationary constraints provide a measure for how strongly FIMP DM production can be altered during the reheating phase.

 A positive measurement of an LLP could have the potential to shed light on the dynamics taking place during the phase of inflationary reheating.

Thank you for your attention!

Backup slides

Lifetime of parent particle: two observations

Bélanger et al. (2019), arXiv:1811.05478 (see their Eq. 3.2)

$$\Omega_{\mathrm{DM}} h^2 \propto \int_{\ln a_{\mathrm{end}}}^{\ln a_{\mathrm{rh}}} \mathrm{d} \ln a' \left(\frac{a'}{a_{\mathrm{end}}}\right)^3 \frac{\mathcal{C}_{\mathrm{rh}}}{H_{\mathrm{rh}}} + \int_{\ln a_{\mathrm{rh}}}^{\ln a} \mathrm{d} \ln a' \left(\frac{a'}{a_{\mathrm{end}}}\right)^3 \frac{\mathcal{C}_{\mathrm{RD}}}{H_{\mathrm{RD}}}$$

Ok only when $T_{\rm rh}\gg m_P$, otherwise DM abundance and parent particle lifetime underestimated

Lifetime of parent particle: two observations

Calibbi et al. (2021), arXiv:2102.06221 (see their Eqs. A.10, B.20)

Matter-dominated reheating

$$H(T_{rh}) = \Gamma_{\Phi} \quad \Longrightarrow \quad \Gamma_{\Phi} = \sqrt{\frac{\pi^2 g_{\star}}{90} \frac{T_{\rm rh}^2}{M_{\rm Pl}}}$$

Our method:

$$ho_{\Phi}\left(a_{
m rh}
ight)=
ho_{R}(a_{
m rh})$$
 with $\Gamma_{\Phi}=\Gamma_{\Phi}^{
m BR,\,FR}$ (*)

Calibbi et al. predicts *larger* dilution effects, hence *smaller* lifetimes wrt. our definition.

 (\star) is more sensible, especially for potentials with k>2.

[See also Garcia et al. (2020), arXiv:2004.08404]

Becker, EC, Harz, Lang, Xu (2023)

Lifetime of parent particle

Leptophilic real scalar DM (vectorlike fermion P)

LLP limits from Bélanger et al. (2019)

Details of the reheating phase

BOSONIC

$$\Gamma_{\Phi \to XX^{\dagger}}(t) = \frac{\mu_{\text{eff}}^{2}(k)}{8\pi m_{\Phi}(t)}$$

$$\mu_{\text{eff}}^{2}(k) = \mu^{2} \alpha_{\mu}(k, \mathcal{R}) \frac{(k+2)(k-1)}{4} \sqrt{\frac{\pi k}{2(k-1)}} \frac{\Gamma(\frac{k+2}{2k})}{\Gamma(\frac{1}{k})}$$

$$\rho_R(a) \simeq \frac{\sqrt{3}}{8\pi} \frac{1}{1+2k} \sqrt{\frac{k}{k-1}} \frac{\mu_{\text{eff}}^2}{\lambda^{\frac{1}{k}}} M_P^{\frac{2k-4}{k}} \times \rho_{\Phi}^{\frac{1}{k}}(a_{\text{rh}}) \left(\frac{a_{\text{rh}}}{a}\right)^{\frac{6}{2+k}} \left[1 - \left(\frac{a_{\text{end}}}{a}\right)^{\frac{2(1+2k)}{2+k}}\right]$$

$$T_{\text{max},b}^4 = \frac{5}{4\pi^4 g_{\star}} \frac{k}{\sqrt{3k(k-1)}} \frac{M_P^{\frac{2k-4}{k}}}{\lambda^{\frac{1}{k}}} \mu_{\text{eff}}^2 \rho_{\text{end}}^{\frac{1}{k}} \left(\frac{3}{2k+4}\right)^{\frac{2k+4}{2k-1}}$$

$$T_{\text{rh},b}^{4} = \frac{30}{\pi^{2} g_{\star}} \left[\frac{\sqrt{3}}{8\pi (1+2k)} \sqrt{\frac{k}{k-1}} \lambda^{-\frac{1}{k}} \frac{\mu_{\text{eff}}^{2}}{M_{\text{Pl}}^{2}} \right]^{\frac{k}{k-1}} M_{\text{Pl}}^{4}$$

FERMIONIC

$$\Gamma_{\Phi \to F\bar{F}}(t) = \frac{y_{\text{eff}}^2(k)}{8\pi} m_{\Phi}(t)$$

$$y_{\text{eff}}^2(k) = y^2 \alpha_y(k, \mathcal{R}) \sqrt{\frac{\pi k}{2(k-1)}} \frac{\Gamma(\frac{k+2}{2k})}{\Gamma(\frac{1}{k})}$$

$$\rho_R(a) \simeq \frac{\sqrt{3}}{8\pi} \frac{k\sqrt{k(k-1)}}{7-k} y_{\text{eff}}^2 \lambda^{\frac{1}{k}} M_{\text{Pl}}^{\frac{4}{k}} \times \rho_{\Phi}^{\frac{k-1}{k}} (a_{\text{rh}}) \left(\frac{a_{\text{rh}}}{a}\right)^{\frac{6(k-1)}{2+k}} \left[1 - \left(\frac{a_{\text{end}}}{a}\right)^{\frac{2(7-k)}{2+k}}\right]$$

$$T_{\max,f}^4 = \frac{5}{6\pi^3 g_{\star}} \sqrt{3k(k-1)} \,\lambda^{\frac{1}{k}} M_{\text{Pl}}^{\frac{4}{k}} y_{\text{eff}}^2 \,\rho_{\text{end}}^{\frac{k-1}{k}} \left(\frac{3k-3}{2k+4}\right)^{\frac{2k+4}{7-k}}$$

$$T_{\text{rh},f}^4 = \frac{30}{\pi^2 g_{\star}} \left[\frac{k\sqrt{3k(k-1)}}{7-k} \lambda^{\frac{1}{k}} \frac{y_{\text{eff}}^2}{8\pi} \right]^k M_{\text{Pl}}^4$$

Formula for T_{rh} vs. n_s

See, e.g., Cook et al. (2015), arXiv:1502.04673

Pivot scale
$$k_*=a_*H_*$$

$$\begin{array}{ll} \text{Pivot scale} \\ k_* = a_* H_* \end{array} \qquad \frac{a_0}{a_{\rm eq}} = \frac{a_*}{a_{\rm end}} \frac{a_{\rm end}}{a_{\rm rh}} \frac{a_{\rm rh}}{a_{\rm eq}} \frac{a_0 H_*}{k_*} \end{array}$$

$$N_{\rm rh} = rac{1}{3(1+w_{
m rh})} \ln \left(rac{
ho_{
m end}}{
ho_{
m rh}}
ight) ~~
ho_{
m end} = rac{3}{2}V_{
m end} \
ho_{
m rh} = rac{g_{
m *,rh}\pi^2}{30}T_{
m rh}^4$$

$$N_{\rm rh} = \frac{4}{1 - 3w_{\rm rh}} \left[-N_* - \ln\left(\frac{k_*}{a_0 T_0}\right) - \frac{1}{4} \ln\left(\frac{45}{g_{*\rm rh} \pi^2}\right) - \frac{1}{3} \ln\left(\frac{11g_{*s,\rm rh}}{43}\right) + \ln\left(\frac{V_{\rm end}^{1/4}}{H_*}\right) \right]$$

After reheating, entropy conserved

$$g_{*s,\text{rh}}T_{\text{rh}}^{3} = \left(\frac{a_{0}}{a_{\text{rh}}}\right)^{3} \left(2T_{0}^{3} + 6 \cdot \frac{7}{8}T_{\nu 0}^{3}\right) \longrightarrow \frac{T_{\text{rh}}}{T_{0}} = \left(\frac{43}{11g_{*s,\text{rh}}}\right)^{1/3} \frac{a_{0}}{a_{\text{eq}}} \frac{a_{\text{eq}}}{a_{\text{rh}}} \left(\frac{43}{11g_{*s\text{rh}}}\right)^{1/3} e^{-N_{\text{rh}}} e^{-N_{*}} \frac{a_{0}H_{*}}{k_{*}}$$

$$T_{\rm rh} = \left[\left(\frac{43}{11g_{*s,\rm rh}} \right)^{\frac{1}{3}} \frac{a_0 T_0}{k_*} H_* e^{-N_*} \left(\frac{45V_{\rm end}}{\pi^2 g_{*\rm rh}} \right)^{-\frac{1}{3(1+w_{\rm rh})}} \right]^{\frac{3(1+w_{\rm rh})}{3w_{\rm rh}-1}}$$

Inflationary parameters

$$\epsilon_V \equiv \frac{M_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2 \; ; \quad \eta_V \equiv M_{\rm Pl}^2 \left(\frac{V''}{V}\right)$$

$$N_* = \int_{\Phi_{\text{end}}}^{\Phi_*} \frac{1}{\sqrt{2\epsilon_V}} \frac{d\phi}{M_{\text{Pl}}} \qquad A_{s,*} = \frac{V}{24\pi^2 \epsilon_V M_{\text{Pl}}^4} = (2.1 \pm 0.1) \times 10^{-9}$$

$$r = 16\epsilon_V$$
; $n_s = 1 - 6\epsilon_V + 2\eta_V$

$$r_{0.05} < 0.035$$
, 95% C.L. $n_s = 0.9659 \pm 0.0040$

FIMP models

Majorana DM / charged scalar parent model

$$\mathcal{L}_{\mathrm{M}} \supset \mathcal{L}_{\Phi} + \mathcal{L}_{\chi} + \mathcal{L}_{X} + \mathcal{L}_{\Phi X} + \mathcal{L}_{\mathrm{Yuk}}$$

$$\mathcal{L}_X = (D_\mu X)^\dagger (D^\mu X) - V(X)$$
$$-\mu_X \Phi |X|^2 - \frac{\sigma_X}{2} \Phi^2 |X|^2$$

$$\mathcal{L}_{XH} = -\lambda_{XH}|H|^2|X|^2$$

$$\mathcal{L}_{\text{Yuk.}} = -(y_{\text{DM}} X \bar{\chi} f_R + h.c.) - y_{\chi} \Phi \bar{\chi} \chi$$

Scalar singlet DM / vectorlike fermion parent model

$$\mathcal{L}_{\mathrm{S}} \supset \mathcal{L}_{\Phi} + \frac{\mathcal{L}_s}{\mathcal{L}_s} + \mathcal{L}_{\Phi s} + \frac{\mathcal{L}_F}{\mathcal{L}_F} + \mathcal{L}_{\Phi F} + \mathcal{L}_{\mathrm{Yuk.}}$$

$$\mathcal{L}_s = \partial_{\mu} s \, \partial^{\mu} s - \frac{\mu_s^2}{2} s^2 + \frac{\lambda_s}{4} s^4 - \lambda_{sH} s^2 |H|^2$$

$$\mathcal{L}_{\Phi s} = -\mu_s s \Phi^2 \,,$$

$$\mathcal{L}_{\Phi F} = -\frac{\sigma_s}{2} s^2 \Phi^2 - y_F \Phi \bar{F} F$$

$$\mathcal{L}_{\text{Yuk.}} - (y_s \, s \, \bar{F} f_R + h.c.)$$

$$\mathcal{L}_{\Phi H} = -\mu_H \Phi |H|^2 - \frac{\lambda_{\Phi H}}{2} \Phi^2 |H|^2$$

More on E- and T- models

