

Pseudo-monopoles from Dark Topological Defects

Akifumi Chitose with Masahiro Ibe

Introduction

Dark Photon

- $U(1)_D$ gauge boson
 - ▶ Possibly Higgsed to be massive → DM candidate
 - Interacts with photon (U(1)_{QED}) through kinetic mixing $\epsilon F_{\mu\nu}F_{\mathrm{D}}^{\mu\nu}$

$SU(2)_D \rightarrow U(1)_D Dark Photon$

- Finbedding: $SU(2)_D \rightarrow U(1)_D \rightarrow \mathbb{Z}_2$ $V(\phi, \eta) = \frac{\lambda_1}{4} \left(\phi^a \phi^a v_1^2 \right)^2 + \frac{\lambda_2}{4} \left(\eta^a \eta^a v_2^2 \right)^2 + \frac{\kappa}{2} \left(\phi^a \eta^a \right)^2$
 - $v_1 \gg v_2$ is assumed for the SSB pattern $\left(\langle \phi \rangle, \langle \eta \rangle\right) = (0,0) \to (v_1,0) \to (v_1,v_2)$
- Mixing with $U(1)_{OED}$ is naturally small (treated perturbatively here)
 - $\frac{c_1}{\Lambda} \phi^a F_{\mu\nu} F_{\rm D}^{a\mu\nu}$: kinetic mixing
 - $ho \frac{c_2}{\Lambda} \phi^a F_{\mu\nu} \tilde{F}_{\mathrm{D}}^{a\mu\nu}$: magnetic mixing
- Asymptotically free

Effective $U(1)_{QED} \times U(1)_{D}$ description

- Effective description in the trivial vacuum of ϕ : $\phi^a = v_1 \delta_3^a$
- $F_{\mathrm{D}}^{\mu\nu} := \frac{\phi^{a}}{v_{1}} F_{\mathrm{D}}^{a\mu\nu} : \text{effective U(1)}_{\mathrm{D}} \text{ field strength}$
 - $\frac{c_1}{\Lambda}\phi^aF_{\mu\nu}F_{\mathrm{D}}^{a\mu\nu} o -\frac{\epsilon}{2}F_{\mu\nu}F_{\mathrm{D}}^{\mu\nu}$: kinetic mixing
 - $\frac{c_2}{\Lambda}\phi^a F_{\mu\nu}\tilde{F}^{a\mu\nu}_{\rm D} \to -\frac{\theta_{\rm mix}}{16\pi^2}F_{\mu\nu}\tilde{F}^{\mu\nu}_{\rm D}$: magnetic mixing, but total derivative
- $\chi := \frac{1}{\sqrt{2}} \left(\eta^1 + i \eta^2 \right) : \text{U}(1)_{\text{D}} \text{ Higgs}$

Topological Defects

- Associated with spontaneous symmetry breakdown
- Stabilized for topological reasons
- In our case:
 - ► monopoles at $SU(2)_D \rightarrow U(1)_D$
 - strings, beads at $U(1)_D \to \mathbb{Z}_2$
- Question: How do they interact with QED?

Analysis: U(1)_D symmetric phase

dark electric charge / monopole and mixing terms

$$+ \text{ EoM: } \partial_{\mu}F^{\mu\nu} - \epsilon\partial_{\mu}\left(\frac{\phi^{a}}{v_{1}}F_{D}^{a\mu\nu}\right) + \frac{\theta_{\text{mix}}}{8\pi^{2}}\partial_{\mu}\left(\frac{\phi^{a}}{v_{1}}\tilde{F}_{D}^{a\mu\nu}\right) = eJ_{\text{QED}}^{\nu}$$

$$\rightarrow N_{\rm QED} = \frac{1}{e} Q_{\rm QED}^e - \frac{\epsilon}{e} Q_{\rm D}^e + \frac{\theta_{\rm mix}}{8\pi^2} Q_{\rm D}^m$$

- ightharpoonup Q's: charge measured by field flux
- $N_{
 m QED} = 0$ for both dark electric charge / monopole
 - $ightharpoonup Q_{
 m QED}^e = \epsilon e_{
 m D}$ for dark electric charge, $Q_{
 m QED}^e = -\frac{e\theta_{
 m mix}}{8\pi^2}Q_{
 m D}^m$ for monopole

QED charge in $U(1)_D$ symmetric phase

Dark Sector	Kinetic Mixing	Magnetic Mixing	Total
Electric Charge			
		None	
	[Holdom (1986)]	[Brümmer, Jaeckel, Khoze (2009)]	[Brümmer, Jaeckel, Khoze (2009)]
Monopole ^			
	None [Brümmer, Jaeckel (2009)]	[Brümmer, Jaeckel, Khoze (2009)]	[Brümmer, Jaeckel, Khoze (2009)]
Dyon			
	[Brümmer, Jaeckel,	[Brümmer, Jaeckel,	[Brümmer, Jaeckel,
	Khoze (2009)]	Khoze (2009)]	Khoze (2009)]

Analysis: U(1)_D broken phase

Basis change in $U(1)_{QED} \times U(1)_{D}$

• "Decoupled basis":
$$\begin{pmatrix} 1 & \frac{\epsilon}{1 - \epsilon^2} \\ 0 & \frac{1}{1 - \epsilon^2} \end{pmatrix} \begin{pmatrix} A' \\ A'_D \end{pmatrix} := \begin{pmatrix} A \\ A_D \end{pmatrix}$$

ullet reminder: $heta_{
m mix}$ does nothing in the absence of monopoles

Dark electric charge and kinetic mixing

 \rightarrow $A'_{\rm D}$: Yukawa Potential

• $\rightarrow A \sim \epsilon A_{\rm D}'$: also Yukawa potential

Strings and kinetic mixing

- Stabilized by $\pi_1\left(\mathrm{SU}(2)_\mathrm{D}/\mathbb{Z}_2\right)=\mathbb{Z}_2$
 - subgroup of $\pi_1\left(\mathrm{U}(1)_\mathrm{D}/\mathbb{Z}_2\right)=\mathbb{Z}$ (corresponds to assuming $\phi^a=v_1\delta_3^a$)

$$\int \overrightarrow{B}'_{\mathrm{D}} \cdot d\overrightarrow{S} = \frac{1}{e'_{\mathrm{D}}} \oint i\chi^{-1} d\chi = -\frac{2\pi n}{e'_{\mathrm{D}}}$$
(n: winding number)

• $B \sim \epsilon B_{\rm D} \rightarrow$ magnetic flux induced

Dark Bead

(magnetic flux of a monopole) = $2 \times (magnetic flux through a string)$ \rightarrow Two strings must attach to the monopole

Dyonic bead

Bead and kinetic mixing

Dark sector

QED sector

Bead and kinetic mixing

Bead and kinetic mixing

Dark sector

QED sector

Bead and magnetic mixing

- The strings do nothing
- $\qquad \qquad \textbf{EoM: } \partial_i E^i = \frac{\theta_{\text{mix}}}{8\pi^2} \partial_i B^i_{\text{D}}$
 - → QED Coulomb potential
 - Yukawa (dark electric charge)

Summary: U(1)_D broken phase

Dark Sector	Kinetic Mixing	Magnetic Mixing	Total
Electric Charge		None	
Bead	[Hiramatsu, Ibe, Suzuki, Yamaguchi (2021)]		
Dyonic bead			

Outlook on phenomenology

- Interaction with the plasma?
- Interaction with / implications on magnetic field in the Universe?
 - Magnetic field can be strong (no Schwinger effect)
- Implications on gravitational wave spectrum?

Conclusions

- Dark monopoles / strings / beads induce peculiar electromagnetic fields through kinetic / magnetic mixing terms
- Dark topological defects are potential probes for the dark sector