MSSM-inflation revisited: Towards a coherent description of high-energy physics and cosmology

G. Moultaka

Laboratoire Univers & Particules de Montpellier (LUPM) CNRS & University of Montepllier II

in collaboation with: <u>Gilles Weymann-Despres</u>¹, Sophie Henrot-Versillé¹, Vincent Vennin², Laurent Duflot¹, Richard von Eckardstein³

Based on arXiv:2304.04534, Phys.Rev.D 108, 023511 (2023)

¹ IJCLab, ² ENS-Paris, ³ ITP-Münster

MSSM-inflation revisited: SUSY2023, Southampton, August 17-21, 2023 1/16

- Introductory motivations
- MSSM flat directions
- The inflection point (e)MSSM-Inflation model
- CMB constraints & possible implications on the MSSM spectrum
- Conclusions & outlook

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Where is -Is there- (TeV) New Physics ??

G. Moultaka, LUPM-Montpellier

MSSM-inflation revisited: SUSY2023, Southampton, August 17-21, 2023 3/16

message from (the) BSM at the LHC (?)

G. Moultaka, LUPM-Montpellier

MSSM-inflation revisited: SUSY2023, Southampton, August 17-21, 2023 4/16

・ロト ・ 四ト ・ ヨト ・ ヨト

Too early to give up on Supersymmetry!

 \rightarrow deep connection between internal and space-time symmetries

 \rightarrow unification with Gravity...

 \rightarrow SUSY DM candidates still viable, even for (relatively) light LSP, despite direct / indirect search limits and LHC constraints.

- \rightarrow ubiquity of flat directions of the scalar potential
- \rightarrow potentially viable inflationary sectors?!

 \rightarrow In its (next-to-)minimal versions, (N)MSSM, possible relations between constraints from inflation (prediction of the scalar spectral index, the power spectrum normalization, etc.), and constraints from particle physics searches ?

< 日 > < 同 > < 回 > < 回 > < □ > <

3

$$egin{aligned} V_{ ext{SUSY}} &= \sum_k |F_{\phi_k}|^2 + rac{1}{2} \sum_A g_A^2 ec{D}^A \cdot ec{D}^A \ F_{\phi_k} &:= rac{\partial W}{\partial \phi_k}, \quad ec{D}^A := \Phi^\dagger ec{T}^A \Phi, \ ext{(Φ multiplet of $\phi_k's$)} \end{aligned}$$

 \rightarrow An MSSM flat direction \rightarrow V=0

 \rightarrow find simultaneous solutions to $F_{\phi_k} = 0$ and $\vec{D}^A = 0$

 \rightarrow in the space of 49 complex scalar fields ϕ_k (squarks, sletons, Higgses).

→ one-to-one correspondence with gauge invariant monomials → The (R_p -conserving)MSSM potential has $\mathcal{O}(300)$ flat directions! a promising paradise for Inflation!

G. Moultaka, LUPM-Montpellier

$$egin{aligned} V_{ ext{SUSY}} &= \sum_k |F_{\phi_k}|^2 + rac{1}{2} \sum_A g_A^2 ec{D}^A \cdot ec{D}^A \ F_{\phi_k} &:= rac{\partial W}{\partial \phi_k}, \quad ec{D}^A := \Phi^\dagger ec{T}^A \Phi, \ ext{(Φ multiplet of $\phi_k's$)} \end{aligned}$$

 \rightarrow An MSSM flat direction \rightarrow V=0

 \rightarrow find simultaneous solutions to $F_{\phi_k} = 0$ and $\vec{D}^A = 0$

 \rightarrow in the space of 49 complex scalar fields ϕ_k (squarks, sletons, Higgses).

→ one-to-one correspondence with gauge invariant monomials → The (R_p -conserving)MSSM potential has O(300) flat directions!

a promising paradise for Inflation! BUT...

G. Moultaka, LUPM-Montpellier

a flat direction:

- has to be lifted...
- and by not too much \rightarrow slow-roll/enough e-folding to fit observations
- \rightarrow three main lifting sources:
 - renormalizable superpotential (MSSM)
 - soft SUSY breaking masses (MSSM)
 - \Rightarrow effective non-renormalizable superpotential (beyond the MSSM)

a flat direction:

- has to be lifted...
- and by not too much \rightarrow slow-roll/enough e-folding to fit observations
- \rightarrow three main lifting sources:
 - renormalizable superpotential (MSSM)
 - soft SUSY breaking masses (MSSM)
 - \Rightarrow effective non-renormalizable superpotential (beyond the MSSM)

e.g. \rightarrow *LLe* or *udd* flat directions lifted by

$$W_{6}^{LLe} = \frac{\widetilde{\lambda_{6}}}{M_{Pl}^{3}}(LLe)(LLe) \text{ resp. } W_{6}^{udd} = \frac{\widetilde{\lambda_{6}}}{M_{Pl}^{3}}(udd)(udd)$$

Collecting the pieces...

We follow R. Allahverdi, et al., Phys. Rev. Lett. 97, 191304 (2006) and literature in line ...however, partly at variance:

•
$$V_{\text{SUSY}} \supset \sum_{i} \left| \frac{\partial W_6}{\partial \varphi_i} \right|^2 + \cdots V_D$$

(

• SUGRA-mediated SUSY breaking:

$$V_{\text{soft}} = |m_{3/2}|^2 \sum_{i} |\varphi_i|^2 + \left\{ m_{3/2} \left[\sum_{i} \varphi_i \frac{\partial W}{\partial \varphi_i} + (a-3)W \right] + h.c. \right\},$$

$$V_{\text{soft}} \supset \widetilde{A}_n W_n + h.c. \Rightarrow \widetilde{A}_6 = \frac{3+a}{a} \widetilde{A}_3, \text{ e.g. } \widetilde{A}_6(M_{\text{SUSY}}) = \left(\frac{3-\sqrt{3}}{6-\sqrt{3}}\right)^{-1} A_t(M_{\text{SUSY}})$$

• $\sqrt{3}\varphi = L_i^{\uparrow} = L_i^{\downarrow} = e_k$ or $\sqrt{3}\varphi = u_i^a = d_j^b = d_k^c$, all other MSSM scalar fields $\rightarrow 0$.

$$\frac{V_{\text{tree}}^{\text{Inflaton}}(\phi) = \frac{1}{2}m_{\phi}^{2}\phi^{2} - \sqrt{2}A_{6}\frac{\lambda_{6}\phi^{6}}{6M_{\text{Pl}}^{3}} + \lambda_{6}^{2}\frac{\phi^{10}}{M_{\text{Pl}}^{6}}}{M_{\text{Pl}}^{6}}, \phi = \pm\sqrt{2}|\varphi|, \ A_{6} = \left|\widetilde{A}_{6}\right|, \lambda_{6} = \frac{\widetilde{\lambda_{6}}}{18\sqrt{2}} > 0.$$

$$m_{\phi}^{2} = \frac{1}{3}(m_{\text{soft}_{1}}^{2} + m_{\text{soft}_{2}}^{2} + m_{\text{soft}_{2}}^{2})$$

⇒ A_6 could be rescaled, BUT effects propagate on the PP side! ⇒ $\widetilde{\lambda_6} \sim \mathcal{O}(1) \rightarrow \lambda_6 \ll \mathcal{O}(1)$

G. Moultaka, LUPM-Montpellier

3

ns, *As*,...

Hubble-flow params./slow-roll approx.

$$\begin{split} \varepsilon_{1} &\simeq \frac{M_{\text{Pl}}^{2}}{2} \left(\frac{V_{\phi}}{V}\right)^{2} \\ \varepsilon_{2} &\simeq 2M_{\text{Pl}}^{2} \left[\left(\frac{V_{\phi}}{V}\right)^{2} - \frac{V_{\phi\phi}}{V} \right] \\ \varepsilon_{3} &\simeq \frac{2}{\varepsilon_{2}} M_{\text{Pl}}^{4} \left[\frac{V_{\phi\phi\phi}V_{\phi}}{V^{2}} - 3\frac{V_{\phi\phi}}{V} \left(\frac{V_{\phi}}{V}\right)^{2} + 2\left(\frac{V_{\phi}}{V}\right)^{4} \\ &\vdots \end{split}$$

Parameter	Value and error
$ln(10^{10}A_{\rm s})$	3.047 ± 0.014
ns	0.9665 ± 0.0038
[n _{s,run}	-0.0042 ± 0.0067]
[<i>r</i>	< 0.032]

(Planck 2020)

Scalar perturbations power spectrum $\mathcal{P}_{s}(k) = A_{s} \left(\frac{k}{k_{*}}\right)^{n_{s}-1}$

Amplitude

$$A_{s} = \frac{H_{*}^{2}}{8\pi^{2}\varepsilon_{1*}M_{p}} \simeq \frac{V_{*}}{24\pi^{2}M_{\mathrm{Pl}}^{4}\varepsilon_{1*}}$$

Scalar spectral index $n_s \simeq 1 - 2\varepsilon_{1*} - \varepsilon_{2*}$

its running $n_{\rm S,run} \simeq -2\epsilon_{1*}\epsilon_{2*} - \epsilon_{2*}\epsilon_{3*}$

$$\begin{split} \Delta N_* &\simeq -\frac{1}{M_{\rm Pl}^2} \int_{\phi_*}^{\phi_{end}} \frac{V(\phi)}{V_{\phi}(\phi)} d\phi \\ &= \ln R_{\rm rad} - \ln \left(\frac{k_*}{a_0 \rho_{\gamma}}\right) - \\ \frac{1}{4} \ln \left(\frac{9V_{end}}{\epsilon_{1*}(3 - \epsilon_{1end})V_*}\right) + \frac{1}{4} \ln(8\pi^2 A_{\rm S}) \end{split}$$

G. Moultaka, LUPM-Montpellier

MSSM-inflation revisited: SUSY2023, Southampton, August 17-21, 2023 9/16

G. Moultaka, LUPM-Montpellier

MSSM-inflation revisited: SUSY2023, Southampton, August 17-21, 2023 10/16

・ロト ・ 四ト ・ ヨト ・ ヨト

Э.

quasi-flat inflection point

at
$$\phi = \phi_0 = \left(\frac{M_p^3 m_\phi \sqrt{1-\alpha}}{\lambda \sqrt{10}}\right)^{1/4}$$
 with $1 - \alpha \equiv \frac{A_6^2}{20m_\phi^2}$

$$egin{aligned} &V_{\phi\phi}(\phi_0)=0 ext{ and } \ &V_{\phi}(\phi_0)\equiv
u=m_{\phi}^2\phi_0lpha+\mathcal{O}\left(lpha^2
ight) \ &0\leqlpha\ll1 \end{aligned}$$

• $\alpha = 0 \rightarrow \text{too low } n_s \simeq 1 - \frac{4}{\Delta N_*}$

•
$$\alpha \neq 0 \rightarrow \alpha \lesssim 10^{-5}$$
 for $\varepsilon_1 \lesssim 1$

and
$$lpha \lesssim$$
 10⁻²² to get, e.g. $\Delta N \sim$ 50

huge fine-tuning, challenging numerical evaluation. a new methodology:

$$\begin{split} V_{\text{tree},\phi}(\phi) &= (1+\Delta_4)^{\frac{1}{4}} \left\{ \nu + \Delta_4 \lambda_6 \frac{\phi_0^5}{M_\rho^3} \left[10(2+\Delta_4)\lambda_6 \frac{\phi_0^4}{M_\rho^3} - \sqrt{2}A_6 \right] \right\} \\ V_{\text{tree},\phi\phi}(\phi) &= 5\Delta_4 \lambda_6 \frac{\phi_0^4}{M_\rho^3} \left[18(2+\Delta_4)\lambda_6 \frac{\phi_0^4}{M_\rho^3} - \sqrt{2}A_6 \right], \ \Delta_4 &\equiv \phi^4/\phi_0^4 - 1 \\ \to m_{\phi}^2 \text{ and } \lambda_6 \text{ become functions of } \phi_0, A_6, \nu. \end{split}$$

 \rightarrow a well-defined methodology circumventing numerical high precision issues.

< 回 > < 回 > < 回 >

RGE 'improved' inflationary potential

$$\begin{split} V_{\text{tree}}^{\text{Inflaton}}(\phi) &= \frac{1}{2} m_{\phi}^2 \phi^2 - \sqrt{2} A_6 \frac{\lambda_6 \phi^6}{6 M_{\text{Pl}}^3} + \lambda_6^2 \frac{\phi^{10}}{M_{\text{Pl}}^6} \\ m_{\phi}^2 &\to \overline{m}_{\phi}^2(\phi), \, \widetilde{A}_6 \to \overline{A}_6(\phi) \\ \lambda_6 &\to \overline{\lambda}_6(\phi), \, \phi \to \overline{\phi}(\phi) \end{split}$$

 $ightarrow \overline{m}_{\phi}^2$ from the running of the soft masses

→ the RGEs for $\overline{\lambda}_6$ and \overline{A}_6 extracted from (renormalizable) RPV operators. Leading β -functions depend only on running g_i , M_i . The quasi-flat conditions can still be determined from $V_{\text{long}}^{\text{Inflaton}}(\phi)$:

$$\overline{m}_{\phi}^{2}(\phi_{0}) = \frac{\mathcal{A}^{2}(\phi_{0}, \nu, \overline{g}_{i}, \overline{M}_{i}, \overline{A}_{6})}{20}$$
$$\overline{\lambda}_{6}(\phi_{0}) = \mathcal{B}(\phi_{0}, \nu, \overline{g}_{i}, \overline{M}_{i}, \overline{A}_{6})$$

define:
$$1 - \alpha^{(\text{loop})} \equiv \frac{\mathcal{A}^2(\phi_0, \nu = 0)}{20m_{\phi}^2(\phi_0)}$$

→same methodology as at tree-level!

G. Moultaka, LUPM-Montpellier

MSSM-inflation revisited: SUSY2023, Southampton, August 17-21, 2023 12/16

< 6 b

Improvements

- propagation of (non-trivial) normalizations
- RGE improved one-loop potential
- 'exact' one-loop fine-tuning
- inclusion of Yukawa effects in the RGEs
- effects of reheating on the number of e-folds
- tree-level versus 1-loop for given ϕ_0 / given $A_6(M_{GUT})$
- relating to the MSSM spectrum (SUSPECT3: J.L.Kneur et al. CPC 291 (2023) 108805, [2211.16956 [hep-ph]])

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\begin{split} \Delta_{i}^{\mathrm{BP}_{j}}[p] &= \rho^{\mathrm{V}\mathrm{tree}\,|\,\phi_{0}}\left(Q = \phi_{0}, n_{\mathrm{S}} = \overline{n_{\mathrm{S}}}\right) - \rho^{\mathrm{V}\mathrm{RGE}\,|\,\phi_{0}}\left(Q = \phi_{0}, n_{\mathrm{S}} = \overline{n_{\mathrm{S}}}\right) \\ \sigma_{n_{\mathrm{S}},i}^{\mathrm{BP}_{j}}[p] &= \frac{1}{2}\left|\rho^{\mathrm{V}\mathrm{RGE}\,|\,\phi_{0}}\left(Q = \phi_{0}, n_{\mathrm{S}} = \overline{n_{\mathrm{S}}} + \sigma_{n_{\mathrm{S}}}\right) - \rho^{\mathrm{V}\mathrm{RGE}\,|\,\phi_{0}}\left(Q = \phi_{0}, n_{\mathrm{S}} = \overline{n_{\mathrm{S}}} - \sigma_{n_{\mathrm{S}}}\right)\right|, \end{split}$$

G. Moultaka, LUPM-Montpellier

MSSM-inflation revisited: SUSY2023, Southampton, August 17-21, 2023 14/16

TABLE V.	Fitted be	nchmark	MSSM	spectra	a and	their st	tatus	regardin	g the	obse	rvables.	The	paramet	ters a	are given	at M	IEWSB-	All	the
masses and	energy sc	ales are g	iven in	GeV. 1	The 🗡	symbo	ol hig	thlights t	he po	ints	exclude	i by	direct L	.HC	searches	(see	Sec.	VIB	s 1).

ID	H_1	H_2	h_1	h_2	A_1	A_2	A_3	
DM channel	Hig	gsino	h-fi	annel				
inflaton	$u_1d_1d_2$	$L_1L_2e_1$	$u_1d_1d_2$	$L_1L_2e_1$	$u_1 d_1 d_2$	$L_1L_2e_1$	$L_{1}L_{2}e_{1}$	
EWSB scale	2556.9	2556.8	2713.1	2713.0	4008.9	4008.9	4009.7	
$\tan \beta$	2	29	2	6.6	1	8.3	24.7	
$sgn(\mu)$		+		+		-		
M_{GUT}	1.237	$\times 10^{16}$	3 ×	1016		1.295×10^{16}		
M_1	15	571		61	4	00	362	
M_2	25	017	5	67	15	515	1662	
M ₃	2964	12108	1210	934	2564	10577	1098	
M _p	2804	12108	4210	9892	2364	10367	4773	
$M_{\tilde{\mu}_R}$	2785	12108	4221	9892	3976	10400	4723	ASPIC
M _{TL}	33	942 X 4	4	008		2039		7.0110
$M_{\tilde{\tau}_R}$	11050	0000	0860	7270	10452	2801	2084	+
M q _{2L}	11939	9090	9800	1570	10452	2050	2964	
M _{q₃₁}	21	170	3	220		3930		SUSP
M _{IR} M-	30	174	2	330		2422		
M b _R	34	400	1	932		2422		+
Ar A	3180	3223	2085	3020	3450	-3010	1190	0 5 1 7 7
A.	5100	48	2905	43	5450	187	1190	SELLI
$m(\tilde{\chi}_1^0)$	1108	1108	60.0	60.1	397	398	357	
$m(\tilde{\chi}_2^0)$	-1113	-1112	497	496	766	/66	760	
$m(\tilde{\chi}_3^0)$	1578	1587	-504	-503	-/69	-//0	-/63	
$m(\tilde{\chi}_4^0)$	2992	3005	1041	1041	1589	1592	1710	
$m(\chi_1^+)$	1111	1111	496	495	/65	/66	760	
$m(\tilde{\chi}_2^+)$	2992	3005	1041	1041	1589	1592	1711	
m(g)	2371	2333	2351	2310	2382	2332	1389	
$m(q_L)$ $m(\tilde{q}_L)$	12072	9175	9950	7442	10537	7364	3030	
$m(q_R)$ $m(\tilde{h})$	2243	2244	2031	2031	2499	2499	2453	
$m(v_1)$ $m(\tilde{h}_1)$	3512	3512	3177	3177	3974	3974	3971	
$m(v_2)$ $m(\tilde{t}_1)$	2244	2244	2347	2347	3946	3945	3972	
$m(\tilde{t}_2)$	2992	2992	3188	3188	4074	4075	4059	
$m(\tilde{\tau}_{1})$	2066	2066	3931	3931	2055	2055	2055	
mh	125.3	125.2	125.3	125.2	125.4	125.3	122.2	
mA	784.9	783.9	3625.9	3625.8	782.2	784.4	757.2	
m _{3/2}	12596	12557	10352	10383	11005	11010	4886	
ϕ_0	1.25×10^{15}	1.26×10^{15}	1.13×10^{15}	1.14×10^{15}	1.16×10^{15}	1.17×10^{15}	7.68×10^{14}	
$m_{\phi}(\phi_0)$	11982	11973	9847	9892	10459	10487	4661	
$A_{6}(\phi_{0})$	53757	53593	44181	44312	46970	46990	20855	
$\lambda_6(\phi_0)$	0.0224	0.0218	0.0278	0.0269	0.0260	0.0252	0.0609	
χ^2_{turn} (d.o.f. = 78)	50.9	51.7	46.1	46.5	47.5	47.0	49.2	
LHC searches			×	×			×	• • @ • •

C-inspired

문에서 문어?

2

PECT3

ΈR

G. Moultaka, LUPM-Montpellier

MSSM-inflation revisited: SUSY2023, Southampton, August 17-21, 2023 15/16

Conclusions & Outlook

- we have revisited the (e)MSSM inflection-point scenario of inflation, both at tree- and one-loop levels, and shown that combined fits of particle and cosmological observables are already sensitive to the quantum corrections to the inflationary potential.
- careful theoretical scrutiny of the model is thus called for:
 - $\rightarrow\,$ we propagated correct normalizations \rightarrow effects on the theoretical consistency and the MSSM spectrum.
 - → derived full one-loop RGEs including Yukawa effects for the parameters of the inflationary potential.
 - → determined the quas-flatness conditions for the full one-loop non-polynomial potential → fine-tuning is not reduced wrt to tree-level!
- the details of the reheating era are important (instantaneous or not) affecting the viable parameter space regions.
- global fit combining cosmological and particle physics observables/constaints (interfacing ASPIC-like with SuSpect3, SFitter)

Further investigations still needed:

- SUGRA mediation assumptions
- complete one-loop effecitve potential
- explicit T_{reh} calculations
- lower effective scales e.g. $M_{\rm pl}
 ightarrow M_{
 m GUT},...$

< 日 > < 同 > < 回 > < 回 > < □ > <

э.