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* Heat up a box of anything: stringy modes will
eventually be excited.

* |t is common in the early Universe to find
energy densities of order one in string units.

* Influences in reheating, possible GW spectrum,
moduli problem...

* Most likely out of equilibrium processes are
important!




d=0 case: Lowe and Thorlacius’95
d=0 with D-branes: Lee and Thorlacius’97

Why Boltzmann equations

* An invaluable window to out-of-equilibrium
physics.




d=0 case: Lowe and Thorlacius’95
d=0 with D-branes: Lee and Thorlacius’97

Why Boltzmann equations

* An invaluable window to out-of-equilibrium
physics.
e Equilibrium is a subtle concept in presence of
gravity:
* Gravity is dynamical: Jeans instability.
* Expanding Universe.




d=0 case: Lowe and Thorlacius’95
d=0 with D-branes: Lee and Thorlacius’97

Why Boltzmann equations

* An invaluable window to out-of-equilibrium
physics.
e Equilibrium is a subtle concept in presence of
gravity:
* Gravity is dynamical: Jeans instability.
* Expanding Universe.
* Knowledge of interaction rates allows to

estimate when (and whether) equilibrium is a
good approximation.




A phase space for string theory

e Consider a string in a D-dimensional spacetime, with d noncompact
directions.

* The phase space is given by the position, noncompact momenta,
oscillator level, winding and KK modes.
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* Hence describe the thermodynamics with a distribution on a
generalized phase space fr k. N.o) = f(E},1)
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Decay rates: summing over our ignorance

* Interaction rates of highly excited strings are hard to compute.
* In thermodynamics, we are interested in how the average string looks like.

* Consider the averaged semi-inclusive decay rate:
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Understanding the typical string

* The string prefers to decay into configurations with small external kinetic energy

and with KK and winding mode energies proportional to the length. Mafies'01
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Understanding the typical string

* The string prefers to decay into configurations with small external kinetic energy

and with KK and winding mode energies proportional to the length. Che"r’]'aeft“;jg;

* It follows that the typical string is described by its length (approximately, level).
* The decay rate looks like:
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The Boltzmann equation for the typical string

e Recap: we want to describe the thermodynamics of string theory in terms of the average
string, well described by the length and the number of non-compact dimensions.

* We have computed the interaction rates, so we can write:
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Consistency check

* The equilibrium solution obtained
from imposing detailed balance reads
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* These results agree with general
considerations in equilibrium
thermodynamics, provided winding
and KK modes are taken into account.
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Semiclassical strings: a random walk
Interpretation

The random walk interpretation allows us to conjecture the form of other interaction rates:
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Non-trivial check: detailed balance must be satisfied in every interaction by an equilibrium
solution agreeing with the general case at high energies.



Boltzmann
eguations
with open

strings
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Out of equilibrium: equilibration rates

* Consider perturbations around the equilibrium solution in d=0:
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Out of equilibrium: equilibration rates

* Consider perturbations around the equilibrium solution in d=0:
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* We find zero-energy solutions of the form:
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* Qualitatively, find a length-dependent equilibration rate: on(l,t) ~ dn(l, 0)6_(3"‘31')*




Conclusions and future directions

* We have described string thermodynamics in terms of the typical
string, described by its length and the number of non-compact
directions.

* The equilibrium conditions we find agree with general equilibrium
considerations, a non-trivial consistency check of the interactions.

* We are able to probe the out-of-equilibrium regime, showing explicit
behaviour of fluctuations and computing equilibration rates.

* We plan on applying these results to do phenomenology:
 Warm inflation? String gas cosmology? Reheating? GWS?!?!
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