Dark matter indirect detection limits from complete annihilation patterns

Björn Herrmann

Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTh)
Univ. Savoie Mont Blanc — CNRS
Annecy — France

C.Armand and B. Herrmann — JCAP 11 (2022) 055 — arXiv:2210.01220 [hep-ph]

Dark matter indirect searches

Dark matter accounts for about 26% of the energy content of our Universe

$$\Omega_{\rm CDM} h^2 = 0.1200 \pm 0.0012$$
 Planck (2018)

Indirect detection invokes the dark matter annihilation cross-section

Dark matter indirect detection limits

Is this hypothesis realistic...?

(and, if not, what is the impact...?)

Singlet scalar dark matter

$$V_{\rm scalar} = 2\lambda_H v^2 h^2 \left(+ \frac{1}{2} \mu_S^2 S^2 + \frac{1}{4} \lambda_{\rm SH} v^2 S^2 \right) \left(+ \frac{1}{4} \lambda_{\rm SH} v S^2 h + \lambda_{\rm SH} S^2 h^2 \right) + \dots$$

$$Dark \ matter \ mass \qquad Dark \ matter \ coupling$$

$$m_S^2 = \mu_S^2 + \frac{1}{2} \lambda_{\rm SH} v^2 \qquad \text{("Higgs portal")}$$

Simplest extension of the Standard Model...

- dark matter: real scalar singlet (stable due to imposed \mathbb{Z}_2 symmetry)
- phenomenology (at the tree-level) governed by only two parameters:

$$\begin{pmatrix} m_{\rm S} \sim 10 \,\mathrm{GeV} - 10 \,\mathrm{TeV} \\ \lambda_{\rm SH} \sim 10^{-4} - 1 \end{pmatrix}$$

Dark matter annihilation into: gauge bosons, Higgs bosons, quarks, leptons

Singlet scalar dark matter

Dark matter relic density / annihilation channels computed using micrOMEGAs

Singlet scalar dark matter

---- Hypothesis of a single annihilation channel (almost) never satisfied !!!

Even in such a simple setup, the "100% hypothesis" is not justified...

More complex (i.e. more realistic) frameworks invoke an even richer phenomenology...

New analysis with complete annihilation pattern

Results for singlet scalar dark matter

Shape of exclusion limit influenced by Higgs resonance (inflection point) and the opening of additional channels (e.g. WW final state)

Comparison with single-channel analysis (W^+W^-)

We obtain a more conservative limit (due to additional contributions) Shape similar to W^+W^- alone (hh and ZZ final states lead to similar gamma-ray spectra)

Comparison with single-channel analysis $(\tau^+\tau^-)$

We obtain a less constraining limit ($\tau^+\tau^-$ final state never dominant in this model...) Assuming 100% $\tau^+\tau^-$ leads to over-estimation of the contribution...

Comparison with single-channel analysis (bb)

 $m_S < m_W$: subdominant $\tau^+\tau^-...$ we obtain more constraining upper limit $m_S > m_W$: $b\bar{b}$ channel suppressed...

Exclusion limit for singlet scalar dark matter

Singlet scalar DM not excluded by our analysis

Resonances and kinematical thresholds influence the exclusion limit...!!!

Conclusion

Indirect dark matter searches provide important limits on new physics models

However, the hypothesis of a single annihilation channel is typically not satisfied...

- example of singlet scalar dark matter...
- same behaviour expected in more complete particle models!

Including the complete annihilation pattern may impact the obtained limits...

- under/over-estimation of given channels!
- complete analysis for singlet scalar dark matter assuming CTA observation of Sculptor

Recommendation: Include full annihilation pattern when deriving limits in a specific particle physics model...