

Littlest Modular Seesaw

Ivo de Medeiros Varzielas ${ }^{\text {a }}$, Steve King ${ }^{\text {b }}$, Miguel Levy ${ }^{\text {a }}$
${ }^{\text {a }}$ CFTP/IST
${ }^{\text {b }}$ SOTON

Outline

- Littlest Seesaw
- Numerical Results
- Modular Framework
- Multiple Modular Symmetries
- Domain(s)
- Fundamental vs. Full Domain
- Fixed Points
- Littlest Modular Seesaw
- Charged-Lepton Hierarchies
- The Weighton
- Quarks?
- SU(5) Extension: WIP

Littlest Seesaw

Littlest Seesaw (disclaimers)

- Left-Right Convention
- Only b is complex
- Type-I Seesaw
- (Effective) 2 RH Neutrino Framework
- Basis: $(a \otimes b)_{1}=\left(a_{1} b_{1}+a_{2} b_{3}+a_{3} b_{2}\right)$
- Bottom-Up

Littlest Seesaw

- Dirac Neutrino Mass Matrix

$$
M_{D}=v_{u}\left(\begin{array}{cc}
0 & b \\
a & b n \\
-a & b(2-n)
\end{array}\right)
$$

$$
M_{\ell}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)
$$

- Diagonal RH Neutrinos

$$
M_{R}=\operatorname{diag}\left(M_{A}, M_{B}\right)
$$

Littlest Seesaw

- Effective Neutrino Mass Matrix

$$
m_{\nu}=M_{D} \cdot M_{R}^{-1} \cdot M_{D}^{T}=v_{u}^{2}\left(\begin{array}{ccc}
\frac{b^{2}}{M_{B}} & \frac{b^{2} n}{M_{B}} & \frac{b^{2}(2-n)}{M_{B}} \\
\cdot & \frac{a^{2}}{M_{A}}+\frac{b^{2} n^{2}}{M_{B}} & -\frac{a^{2}}{M_{A}}+\frac{b^{2} n(2-n)}{M_{B}} \\
\cdot & \cdot & \frac{a^{2}}{M_{A}}+\frac{b^{2}(2-n)^{2}}{M_{B}}
\end{array}\right)
$$

Littlest Seesaw

$$
\begin{gathered}
m_{\nu} \\
\text { Analytics } \\
\mathcal{U}_{\nu}^{T} \cdot m_{\nu} \cdot \mathcal{U}_{\nu}=\operatorname{diag}\left(0,\left|m_{1}\right|,\left|m_{2}\right|\right) \\
\mathcal{U}_{\nu} \equiv\left(\mathcal{U}_{\text {TBM }} \mathcal{U}_{\alpha} P_{\nu}\right)=\left(\begin{array}{ccc}
-\sqrt{\frac{2}{3}} & \frac{c_{\alpha}}{\sqrt{3}} & e^{i \gamma} \frac{s_{\alpha}}{\sqrt{3}} \\
\sqrt{\frac{1}{6}} & \frac{c_{\alpha}}{\sqrt{3}}-e^{-i \gamma} \frac{s_{\alpha}}{\sqrt{2}} & \frac{c_{\alpha}}{\sqrt{2}}+e^{i \gamma} \frac{s_{\alpha}}{\sqrt{3}} \\
\sqrt{\frac{1}{6}} & \frac{c_{\alpha}}{\sqrt{3}}+e^{-i \gamma} \frac{s_{\alpha}}{\sqrt{2}}-\frac{c_{\alpha}}{\sqrt{2}}+e^{i \gamma} \frac{s_{\alpha}}{\sqrt{3}}
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \phi_{2}} & 0 \\
0 & 0 & e^{i \phi_{3}}
\end{array}\right)
\end{gathered}
$$

Littlest Seesaw (Numerical Results)

$$
n=1+\sqrt{6} \quad n=1-\sqrt{6}
$$

1σ with SK

 atmospheric data

$$
\begin{aligned}
r & =\left(\frac{a^{2}}{M_{A}}\right) /\left(\frac{|b|^{2}}{M_{B}}\right) \\
b & =|b| e^{i \beta}
\end{aligned}
$$

$$
\text { See also } 1910.03460
$$

Littlest Seesaw (Numerical Results)

$$
n=1+\sqrt{6}
$$

$$
n=1-\sqrt{6}
$$

1σ without SK atmospheric data

Littlest Seesaw

$$
\begin{aligned}
& n=1 \pm \sqrt{6} \\
& M_{D}=v_{u}\left(\begin{array}{cc}
0 & b \\
a & b n \\
-a & b(2-n)
\end{array}\right) \quad \begin{array}{l}
M_{\ell}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right) \\
M_{R}=\operatorname{diag}\left(M_{A}, M_{B}\right)
\end{array} \\
& \text { Works } \\
& \text { (as expected) }
\end{aligned}
$$

Modular Framework

Modular Framework

- Modular Action

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma: \tau \rightarrow \gamma \tau=\frac{a \tau+b}{c \tau+d}
$$

- Weighted Representations

$$
\psi \sim\left(\mathbf{r}_{i}, k_{i}\right)
$$

- Transformation

$$
\psi_{i} \rightarrow(c \tau+d)^{-k_{i}} \rho_{i j}(\gamma) \psi_{j}
$$

Modular Framework

- Modular Action

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma: \tau \rightarrow \gamma \tau=\frac{a \tau+b}{c \tau+d}
$$

- Weighted Representations

$$
\psi \sim\left(\mathbf{r}_{i}, k_{i}\right) \quad \text { Modular Action }
$$

- Transformation

$$
\psi_{i} \rightarrow(c \tau+d)^{-k_{i}} \rho_{i j}(\gamma) \psi_{j}
$$

Modular Framework

- Modular Action

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma: \tau \rightarrow \gamma \tau=\frac{a \tau+b}{c \tau+d}
$$

- Weighted Representations

$$
\begin{aligned}
& \psi \sim \underbrace{\left(\mathbf{r}_{i}, k_{i}\right)}_{\uparrow} \underbrace{\text { Select } \Gamma_{N}} \\
& \psi_{i} \rightarrow(c \tau+d)^{-k_{i}} \rho_{i j(\gamma)} \psi_{j}
\end{aligned}
$$

Modular Framework

- Superpotential

$$
W\left(\tau, \psi_{I}\right)=\sum\left(Y_{I_{1} \ldots I_{n}}(\tau) \psi_{I_{1}} \ldots \psi_{I_{n}}\right)_{1}
$$

Modular Framework

- Superpotential

$$
\begin{array}{r}
W\left(\tau, \psi_{I}\right)=\sum\left(Y_{I_{1} \ldots I_{n}}(\tau) \psi_{I_{1} \ldots \psi_{I_{n}}}\right)_{1} \\
\text { Invariant }
\end{array}
$$

Modular Framework

- Superpotential

$$
\begin{array}{r}
W\left(\tau, \psi_{I}\right)=\sum\left(\frac{Y_{I_{1} \ldots I_{n}}(\tau)}{\left.\psi_{I_{1} \ldots \psi_{I_{n}}}\right)_{\mathbf{1}}}\right. \\
\text { Trivial } \frac{\downarrow}{\text { Invariant }}
\end{array}
$$

Modular Framework

- Superpotential

$$
\begin{array}{r}
W\left(\tau, \psi_{I}\right)=\sum\left(\frac{Y_{I_{1} \ldots I_{n}}(\tau)}{\left.\psi_{I_{1} \ldots \psi_{I_{n}}}\right)_{\mathbf{1}}}\right. \\
\text { Trivial } \frac{\downarrow}{\text { Invariant }}
\end{array}
$$

(Business as usual)

Modular Framework

- Superpotential

$$
\begin{array}{r}
W\left(\tau, \psi_{I}\right)=\sum\left(Y_{I_{1} \ldots I_{n}}(\tau) \psi_{I_{1} \ldots \psi_{I_{n}}}\right)_{\mathbf{1}} \\
\text { Not-Invariant }
\end{array}
$$

Modular Framework

- Superpotential

$$
\begin{gathered}
W\left(\tau, \psi_{I}\right)=\sum\left(\frac{Y_{I_{1} \ldots I_{n}}(\tau)}{\left.\psi_{I_{1} \ldots \psi_{n}}\right)_{\mathbf{1}}}\right. \\
? ? \text { Not-Invariant }
\end{gathered}
$$

Modular Framework

- Cancels Out Transformation

$$
Y_{I_{1} \ldots I_{n}}(\tau) \rightarrow Y_{I_{1} \ldots I_{n}}(\gamma \tau)=(c \tau+d)^{k_{Y}} \rho(\gamma) Y_{I_{1} \ldots I_{n}}(\tau)
$$

- If $\quad k_{Y}=k_{I_{1}}+\cdots+k_{I_{n}} \quad \& \quad \rho \otimes \rho_{I_{1}} \otimes \cdots \otimes \rho_{I_{n}} \supset \mathbf{1}$

Modular Framework

- Cancels Out Transformation

$$
Y_{I_{1} \ldots I_{n}}(\tau) \rightarrow Y_{I_{1} \ldots I_{n}}(\gamma \tau)=(c \tau+d)^{k_{Y}} \rho(\gamma) Y_{I_{1} \ldots I_{n}}(\tau)
$$

- If $\quad k_{Y}=k_{I_{1}}+\cdots+k_{I_{n}} \quad \& \quad \rho \otimes \rho_{I_{1}} \otimes \cdots \otimes \rho_{I_{n}} \supset \mathbf{1}$

Modular Forms!

Modular Framework

- Modular Forms (Yukawas):
- "Weighted-representations" (-ish)
- Representations (and weights) constrained by Γ_{N}
- Specific functions of τ

$$
-Y_{\mathbf{r}}^{(k)}(\tau)=\left(\bigotimes_{n=1}^{k} Y_{\mathbf{r}_{1}}^{(1)}(\tau)\right)_{\mathbf{r}}
$$

Multiple Modular Symmetries

Multiple Modular Symmetries

- $\Gamma_{N} \rightarrow \Gamma_{N}^{A} \times \Gamma_{N}^{B} \times \ldots$
- Invariance Required Individually (Symmetry by Symmetry)
- $W\left(\tau, \psi_{I}\right)=\sum\left(Y_{I_{1} \ldots I_{n}}\left(\tau_{A}\right) Y_{I_{1} \ldots I_{n}}\left(\tau_{B}\right) \ldots \psi_{I_{1}} \ldots \psi_{I_{n}}\right)_{1}$

Multiple Modular Symmetries

- $\Gamma_{N} \rightarrow \Gamma_{N}^{A} \times \Gamma_{N}^{B} \times \ldots$
- Invariance Required Individually (Symmetry by Symmetry)
- $W\left(\tau, \psi_{I}\right)=\sum\left(Y_{I_{1} \ldots I_{n}}\left(\tau_{A}\right) Y_{I_{1} \ldots I_{n}}\left(\tau_{B}\right) \ldots \psi_{I_{1} \ldots \psi_{I_{n}}}\right)_{1}$
- Nothing Changes

Multiple Modular Symmetries

(Spontaneously) Breaking the Multiple Modular Symmetries

- Introduce N-reps

Taken from 1906.02208

Multiple Modular Symmetries

- Example:
- Forbidden

$$
\begin{array}{cccc}
\psi_{1} & \psi_{2} & Y\left(\tau_{A}\right) & Y\left(\tau_{B}\right) \\
\left(\mathbf{3}_{0}, \mathbf{1}_{0}\right) & \left(\mathbf{1}_{0}, \mathbf{1}_{4}\right) & \left(\mathbf{3}_{0},-\right) & \left(-, \mathbf{1}_{4}\right)
\end{array}
$$

Multiple Modular Symmetries

- Example:
- Forbidden

$$
\begin{array}{cccc}
\psi_{1} & \psi_{2} & Y\left(\tau_{A}\right) & Y\left(\tau_{B}\right) \\
\left(\mathbf{3}_{0}, \mathbf{1}_{0}\right) & \left(\mathbf{1}_{0}, \mathbf{1}_{4}\right) & \left(\mathbf{3}_{0},-\right) & \left(-, \mathbf{1}_{4}\right)
\end{array}
$$

- Possible
- Carefully chosen vevs

Multiple Modular Symmetries

- Example:
- Carefully chosen vevs:
- Mimics a single Modular Symmetry Exchanging the Representation
- In Practice: Change Value of τ

$\left\langle\Phi_{A B}\right\rangle \psi_{1} \psi_{2} Y_{\mathbf{1}}^{(0)}\left(\tau_{A}\right) Y_{\mathbf{3}}^{(4)}\left(\tau_{B}\right) \sim$	ψ_{1}	ψ_{2}	$Y\left(\tau_{A}\right)$
$\left(\mathbf{1}_{0}, \mathbf{3}_{0}\right)$	$Y\left(\tau_{B}\right)$		
$\left(\mathbf{1}_{0}, \mathbf{1}_{4}\right)$	$\left(\mathbf{1}_{0},-\right)$	$\left(-, \mathbf{3}_{4}\right)$	

(Fundamental) Domain

(Fundamental) Domain

- No Flavons
(Invariance under Full Γ_{N})
- We Can Send τ to Fundamental Domain via a Modular Action
$Y_{I_{1} \ldots I_{n}}(\tau) \rightarrow Y_{I_{1} \ldots I_{n}}(\gamma \tau)$
- Redefine Couplings: Same Physical Theory!
- Flavons (Bi-Triplets w/ vevs)
- No Longer Have the Freedom
- We Can Take Advantage of the Full Domain of Γ_{N}

Fixed Points $\left(\Gamma_{4}\right)$

Fixed Points $\left(\Gamma_{4}\right)$

$$
\begin{array}{rlrl}
\tau_{C}=\omega: & Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right) & =(0,1,0) \\
Y_{3^{\prime}}^{(4)}\left(\tau_{C}\right) & =(0,0,1) \\
\tau_{A}=\frac{1}{2}+\frac{i}{2}: & Y_{3^{\prime}}^{(6)}\left(\tau_{C}\right)=(1,0,0) \\
\tau_{B}=\frac{3}{2}+\frac{i}{2}: & Y_{3^{\prime}}^{(4)}\left(\tau_{C}\right)=(0,-1,1) \\
\tau_{B}=-\frac{1}{2}+\frac{i}{2}: & Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right)=(1,1-\sqrt{6}, 1+\sqrt{6}) \\
\left.\tau_{C}\right)=(1,1+\sqrt{6}, 1-\sqrt{6})
\end{array}
$$

Fixed Points $\left(\Gamma_{4}\right)$

$$
\tau_{C}=\omega: \quad \begin{array}{ll}
& Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right)=(0,1,0) \\
& Y_{3^{\prime}}^{(4)}\left(\tau_{C}\right)=(0,0,1) \\
Y_{3^{\prime}}^{(6)}\left(\tau_{C}\right)=(1,0,0)
\end{array}
$$

$$
M_{\ell}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)
$$

Fixed Points $\left(\Gamma_{4}\right)$

$$
M_{D}=v_{u}\left(\begin{array}{cc}
0 & b \\
a & b n \\
-a b(2-n)
\end{array}\right) \quad n=1 \pm \sqrt{6}
$$

$$
\begin{array}{rlc}
\tau_{A}=\frac{1}{2}+\frac{i}{2}: & Y_{3^{\prime}}^{(4)}\left(\tau_{C}\right)=(0,-1,1) \\
\tau_{B}=\frac{3}{2}+\frac{i}{2}: & Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right)=(1,1-\sqrt{6}, 1+\sqrt{6}) \\
\tau_{B}=-\frac{1}{2}+\frac{i}{2}: & Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right)=(1,1+\sqrt{6}, 1-\sqrt{6})
\end{array}
$$

Fixed Points (Γ_{4})

Different Moduli

$\tau_{C}=\omega:$	
	$Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right)=(0,1,0)$
$Y_{3^{\prime}}^{(4)}\left(\tau_{C}\right)=(0,0,1)$	
$Y_{3^{\prime}}^{(6)}\left(\tau_{C}\right)$	$=(1,0,0)$
$\tau_{B}+\frac{i}{2}:$	
$\tau_{B}=\frac{3}{2}+\frac{i}{2}:$	
$\tau_{B}=-\frac{1}{2}+\frac{i}{2}:$	

$Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right)=(0,1,0)$

$$
Y_{3^{\prime}}^{(4)}\left(\tau_{C}\right)=(0,0,1)
$$

$$
Y_{3^{\prime}}^{(6)}\left(\tau_{C}\right)=(1,0,0)
$$

$$
Y_{3^{\prime}}^{(4)}\left(\tau_{C}\right)=(0,-1,1)
$$

$$
Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right)=(1,1-\sqrt{6}, 1+\sqrt{6})
$$

$$
Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right)=(1,1+\sqrt{6}, 1-\sqrt{6})
$$

Modular Littlest Seesaw

Modular Littlest Seesaw

How?

Modular Littlest Seesaw (Superpotential)

Field	S_{4}^{A}	S_{4}^{B}	S_{4}^{C}	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$
L	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0
e^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-6
μ^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-4
τ^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-2
N_{A}^{c}	$\mathbf{1}^{\prime}$	$\mathbf{1}$	$\mathbf{1}$	-4	0	0
N_{B}^{c}	$\mathbf{1}$	$\mathbf{1}^{\prime}$	$\mathbf{1}$	0	-2	0
$\Phi_{A C}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0
$\Phi_{B C}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	0	0	0

Modular Littlest Seesaw (Superpotential)

Field	S_{4}^{A}	S_{4}^{B}	S_{4}^{C}	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$
L	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0
e^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-6
μ^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-4
τ^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-2
N_{A}^{c}	$\mathbf{1}^{\prime}$	$\mathbf{1}$	$\mathbf{1}$	-4	0	0
N_{B}^{c}	$\mathbf{1}$	$\mathbf{1}^{\prime}$	$\mathbf{1}$	0	-2	0
$\Phi_{A C}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0
$\Phi_{B C}$	\mathbf{w}					

Fixed Points

$$
\tau_{C}=\omega: \quad \begin{aligned}
& Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right)=(0,1,0) \\
& Y_{3^{\prime}}^{(4)}\left(\tau_{C}\right)=(0,0,1) \\
& Y_{3^{\prime}}^{(6)}\left(\tau_{C}\right)=(1,0,0)
\end{aligned}
$$

$$
M_{\ell}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)
$$

Modular Littlest Seesaw (Superpotential)

Field	S_{4}^{A}	S_{4}^{B}	S_{4}^{C}	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$
L	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0
e^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-6
μ^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-4
τ^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-2
N_{A}^{c}	$\mathbf{1}^{\prime}$	$\mathbf{1}$	$\mathbf{1}$	-4	0	0
N_{B}^{c}	$\mathbf{1}$	$\mathbf{1}^{\prime}$	$\mathbf{1}$	0	-2	0
$\Phi_{A C}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0
$\Phi_{B C}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	0	0	0

$$
\begin{aligned}
w_{\ell}= & \left\{Y_{3^{\prime}}^{(6)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{A}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{B}\right) L e^{c}\right. \\
& +Y_{3^{\prime}}^{(4)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{A}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{B}\right) L \mu^{c} \\
& \left.+Y_{\mathbf{3}^{\prime}}^{(2)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{A}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{B}\right) L \tau^{c}\right\} H_{d} \\
w_{D}= & \left\{Y_{\mathbf{1}}^{(0)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{B}\right) Y_{\mathbf{3}^{\prime}}^{(4)}\left(\tau_{A}\right) L\left\langle\Phi_{A C}\right\rangle N_{A}^{c}\right. \\
& \left.+Y_{\mathbf{1}}^{(0)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{A}\right) Y_{3^{\prime}}^{(2)}\left(\tau_{B}\right) L\left\langle\Phi_{B C}\right\rangle N_{B}^{c}\right\} \frac{H_{u}}{\Lambda}
\end{aligned}
$$

Fixed Points

$$
M_{D}=v_{u}\left(\begin{array}{cc}
0 & b \\
a & b n \\
-a b(2-n)
\end{array}\right) \quad n=1 \pm \sqrt{6}
$$

$$
\begin{aligned}
\tau_{A}=\frac{1}{2}+\frac{i}{2}: & Y_{3^{\prime}}^{(4)}\left(\tau_{C}\right)=(0,-1,1) \\
\tau_{B}=\frac{3}{2}+\frac{i}{2}: & Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right)=(1,1-\sqrt{6}, 1+\sqrt{6}) \\
\tau_{B}=-\frac{1}{2}+\frac{i}{2}: & Y_{3^{\prime}}^{(2)}\left(\tau_{C}\right)=(1,1+\sqrt{6}, 1-\sqrt{6})
\end{aligned}
$$

Modular Littlest Seesaw (Superpotential)

Field	S_{4}^{A}	S_{4}^{B}	S_{4}^{C}	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$
L	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0
e^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-6
μ^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-4
τ^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-2
N_{A}^{c}	$\mathbf{1}^{\prime}$	$\mathbf{1}$	$\mathbf{1}$	-4	0	0
N_{B}^{c}	$\mathbf{1}$	$\mathbf{1}^{\prime}$	$\mathbf{1}$	0	-2	0
$\Phi_{A C}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0
$\Phi_{B C}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	0	0	0

$$
\begin{aligned}
w_{\ell}= & \left\{Y_{\mathbf{3}^{\prime}}^{(6)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{A}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{B}\right) L e^{c}\right. \\
& +Y_{\mathbf{3}^{\prime}}^{(4)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{A}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{B}\right) L \mu^{c} \\
& \left.+Y_{\mathbf{3}^{\prime}}^{(2)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{A}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{B}\right) L \tau^{c}\right\} H_{d} \\
w_{D}= & \left\{Y_{\mathbf{1}}^{(0)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{B}\right) Y_{3^{\prime}}^{(4)}\left(\tau_{A}\right) L\left\langle\Phi_{A C}\right\rangle N_{A}^{c}\right. \\
& \left.+Y_{\mathbf{1}}^{(0)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{A}\right) Y_{\mathbf{3}^{\prime}}^{(2)}\left(\tau_{B}\right) L\left\langle\Phi_{B C}\right\rangle N_{B}^{c}\right\} \frac{H_{u}}{\Lambda} \\
w_{M}= & \frac{1}{2}\left\{Y_{\mathbf{1}}^{(0)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{B}\right) Y_{\mathbf{1}}^{(8)}\left(\tau_{A}\right) N_{A}^{c} N_{A}^{c}\right. \\
& +Y_{\mathbf{1}}^{(0)}\left(\tau_{C}\right) Y_{\mathbf{1}}^{(0)}\left(\tau_{A}\right) Y_{1}^{(4)}\left(\tau_{B}\right) N_{B}^{c} N_{B}^{c} \\
& \left.+Y_{\mathbf{1}}^{(0)}\left(\tau_{C}\right) Y_{1^{\prime}}^{(4)}\left(\tau_{A}\right) Y_{\mathbf{1}^{\prime}}^{(2)}\left(\tau_{B}\right) N_{A}^{c} N_{B}^{c}\right\}
\end{aligned}
$$

Modular Littlest Seesaw

- Dirac Neutrino Mass Matrix

$$
\begin{gathered}
M_{D}=v_{u}\left(\begin{array}{cc}
0 & b \\
a & b n \\
-a & b(2-n)
\end{array}\right) \quad \begin{array}{l}
M_{\ell}=\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right) \\
\\
n=1 \pm \sqrt{6}
\end{array} \quad M_{R}=\operatorname{diag}\left(M_{A}, M_{B}\right)
\end{gathered}
$$

- Diagonal Charged Leptons

Littlest Seesaw (Numerical Results)

$$
n=1+\sqrt{6} \quad n=1-\sqrt{6}
$$

1σ with SK

 atmospheric data

$$
\begin{aligned}
r & =\left(\frac{a^{2}}{M_{A}}\right) /\left(\frac{|b|^{2}}{M_{B}}\right) \\
b & =|b| e^{i \beta}
\end{aligned}
$$

Littlest Seesaw (Numerical Results)

$$
n=1+\sqrt{6}
$$

$$
n=1-\sqrt{6}
$$

1σ without SK atmospheric data


```
if(time) then
    keep talking
else
    Thank you!
end if
```


Charged-Lepton Mass Hierarchies

The Weighton

Weightons

- Modular Symmetries:
- Γ_{N} ~"Traditional" Flavour

Symmetry

- Weights ~ U(1) Symmetry
- (Yukawas need not be singlets)

Weightons

- Modular Symmetries:
- Γ_{N} ~"Traditional" Flavour

Symmetry
Weights $\sim U(1)$ Symmetry
Extra Use?

- (Yukawas need not be singlets)

Weightons

- Modular Symmetries:
- Γ_{N} ~ "Traditional" Flavour

Symmetry
Weights ~ U(1) Symmetry
(Yukawas need not be singlets)

- Weighton:
- Singlet under Flavour
- Non-trivial Weight
- Acts as a FN-type $U(1)$
- U(1) not imposed

Weightons

- Modular Symmetries:
- Γ_{N} ~ "Traditional" Flavour

Symmetry
Weights ~ U(1) Symmetry
(Yukawas need not be singlets)

- Weighton:
- Singlet under Flavour
- Non-trivial Weight
- Acts as a FN-type $U(1)$
- U(1) not imposed
- Can lead to infinite corrections?

Weightons

- Weighton:

$$
\begin{array}{rr}
Y_{\mathbf{r}}^{(k)} & \psi_{1} \ldots \psi_{n} \\
Y_{\mathbf{r}}^{\left(k+k_{\phi}\right)} & \phi \\
Y_{1} \ldots \psi_{n}^{\left(k+2 k_{\phi}\right)} & \phi^{2} \\
\psi_{1} \ldots \psi_{n}
\end{array}
$$

- Singlet under Flavour
- Non-trivial Weight
- Acts as a FN-type U(1)
- U(1) not imposed
- Can lead to infinite corrections?

Weighton Model \#1

- Change the Irrep

Field	$S_{4}^{\prime A}$	$S^{\prime}{ }_{4}^{B}$	$S_{4}^{\prime C}$	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$							
L	1	1	3	0	0	0	Yuk/Mass	$S^{\prime}{ }_{4}^{A}$	$S_{4}^{\prime B}$	$S_{4}^{\prime \prime}$	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$
e^{c}	1	1	1^{\prime}	0	0	0	$Y_{e}\left(\tau_{C}\right)$	1	1	3^{\prime}	0	0	6
μ^{c}	$\hat{1}^{\prime}$	$\hat{1}^{\prime}$	1^{\prime}	0	0	-2	$Y_{\mu}\left(\tau_{C}\right)$	1	1	3^{\prime}	0	0	4
τ^{c}	1	1	1^{\prime}	0	0	-2	$Y_{\tau}\left(\tau_{C}\right)$	1	1	3^{\prime}	0	0	2
N_{A}^{c}	1^{\prime}	1	1	-4	0	0	$Y_{A}\left(\tau_{A}\right)$	3^{\prime}	1	1	4	0	0
N_{B}^{c}	1	1^{\prime}	1	0	-2	0	$Y_{B}\left(\tau_{B}\right)$	1	3^{\prime}	1	0	2	0
$\Phi_{A C}$	3	1	3	0	0	0	$M_{A}\left(\tau_{A}\right)$	1	1	1	8	0	0
$\Phi_{B C}$	1	3	3	0	0	0	$M_{B}\left(\tau_{B}\right)$	1	1	1	0	4	0
ϕ	1	1	1	0	0	-2							

Weighton Model \#1

- Why?

$$
\begin{aligned}
(\hat{\mathbf{1}} \otimes \hat{\mathbf{1}}) & =\mathbf{1}^{\prime} \\
\left(\mathbf{1}^{\prime} \otimes \mathbf{1}^{\prime}\right) & =\mathbf{1} \\
\Rightarrow\left(\hat{\mathbf{1}}^{4}\right) & =\mathbf{r}
\end{aligned}
$$

ϕ^{4} Corrections

S_{4}	S_{4}^{\prime}
$\mathbf{1}$	$\mathbf{1}$ and $\hat{\mathbf{1}}$
$\mathbf{1}^{\prime}$	$\mathbf{1}^{\prime}$ and $\hat{\mathbf{1}^{\prime}}$
$\mathbf{2}$	$\mathbf{2}$ and $\hat{\mathbf{2}}$
$\mathbf{3}$	$\mathbf{3}$ and $\hat{\mathbf{3}}$
$\mathbf{3}^{\prime}$	$\mathbf{3}^{\prime}$ and $\hat{\mathbf{3}^{\prime}}$

Weighton Model \#1

	ϕ^{0}	ϕ^{1}	ϕ^{2}	ϕ^{3}	ϕ^{4}
$L e^{c}$	$\left(\hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{0}^{\prime}\right)$	$\left(\mathbf{1}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{0}, \mathbf{3}_{-2}\right)$	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{-4}\right)$	$\left(\mathbf{1}_{0}, \mathbf{1}_{0}, \mathbf{3}^{\prime}{ }_{-6}\right)$	$\left(\hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{-8}^{\prime}\right)$
$L \mu^{c}$	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{-2}\right)$	$\left(\mathbf{1}_{0}, \mathbf{1}_{0}, \mathbf{3}_{-4}^{\prime}\right)$	$\left(\hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{-6}^{\prime}\right)$	$\left(\mathbf{1}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{0}, \mathbf{3}_{-8}\right)$	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{-10}\right)$
$L \tau^{c}$	$\left(\mathbf{1}_{0}, \mathbf{1}_{0}, \mathbf{3}^{\prime}{ }_{-2}\right)$	$\left(\hat{\mathbf{1}}_{\mathbf{0}}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{-4}^{\prime}\right)$	$\left(\mathbf{1}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{0}, \mathbf{3}_{-6}\right)$	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{-8}\right)$	$\left(\mathbf{1}_{0}, \mathbf{1}_{0}, \mathbf{3}^{\prime}{ }_{-10}\right)$
$L \Phi_{A C} N_{A}^{c}$	$\left(\mathbf{3}^{\prime}{ }_{-4}, \mathbf{1}_{0}, \mathbf{1}_{0}\right)$	$\left(\hat{\mathbf{3}}_{-4}^{\prime}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{-2}\right)$	$\left(\mathbf{3}_{-4}, \mathbf{1}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{-4}\right)$	$\left(\hat{\mathbf{3}}_{-4}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{-6}^{\prime}\right)$	$\left(\mathbf{3}^{\prime}{ }_{-4}, \mathbf{1}_{0}, \mathbf{1}_{-8}\right)$
$L \Phi_{B C} N_{B}^{c}$	$\left(\mathbf{1}_{0}, \mathbf{3}^{\prime}{ }_{-2}, \mathbf{1}_{0}\right)$	$\left(\hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{-2}^{\prime}, \hat{\mathbf{1}}_{-2}\right)$	$\left(\mathbf{1}_{0}^{\prime}, \mathbf{3}_{-2}, \mathbf{1}^{\prime}{ }_{-4}\right)$	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{-2}, \hat{\mathbf{1}}_{-6}^{\prime}\right)$	$\left(\mathbf{1}_{0}, \mathbf{3}^{\prime}{ }_{-2}, \mathbf{1}_{-8}\right)$
$N_{A}^{c} N_{A}^{c}$	$\left(\mathbf{1}_{-8}, \mathbf{1}_{0}, \mathbf{1}_{0}\right)$	$\left(\hat{\mathbf{1}}_{-8}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{-2}\right)$	$\left(\mathbf{1}^{\prime}{ }_{-8}, \mathbf{1}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{-4}\right)$	$\left(\hat{\mathbf{1}}_{-8}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{-6}^{\prime}\right)$	$\left(\mathbf{1}_{-8}, \mathbf{1}_{0}, \mathbf{1}_{-8}\right)$
$N_{B}^{c} N_{B}^{c}$	$\left(\mathbf{1}_{0}, \mathbf{1}_{-4}, \mathbf{1}_{0}\right)$	$\left(\hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{-4}, \hat{\mathbf{1}}_{-2}\right)$	$\left(\mathbf{1}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{-4}, \mathbf{1}^{\prime}{ }_{-4}\right)$	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{-4}^{\prime}, \hat{\mathbf{1}}_{-6}^{\prime}\right)$	$\left(\mathbf{1}_{0}, \mathbf{1}_{-4}, \mathbf{1}_{-8}\right)$
$N_{A}^{c} N_{B}^{c}$	$\left(\mathbf{1}^{\prime}{ }_{-4}, \mathbf{1}^{\prime}{ }_{-2}, \mathbf{1}_{0}\right)$	$\left(\hat{\mathbf{1}}_{-4}^{\prime}, \hat{\mathbf{1}}^{\prime}-2, \hat{\mathbf{1}}_{-2}\right)$	$\left(\mathbf{1}_{-4}, \mathbf{1}_{-2}, \mathbf{1}^{\prime}{ }_{-4}\right)$	$\left(\hat{\mathbf{1}}_{-4}, \hat{\mathbf{1}}_{-2}, \hat{\mathbf{1}}_{-6}^{\prime}\right)$	$\left(\mathbf{1}_{-4}^{\prime}, \mathbf{1}^{\prime}{ }_{-2}, \mathbf{1}_{-8}\right)$
$N_{A}^{c} \Phi_{A C} N_{A}^{c}$	$\left(\mathbf{3}_{-8}, \mathbf{1}_{0}, \mathbf{3}_{0}\right)$	$\left(\hat{\mathbf{3}}_{-8}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{-2}\right)$	$\left(\mathbf{3}^{\prime}{ }_{-8}, \mathbf{1}^{\prime}{ }_{0}, \mathbf{3}^{\prime}{ }_{-4}\right)$	$\left(\hat{\mathbf{3}}_{-8}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{-6}^{\prime}\right)$	$\left(\mathbf{3}_{-8}, \mathbf{1}_{0}, \mathbf{3}_{-8}\right)$
$N_{B}^{c} \Phi_{A C} N_{B}^{c}$	$\left(\mathbf{3}_{0}, \mathbf{1}_{-4}, \mathbf{3}_{0}\right)$	$\left(\hat{\mathbf{3}}_{0}, \hat{\mathbf{1}}_{-4}, \hat{\mathbf{3}}_{-2}\right)$	$\left(\mathbf{3}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{-4}, \mathbf{3}^{\prime}{ }_{-4}\right)$	$\left(\hat{\mathbf{3}}_{0}^{\prime}, \hat{\mathbf{1}}_{-4}^{\prime}, \hat{\mathbf{3}}_{-6}^{\prime}\right)$	$\left(\mathbf{3}_{0}, \mathbf{1}_{-4}, \mathbf{3}_{-8}\right)$
$N_{A}^{c} \Phi_{A C} N_{B}^{c}$	$\left(\mathbf{3}^{\prime}{ }_{-4}, \mathbf{1}^{\prime}{ }_{-2}, \mathbf{3}_{0}\right)$	$\left(\hat{\mathbf{3}}_{-4}^{\prime}, \hat{\mathbf{1}}_{-2}^{\prime}, \hat{\mathbf{3}}_{-2}\right)$	$\left(\mathbf{3}_{-4}, \mathbf{1}_{-2}, \mathbf{3}^{\prime}{ }_{-4}\right)$	$\left(\hat{\mathbf{3}}_{-4}, \hat{\mathbf{1}}_{-2}, \hat{\mathbf{3}}_{-6}^{\prime}\right)$	$\left(\mathbf{3}^{\prime}{ }_{-4}, \mathbf{1}^{\prime}{ }_{-2}, \mathbf{3}_{-8}\right)$
$N_{A}^{c} \Phi_{B C} N_{A}^{c}$	$\left(\mathbf{1}_{-8}, \mathbf{3}_{0}, \mathbf{3}_{0}\right)$	$\left(\hat{\mathbf{1}}_{-8}, \hat{\mathbf{3}}_{0}, \hat{\mathbf{3}}_{-2}\right)$	$\left(\mathbf{1}^{\prime}{ }_{-8}, \mathbf{3}^{\prime}{ }_{0}, \mathbf{3}^{\prime}{ }_{-4}\right)$	$\left(\hat{\mathbf{1}}_{-8}^{\prime}, \hat{\mathbf{3}}_{0}^{\prime}, \hat{\mathbf{3}}_{-6}^{\prime}\right)$	$\left(\mathbf{1}_{-8}, \mathbf{3}_{0}, \mathbf{3}_{-8}\right)$
$N_{B}^{c} \Phi_{B C} N_{B}^{c}$	$\left(\mathbf{1}_{0}, \mathbf{3}_{-4}, \mathbf{3}_{0}\right)$	$\left(\hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{-4}, \hat{\mathbf{3}}_{-2}\right)$	$\left(\mathbf{1}^{\prime}{ }_{0}, \mathbf{3}^{\prime}{ }_{-4}, \mathbf{3}^{\prime}{ }_{-4}\right)$	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{-4}^{\prime}, \hat{\mathbf{3}}_{-6}^{\prime}\right)$	$\left(\mathbf{1}_{0}, \mathbf{3}_{-4}, \mathbf{3}_{-8}\right)$
$N_{A}^{c} \Phi_{B C} N_{B}^{c}$	$\left(\mathbf{1}^{\prime}{ }_{-4}, \mathbf{3}^{\prime}{ }_{-2}, \mathbf{3}_{0}\right)$	$\left(\hat{\mathbf{1}}_{-4}^{\prime}, \hat{\mathbf{3}}_{-2}^{\prime}, \hat{\mathbf{3}}_{-2}\right)$	$\left(\mathbf{1}_{-4}, \mathbf{3}_{-2}, \mathbf{3}^{\prime}{ }_{-4}\right)$	$\left(\hat{\mathbf{1}}_{-4}, \hat{\mathbf{3}}_{-2}, \hat{\mathbf{3}}_{-6}^{\prime}\right)$	$\left(\mathbf{1}^{\prime}{ }_{-4}, \mathbf{3}^{\prime}{ }_{-2}, \mathbf{3}_{-8}\right)$

Weighton Model \#2

- Still, there are corrections...
- Mandatory?

Weighton Model \#2

Field	$S^{\prime}{ }_{4}$	$S^{\prime}{ }_{4}^{B}$	$S^{\prime}{ }_{4}^{C}$	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$
L	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0
e^{c}	$\hat{\mathbf{1}}$	$\hat{\mathbf{1}}$	$\mathbf{1}^{\prime}$	0	0	-12
μ^{c}	$\hat{\mathbf{1}}^{\prime}$	$\hat{\mathbf{1}}^{\prime}$	$\mathbf{1}^{\prime}$	0	0	-6
τ^{c}	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}^{\prime}$	0	0	-2
N_{A}^{c}	$\mathbf{1}^{\prime}$	$\mathbf{1}$	$\mathbf{1}$	-4	0	0
N_{B}^{c}	$\mathbf{1}$	$\mathbf{1}^{\prime}$	$\mathbf{1}$	0	-2	0
$\Phi_{A C}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	0	0	0
$\Phi_{B C}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	0	0	0
ϕ	$\hat{\mathbf{1}}$	$\hat{\mathbf{1}}$	$\hat{\mathbf{1}}$	0	0	+2

Yuk/Mass	$S^{\prime A}$	$S_{4}^{\prime B}$	$S^{\prime C}$	$2 k_{A}$	$2 k_{B}$	$2 k_{C}$
$Y_{e}\left(\tau_{C}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}^{\prime}$	0	0	6
$Y_{\mu}\left(\tau_{C}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}^{\prime}$	0	0	4
$Y_{\tau}\left(\tau_{C}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{3}^{\prime}$	0	0	2
$Y_{A}\left(\tau_{A}\right)$	$\mathbf{3}^{\prime}$	$\mathbf{1}$	$\mathbf{1}$	4	0	0
$Y_{B}\left(\tau_{B}\right)$	$\mathbf{1}$	$\mathbf{3}^{\prime}$	$\mathbf{1}$	0	2	0
$M_{A}\left(\tau_{A}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	8	0	0
$M_{B}\left(\tau_{B}\right)$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	4	0

	ϕ^{0}	ϕ^{1}	ϕ^{2}	ϕ^{3}	
$L e^{c}$	$\left(\hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{-12}^{\prime}\right)$	$\left(\mathbf{1}^{\prime}{ }_{0}, \mathbf{1}_{0}^{\prime}, \mathbf{3}_{-10}\right)$	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{-8}\right)$	$\left(\mathbf{1}_{0}, \mathbf{1}_{0}, 3^{\prime}{ }_{-6}\right)$	$\left(\hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{-4}^{\prime}\right)$
$L \mu^{c}$	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{-6}\right)$	$\left(\mathbf{1}_{0}, \mathbf{1}_{0}, 3_{-4}^{\prime}\right)$	$\left(\hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{-2}^{\prime}\right)$	$\left(\mathbf{1}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{0}, \mathbf{3}_{0}\right)$	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{+2}\right)$
$L \tau^{c}$	$\left(\mathbf{1}_{0}, \mathbf{1}_{0}, 3^{\prime}{ }_{-2}\right)$	$\left(\hat{\mathbf{1}}_{\mathbf{0}}, \hat{\mathbf{1}}_{\mathbf{0}}, \hat{\mathbf{3}}_{0}^{\prime}\right)$	$\left(\mathbf{1}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{0}, \mathbf{3}_{+2}\right)$	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{+4}\right)$	$\left(\mathbf{1}_{0}, \mathbf{1}_{0}, \mathbf{3}^{\prime}+6\right)$

Weighton Model(s)

- Same Littlest Seesaw Structure
- Automatic Hierarchies for the Charged Fermions

	ϕ^{0}	ϕ^{1}	${ }^{1}$	ϕ^{2}	ϕ^{3}	ϕ^{4}
$L e^{c}$	$\begin{gathered} \left(\hat{\mathbf{i}}_{0}, \mathbf{1}_{0}, \hat{\mathbf{3}}_{-12}^{\prime}\right) \\ \left(\hat{\mathbf{i}}_{0}^{\prime}, \hat{\mathbf{i}}_{0}^{\prime}, \hat{\mathbf{3}}_{-6}\right) \end{gathered}$	($\mathbf{1}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{0}, \mathbf{3}^{\mathbf{3}}{ }^{\text {a }}$)		($\left.\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{-8}\right)$	$\left(1_{0}, 1_{0}, 3^{\prime}{ }_{-6}\right)$	$\left(\hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{-4}^{\prime}\right)$
$L \mu^{c}$		$\left(\mathbf{1}_{0}, \mathbf{1}_{0}, 3^{\prime}{ }_{-4}\right)$		$\left(\hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{-2}^{\prime}\right)$	($\mathbf{1}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{0}, \mathbf{3}_{0}$)	$\left(\hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{+2}\right)$
$L \tau^{c}$	$\left(\mathbf{1}_{0}, \mathbf{1}_{0}, \mathbf{3}^{\prime}-2\right)$	($\hat{\mathbf{1}}_{0}, \hat{\mathbf{1}}_{0}, \hat{\mathbf{3}}_{0}^{\prime}$)		$\left(\mathbf{1}^{\prime}{ }_{0}, \mathbf{1}^{\prime}{ }_{0}, \mathbf{3}_{+2}\right)$	$\left(\hat{\mathbf{i}}_{0}^{\prime}, \hat{\mathbf{1}}_{0}^{\prime}, \hat{\mathbf{3}}_{+4}\right)$	$\left(\mathbf{1}_{0}, \mathbf{1}_{0}, \mathbf{3}^{\prime}{ }_{6}\right)$

What about the Quarks?

What about the Quarks?

Trivial!

```
if(time) then
    keep talking
else
    Thank you!
end if
```


What about the Quarks?

SU(5) Extension! (Hopefully)

SU(5) Extension

- Work in Progress
- Goal:
$Y_{u} \sim\left(\begin{array}{cc}\lambda^{8} & \lambda^{5}\end{array} \lambda^{4}\right)\left(\begin{array}{ccc}\lambda^{5} & \lambda^{4} & \lambda^{2} \\ \lambda^{4} & \lambda^{2} & \lambda^{0}\end{array}\right), \quad Y_{d}^{T} \sim\left(\begin{array}{ccc}\lambda^{8} & 0 & 0 \\ \lambda^{7} & \lambda^{6} & 0 \\ \lambda^{7} & \lambda^{5} & \lambda^{3}\end{array}\right), \quad Y_{\ell} \sim\left(\begin{array}{ccc}\lambda^{9} & 0 & 0 \\ -\lambda^{5} & 0 \\ - & - & \lambda^{3}\end{array}\right)$
- Because: $\quad y_{e} \sim \lambda^{8.9}, y_{\mu} \sim \lambda^{5.3}, y_{\tau} \sim \lambda^{3.3}$,

$$
y_{u} \sim \lambda^{8.6}, y_{c} \sim \lambda^{4.4}, \quad y_{t} \sim \lambda^{0.4}
$$

$$
y_{d} \sim \lambda^{8.2}, y_{s} \sim \lambda^{6.2}, \quad y_{b} \sim \lambda^{3.4}
$$

$$
\theta_{12} \sim \lambda^{1}, \theta_{23} \sim \lambda^{2.3}, \theta_{13} \sim \lambda^{3.9} .
$$

SU(5) Extension

- Work in Progress
- Goal:
$Y_{u} \sim\left(\begin{array}{cc}\lambda^{8} & \lambda^{5}\end{array} \lambda^{4}\right)\left(\begin{array}{ccc}\lambda^{5} \lambda^{4} & \lambda^{2} \\ \lambda^{4} & \lambda^{2} & \lambda^{0}\end{array}\right), \quad Y_{d}^{T} \sim\left(\begin{array}{cc}\lambda^{8} & 0 \\ \lambda^{7} & 0 \\ \lambda^{6} & 0 \\ \lambda^{7} & \lambda^{5}\end{array} \lambda^{3}\right), \quad Y_{\ell} \sim\left(\begin{array}{ccc}\lambda^{9} & 0 & 0 \\ -\lambda^{5} & 0 \\ - & - & \lambda^{3}\end{array}\right)$
- Two Weightons

$$
Y_{u} \sim\left(\begin{array}{ccc}
\phi_{T}^{4} & \phi_{T}^{3} & \phi_{T}^{2} \\
& \phi_{T}^{2} & \phi_{T} \\
& 1
\end{array}\right) \quad Y_{d} \sim\left(\begin{array}{ccc}
\phi_{F}^{3} & \phi_{F}^{2} \phi_{T} & \phi_{F} \phi_{T}^{2} \\
0 & \phi_{F}^{2} & \phi_{F} \phi_{T} \\
0 & 0 & \phi_{F}
\end{array}\right)
$$

SU(5) Extension

- Work in Progress
- Goal:
$Y_{u} \sim\left(\begin{array}{cc}\lambda^{8} & \lambda^{5}\end{array} \lambda^{4}\right)\left(\begin{array}{ccc}\lambda^{5} & \lambda^{4} & \lambda^{2} \\ \lambda^{4} & \lambda^{2} & \lambda^{0}\end{array}\right), \quad Y_{d}^{T} \sim\left(\begin{array}{ccc}\lambda^{8} & 0 & 0 \\ \lambda^{7} & \lambda^{6} & 0 \\ \lambda^{7} & \lambda^{5} & \lambda^{3}\end{array}\right), \quad Y_{\ell} \sim\left(\begin{array}{ccc}\lambda^{9} & 0 & 0 \\ -\lambda^{5} & 0 \\ - & - & \lambda^{3}\end{array}\right)$
- "Automatic" Quark Masses and Mixings (Order 1 coefficients)

SU(5) Extension

- Leptonic Sector:
- Lower-Triangular $\quad Y_{\ell}=\left(\begin{array}{ccc}y_{\mu e} \phi_{F}^{2} \phi_{T} & y_{\mu \mu} \phi_{F}^{2} & 0 \\ y_{\tau e} \phi_{F} \phi_{T}^{2} & y_{\tau \mu} \phi_{F} \phi_{T} & y_{\tau \tau} \phi_{F}\end{array}\right)$
- "Same" Neutrino Structure

$$
Y_{D}=\phi_{T}\left(\begin{array}{cc}
0 & b \\
a & b(1 \pm \sqrt{6}) \\
-a & b(1 \mp \sqrt{6})
\end{array}\right) \quad M_{M}=\left(\begin{array}{cc}
M_{A} & 0 \\
0 & M_{B}
\end{array}\right)
$$

SU(5) Extension

- Small Corrections to Results

