

Littlest Modular Seesaw

Ivo de Medeiros Varzielas^a, Steve King^b, Miguel Levy^a

^aCFTP/IST ^bSOTON

Outline

- Littlest Seesaw
 - Numerical Results
- Modular Framework
- Multiple Modular Symmetries
- Domain(s)
 - Fundamental vs. Full Domain
 - Fixed Points
- Littlest Modular Seesaw

- Charged-Lepton Hierarchies
 - The Weighton
- Quarks?
 - SU(5) Extension: WIP

Littlest Seesaw (disclaimers)

- Left-Right Convention
- Only *b* is complex
- Type-I Seesaw
- (Effective) 2 RH Neutrino Framework
- Basis: $(a \otimes b)_1 = (a_1b_1 + a_2b_3 + a_3b_2)$
- Bottom-Up

Dirac Neutrino Mass Matrix

$$M_D = v_u \begin{pmatrix} 0 & b \\ a & b n \\ -a b (2 - n) \end{pmatrix}$$

Diagonal Charged Leptons

$$M_{\ell} = \operatorname{diag}\left(m_e, m_{\mu}, m_{\tau}\right)$$

Diagonal RH Neutrinos

$$M_R = \operatorname{diag}\left(M_A, M_B\right)$$

Effective Neutrino Mass Matrix

$$m_{\nu} = M_{D} \cdot M_{R}^{-1} \cdot M_{D}^{T} = v_{u}^{2} \begin{pmatrix} \frac{b^{2}}{M_{B}} & \frac{b^{2}n}{M_{B}} & \frac{b^{2}(2-n)}{M_{B}} \\ & \frac{a^{2}}{M_{A}} + \frac{b^{2}n^{2}}{M_{B}} & -\frac{a^{2}}{M_{A}} + \frac{b^{2}n(2-n)}{M_{B}} \\ & & \frac{a^{2}}{M_{A}} + \frac{b^{2}(2-n)^{2}}{M_{B}} \end{pmatrix}$$

Analytics
$$\mathcal{U}_{
u}^T \cdot m_{
u} \cdot \mathcal{U}_{
u} = \mathrm{diag}(0, |m_1|, |m_2|)$$

$$\mathcal{U}_{\nu} \equiv (\mathcal{U}_{\text{TBM}} \, \mathcal{U}_{\alpha} \, P_{\nu}) = \begin{pmatrix} -\sqrt{\frac{2}{3}} & \frac{c_{\alpha}}{\sqrt{3}} & e^{i\gamma} \frac{s_{\alpha}}{\sqrt{3}} \\ \sqrt{\frac{1}{6}} & \frac{c_{\alpha}}{\sqrt{3}} - e^{-i\gamma} \frac{s_{\alpha}}{\sqrt{2}} & \frac{c_{\alpha}}{\sqrt{2}} + e^{i\gamma} \frac{s_{\alpha}}{\sqrt{3}} \\ \sqrt{\frac{1}{6}} & \frac{c_{\alpha}}{\sqrt{3}} + e^{-i\gamma} \frac{s_{\alpha}}{\sqrt{2}} - \frac{c_{\alpha}}{\sqrt{2}} + e^{i\gamma} \frac{s_{\alpha}}{\sqrt{3}} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\phi_{2}} & 0 \\ 0 & 0 & e^{i\phi_{3}} \end{pmatrix}$$

Littlest Seesaw (Numerical Results)

$$n = 1 + \sqrt{6}$$

$$n = 1 - \sqrt{6}$$

1σ with SK atmospheric data

$$r = \left(\frac{a^2}{M_A}\right) / \left(\frac{|b|^2}{M_B}\right)$$

$$b = |b|e^{i\beta}$$

See also 1910.03460

Littlest Seesaw (Numerical Results)

$$n = 1 + \sqrt{6}$$

$$n = 1 - \sqrt{6}$$

1σ without SK atmospheric data

$$n=1\pm\sqrt{6}$$

$$M_D = v_u \begin{pmatrix} 0 & b \\ a & b n \\ -a b (2 - n) \end{pmatrix}$$

$$M_{\ell} = \operatorname{diag}\left(m_e, m_{\mu}, m_{\tau}\right)$$

$$M_R = \operatorname{diag}\left(M_A, M_B\right)$$

Works (as expected)

Modular Action

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : \tau \to \gamma \tau = \frac{a\tau + b}{c\tau + d}$$

Weighted Representations

$$\psi \sim (\mathbf{r}_i, k_i)$$

Transformation

$$\psi_i \to (c\tau + d)^{-k_i} \rho_{ij} (\gamma) \psi_j$$

Modular Action

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : \tau \to \gamma \tau = \frac{a\tau + b}{c\tau + d}$$

Weighted Representations

Transformation

$$\psi \sim (\mathbf{r}_i, k_i)$$
 Modular Action $\psi_i \rightarrow (c\tau + d)^{-k_i} \rho_{ij} (\gamma) \psi_j$

Modular Action

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma : \tau \to \gamma \tau = \frac{a\tau + b}{c\tau + d}$$

Weighted Representations

Transformation

$$\psi \sim (\mathbf{r}_i, k_i)$$
 Select Γ_N

$$\psi_i \to (c\tau + d)^{-k_i} \rho_{ij} (\gamma) \psi_j$$

$$W\left(\tau,\psi_{I}\right) = \sum \left(Y_{I_{1}...I_{n}}\left(\tau\right)\psi_{I_{1}}...\psi_{I_{n}}\right)_{\mathbf{1}}$$

$$W\left(\tau,\psi_{I}\right) = \sum \left(Y_{I_{1}...I_{n}}\left(\tau\right)\psi_{I_{1}}...\psi_{I_{n}}\right)_{\mathbf{1}}$$
Invariant

Superpotential

(Business as usual)

$$W\left(\tau,\psi_{I}\right)=\sum\left(Y_{I_{1}...I_{n}}\left(\tau\right)\psi_{I_{1}}...\psi_{I_{n}}\right)_{\mathbf{1}}$$
Not-Invariant

Cancels Out Transformation

$$Y_{I_1...I_n}(\tau) \to Y_{I_1...I_n}(\gamma \tau) = (c\tau + d)^{k_Y} \rho(\gamma) Y_{I_1...I_n}(\tau)$$

• If
$$k_Y = k_{I_1} + \cdots + k_{I_n}$$
 & $\rho \otimes \rho_{I_1} \otimes \cdots \otimes \rho_{I_n} \supset \mathbf{1}$

Cancels Out Transformation

$$Y_{I_1...I_n}(\tau) \to Y_{I_1...I_n}(\gamma \tau) = (c\tau + d)^{k_Y} \rho(\gamma) Y_{I_1...I_n}(\tau)$$

• If
$$k_Y = k_{I_1} + \cdots + k_{I_n}$$
 & $\rho \otimes \rho_{I_1} \otimes \cdots \otimes \rho_{I_n} \supset \mathbf{1}$

Modular Forms!

- Modular Forms (Yukawas):
 - "Weighted-representations" (-ish)
 - Representations (and weights) constrained by Γ_N
 - Specific functions of τ

$$-Y_{\mathbf{r}}^{(k)}(\tau) = \left(\bigotimes_{n=1}^{k} Y_{\mathbf{r_1}}^{(1)}(\tau)\right)_{\mathbf{r}}$$

•
$$\Gamma_N \to \Gamma_N^A \times \Gamma_N^B \times \dots$$

Invariance Required Individually (Symmetry by Symmetry)

•
$$W\left(\tau,\psi_{I}\right) = \sum \left(Y_{I_{1}...I_{n}}\left(\tau_{A}\right)Y_{I_{1}...I_{n}}\left(\tau_{B}\right)...\psi_{I_{1}}...\psi_{I_{n}}\right)_{\mathbf{1}}$$

•
$$\Gamma_N \to \Gamma_N^A \times \Gamma_N^B \times \dots$$

Invariance Required Individually (Symmetry by Symmetry)

•
$$W\left(\tau,\psi_{I}\right) = \sum \left(Y_{I_{1}...I_{n}}\left(\tau_{A}\right)Y_{I_{1}...I_{n}}\left(\tau_{B}\right)...\psi_{I_{1}}...\psi_{I_{n}}\right)_{\mathbf{1}}$$

Nothing Changes

• (Spontaneously) Breaking the Multiple Modular Symmetries

• Introduce *N*-reps

vevs

"Diagonal" Subgroup

• Example:

Forbidden

$$\psi_1$$
 ψ_2 $Y(\tau_A)$ $Y(\tau_B)$ $(\mathbf{3}_0, \mathbf{1}_0)$ $(\mathbf{1}_0, \mathbf{1}_4)$ $(\mathbf{3}_0, -)$ $(-, \mathbf{1}_4)$

• Example:

Forbidden

$$\psi_1$$
 ψ_2 $Y(\tau_A)$ $Y(\tau_B)$ $(\mathbf{3}_0, \mathbf{1}_0)$ $(\mathbf{1}_0, \mathbf{1}_4)$ $(\mathbf{3}_0, -)$ $(-, \mathbf{1}_4)$

Possible

$$\psi_1$$
 Φ_{AB} ψ_2 $Y(\tau_A)$ $Y(\tau_B)$ $(\mathbf{3}_0,\mathbf{1}_0)$ $(\mathbf{3}_0,\mathbf{3}_0)$ $(\mathbf{1}_0,\mathbf{1}_4)$ $(\mathbf{1}_0,-)$ $(-,\mathbf{3}_4)$

 Carefully chosen vevs

$$\langle \Phi_{AB} \rangle \ \psi_1 \ \psi_2 \ Y_{\mathbf{1}}^{(0)}(\tau_A) \ Y_{\mathbf{3}}^{(4)}(\tau_B)$$

Example:

- Carefully chosen vevs:
 - Mimics a single Modular Symmetry Exchanging the Representation
 - In Practice: Change Value of τ

$$\langle \Phi_{AB} \rangle \ \psi_1 \ \psi_2 \ Y_{\mathbf{1}}^{(0)}(\tau_A) \ Y_{\mathbf{3}}^{(4)}(\tau_B) \sim \frac{\psi_1}{(\mathbf{1}_0, \mathbf{3}_0)} \ (\mathbf{1}_0, \mathbf{1}_4) \ (\mathbf{1}_0, -) \ (-, \mathbf{3}_4)$$

(Fundamental) Domain

(Fundamental) Domain

- No Flavons
 (Invariance under Full Γ_N)
 - We Can Send τ to
 Fundamental Domain via a
 Modular Action

$$Y_{I_1...I_n}(\tau) \to Y_{I_1...I_n}(\gamma \tau)$$

Redefine Couplings:
 Same Physical Theory!

- Flavons
 (Bi-Triplets w/ vevs)
 - No Longer Have the Freedom
 - We Can Take Advantage of the Full Domain of Γ_N

$$\tau_C = \omega$$
:

$$Y_{\mathbf{3}'}^{(2)}(\tau_C) = (0, 1, 0)$$

$$Y_{\mathbf{3'}}^{(4)}(\tau_C) = (0, 0, 1)$$

$$Y_{3'}^{(6)}(\tau_C) = (1,0,0)$$

$$\tau_A = \frac{1}{2} + \frac{i}{2} :$$

$$Y_{\mathbf{3'}}^{(4)}(\tau_C) = (0, -1, 1)$$

$$\tau_B = \frac{3}{2} + \frac{i}{2} :$$

$$Y_{\mathbf{3'}}^{(2)}(\tau_C) = (1, 1 - \sqrt{6}, 1 + \sqrt{6})$$

$$au_B = -rac{1}{2} + rac{i}{2}$$

$$\tau_B = -\frac{1}{2} + \frac{i}{2} : Y_{3'}^{(2)}(\tau_C) = (1, 1 + \sqrt{6}, 1 - \sqrt{6})$$

$$Y_{\mathbf{3'}}^{(2)}(\tau_C) = (0, 1, 0)$$

$$T_C = \omega : Y_{\mathbf{3'}}^{(4)}(\tau_C) = (0, 0, 1)$$

$$Y_{\mathbf{3'}}^{(6)}(\tau_C) = (1, 0, 0)$$

$$M_{\ell} = \operatorname{diag}\left(m_e, m_{\mu}, m_{\tau}\right)$$

$$M_D = v_u \begin{pmatrix} 0 & b \\ a & b n \\ -a b (2 - n) \end{pmatrix} \qquad n = 1 \pm \sqrt{6}$$

$$\tau_A = \frac{1}{2} + \frac{i}{2} : Y_{3'}^{(4)}(\tau_C) = (0, -1, 1)$$

$$\tau_B = \frac{3}{2} + \frac{i}{2} : Y_{3'}^{(2)}(\tau_C) = (1, 1 - \sqrt{6}, 1 + \sqrt{6})$$

$$\tau_B = \frac{3}{2} + \frac{i}{2} : \qquad Y_{\mathbf{3'}}^{(2)}(\tau_C) = (1, 1 - \sqrt{6}, 1 + \sqrt{6})$$

$$\tau_B = -\frac{1}{2} + \frac{i}{2} : \qquad Y_{\mathbf{3'}}^{(2)}(\tau_C) = (1, 1 + \sqrt{6}, 1 - \sqrt{6})$$

Fixed Points (Γ_4)

Different Moduli

$$au_C = \omega$$
:

$$\tau_A = \frac{1}{2} + \frac{i}{2} :$$

$$\tau_B = \frac{3}{2} + \frac{\imath}{2}$$

$$Y_{\mathbf{3'}}^{(2)}(\tau_C) = (0, 1, 0)$$

$$Y_{\mathbf{3'}}^{(4)}(\tau_C) = (0, 0, 1)$$

$$Y_{\mathbf{3'}}^{(6)}(\tau_C) = (1, 0, 0)$$

$$Y_{\mathbf{3'}}^{(4)}(\tau_C) = (0, -1, 1)$$

$$Y_{\mathbf{3'}}^{(2)}(\tau_C) = (1, 1 - \sqrt{6}, 1 + \sqrt{6})$$

$$Y_{\mathbf{3'}}^{(2)}(\tau_C) = (1, 1 + \sqrt{6}, 1 - \sqrt{6})$$

Modular Littlest Seesaw

Modular Littlest Seesaw

How?

Modular Littlest Seesaw (Superpotential)

Field	S_4^A	S_4^B	S_4^C	$2k_A$	$2k_B$	$2k_C$
L	1	1	3	0	0	0
e^c	1	1	1 '	0	0	-6
μ^c	1	1	1 '	0	0	-4
$ au^c$	1	1	1 '	0	0	-2
N_A^c	1 '	1	1	-4	0	0
N_B^c	1	1 '	1	0	-2	0
Φ_{AC}	3	1	3	0	0	0
Φ_{BC}	1	3	3	0	0	0

Modular Littlest Seesaw (Superpotential)

Field	S_4^A	S_4^B	S_4^C	$2k_A$	$2k_B$	$2k_C$
L	1	1	3	0	0	0
e^c	1	1	1 '	0	0	-6
μ^c	1	1	1 '	0	0	-4
$ au^c$	1	1	1 '	0	0	-2
N_A^c	1 '	1	1	-4	0	0
N_B^c	1	1 '	1	0	-2	0
Φ_{AC}	3	1	3	0	0	0
Φ_{BC}	1	3	3	0	0	0

$$w_{\ell} = \left\{ Y_{\mathbf{3'}}^{(6)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{1}}^{(0)}(\tau_{B}) Le^{c} + Y_{\mathbf{3'}}^{(4)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{1}}^{(0)}(\tau_{B}) L\mu^{c} + Y_{\mathbf{3'}}^{(2)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{1}}^{(0)}(\tau_{B}) L\tau^{c} \right\} H_{d}$$

Fixed Points

$$Y_{\mathbf{3'}}^{(2)}(\tau_C) = (0, 1, 0)$$

 $\tau_C = \omega$: $Y_{\mathbf{3'}}^{(4)}(\tau_C) = (0, 0, 1)$
 $Y_{\mathbf{3'}}^{(6)}(\tau_C) = (1, 0, 0)$

$$M_{\ell} = \operatorname{diag}\left(m_e, m_{\mu}, m_{\tau}\right)$$

Modular Littlest Seesaw (Superpotential)

Field	S_4^A	S_4^B	S_4^C	$2k_A$	$2k_B$	$2k_C$
L	1	1	3	0	0	0
e^c	1	1	1 '	0	0	-6
μ^c	1	1	1 '	0	0	-4
$ au^c$	1	1	1 '	0	0	-2
N_A^c	1 '	1	1	-4	0	0
N_B^c	1	1 '	1	0	-2	0
Φ_{AC}	3	1	3	0	0	0
Φ_{BC}	1	3	3	0	0	0

$$w_{\ell} = \left\{ Y_{\mathbf{3'}}^{(6)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{1}}^{(0)}(\tau_{B}) Le^{c} + Y_{\mathbf{3'}}^{(4)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{1}}^{(0)}(\tau_{B}) L\mu^{c} + Y_{\mathbf{3'}}^{(2)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{1}}^{(0)}(\tau_{B}) L\tau^{c} \right\} H_{d}$$

$$w_{D} = \left\{ Y_{\mathbf{1}}^{(0)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{B})Y_{\mathbf{3'}}^{(4)}(\tau_{A}) L \langle \Phi_{AC} \rangle N_{A}^{c} + Y_{\mathbf{1}}^{(0)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{3'}}^{(2)}(\tau_{B}) L \langle \Phi_{BC} \rangle N_{B}^{c} \right\} \frac{H_{u}}{\Lambda}$$

Fixed Points

$$M_D = v_u \begin{pmatrix} 0 & b \\ a & b n \\ -a b (2 - n) \end{pmatrix} \qquad n = 1 \pm \sqrt{6}$$

$$\tau_A = \frac{1}{2} + \frac{i}{2} : Y_{3'}^{(4)}(\tau_C) = (0, -1, 1)$$

$$\tau_B = \frac{3}{2} + \frac{i}{2} : Y_{3'}^{(2)}(\tau_C) = (1, 1 - \sqrt{6}, 1 + \sqrt{6})$$

$$\tau_B = \frac{3}{2} + \frac{i}{2} : Y_{\mathbf{3'}}^{(2)}(\tau_C) = (1, 1 - \sqrt{6}, 1 + \sqrt{6})$$

$$\tau_B = -\frac{1}{2} + \frac{i}{2} : Y_{\mathbf{3'}}^{(2)}(\tau_C) = (1, 1 + \sqrt{6}, 1 - \sqrt{6})$$

Modular Littlest Seesaw (Superpotential)

Field	S_4^A	S_4^B	S_4^C	$2k_A$	$2k_B$	$2k_C$
L	1	1	3	0	0	0
e^c	1	1	1 '	0	0	-6
μ^c	1	1	1 '	0	0	-4
$ au^c$	1	1	1 '	0	0	-2
N_A^c	1 '	1	1	-4	0	0
N_B^c	1	1 '	1	0	-2	0
Φ_{AC}	3	1	3	0	0	0
Φ_{BC}	1	3	3	0	0	0

$$w_{\ell} = \left\{ Y_{\mathbf{3'}}^{(6)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{1}}^{(0)}(\tau_{B}) L e^{c} + Y_{\mathbf{3'}}^{(4)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{1}}^{(0)}(\tau_{B}) L \mu^{c} + Y_{\mathbf{3'}}^{(2)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{1}}^{(0)}(\tau_{B}) L \tau^{c} \right\} H_{d}$$

$$w_{D} = \left\{ Y_{\mathbf{1}}^{(0)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{B})Y_{\mathbf{3'}}^{(4)}(\tau_{A}) L \langle \Phi_{AC} \rangle N_{A}^{c} + Y_{\mathbf{1}}^{(0)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{3'}}^{(2)}(\tau_{B}) L \langle \Phi_{BC} \rangle N_{B}^{c} \right\} \frac{H_{u}}{\Lambda}$$

$$w_{M} = \frac{1}{2} \left\{ Y_{\mathbf{1}}^{(0)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{B})Y_{\mathbf{1}}^{(8)}(\tau_{A}) N_{A}^{c}N_{A}^{c} + Y_{\mathbf{1}}^{(0)}(\tau_{C})Y_{\mathbf{1}}^{(0)}(\tau_{A})Y_{\mathbf{1'}}^{(4)}(\tau_{B}) N_{B}^{c}N_{B}^{c} + Y_{\mathbf{1}}^{(0)}(\tau_{C})Y_{\mathbf{1'}}^{(4)}(\tau_{A})Y_{\mathbf{1'}}^{(2)}(\tau_{B}) N_{A}^{c}N_{B}^{c} \right\}$$

Modular Littlest Seesaw

Dirac Neutrino Mass Matrix

$$M_D = v_u \begin{pmatrix} 0 & b \\ a & b n \\ -a & b (2-n) \end{pmatrix}$$

$$n = 1 \pm \sqrt{6}$$

Diagonal Charged Leptons

$$M_{\ell} = \operatorname{diag}\left(m_e, m_{\mu}, m_{\tau}\right)$$

Diagonal RH Neutrinos

$$M_R = \operatorname{diag}\left(M_A, M_B\right)$$

(Numerical Results)

1σ with SK atmospheric data

$$n = 1 + \sqrt{6}$$

$$n = 1 - \sqrt{6}$$

$$r = \left(\frac{a^2}{M_A}\right) / \left(\frac{|b|^2}{M_B}\right)$$

$$b = |b|e^{i\beta}$$

Littlest Seesaw (Numerical Results)

$$n = 1 + \sqrt{6}$$

$$n = 1 - \sqrt{6}$$

1σ without SK atmospheric data


```
if(time) then
   keep talking
else
   Thank you!
end if
```


Charged-Lepton Mass Hierarchies The Weighton

- Modular Symmetries:
 - Γ_N ~ "Traditional" Flavour Symmetry
 - Weights ~ U(1) Symmetry
 - Yukawas need not be singlets)

Extra Use?

- Modular Symmetries:
 - Γ_N ~ "Traditional" Flavour
 Symmetry
 - Weights ~ *U(1)* Symmetry
 - (Yukawas need not be singlets)

- Modular Symmetries:
 - Γ_N ~ "Traditional" Flavour
 Symmetry
 - Weights ~ *U(1)* Symmetry
 - (Yukawas need not be singlets)

• Weighton:

- Singlet under Flavour
- Non-trivial Weight
- Acts as a FN-type U(1)
- U(1) not imposed

- Modular Symmetries:
 - Γ_N ~ "Traditional" Flavour
 Symmetry
 - Weights ~ *U(1)* Symmetry
 - (Yukawas need not be singlets)

Weighton:

- Singlet under Flavour
- Non-trivial Weight
- Acts as a FN-type U(1)
- *U(1)* not imposed
- Can lead to infinite corrections?

$$Y_{\mathbf{r}}^{(k)}$$
 $\psi_1 \dots \psi_n$
 $Y_{\mathbf{r}}^{(k+k_{\phi})}$ ϕ $\psi_1 \dots \psi_n$
 $Y_{\mathbf{r}}^{(k+2k_{\phi})}$ ϕ^2 $\psi_1 \dots \psi_n$
 \dots

Weighton:

- Singlet under Flavour
- Non-trivial Weight
- Acts as a FN-type U(1)
- U(1) not imposed
- Can lead to infinite corrections?

Change the Irrep

Field	S'_4^A	S'_4^B	S'_4^C	$2k_A$	$2k_B$	$2k_C$							
L	1	1	3	0	0	0	Yuk/Mass	S'_4^A	S'_4^B	S'_4^C	$2k_A$	$2k_B$	2k
e^c	î	î	1 '	0	0	0	$Y_e(au_C)$	1	1	3 '	0	0	6
μ^c	$\hat{1}'$	$\mathbf{\hat{1}}'$	1 '	0	0	-2	$Y_{\mu}(au_C)$	1	1	3 '	0	0	4
$ au^c$	1	1	1 '	0	0	-2	$Y_{ au}(au_C)$	1	1	3 '	0	0	2
N_A^c	1 '	1	1	-4	0	0	$Y_A(au_A)$	3 '	1	1	4	0	0
N_B^c	1	1 '	1	0	-2	0	$Y_B(au_B)$	1	3 '	1	0	2	0
Φ_{AC}	3	1	3	0	0	0	$M_A(au_A)$	1	1	1	8	0	0
Φ_{BC}	1	3	3	0	0	0	$M_B(au_B)$	1	1	1	0	4	0
ϕ	î	î	î	0	0	-2		•					

Why?

$$egin{array}{ll} \left(\mathbf{\hat{1}} \otimes \mathbf{\hat{1}}
ight) &= \mathbf{1}' \ \left(\mathbf{1}' \otimes \mathbf{1}'
ight) &= \mathbf{1} \ \Rightarrow \left(\mathbf{\hat{1}}^4
ight) &= \mathbf{1} \end{array}$$

φ⁴ Corrections

S_4	S_4'
1	${f 1}$ and ${f \hat 1}$
1′	$1'$ and $\hat{1}'$
2	${f 2}$ and ${f \hat 2}$
3	$\bf 3$ and $\bf \hat 3$
3′	$3'$ and $\hat{3}'$

	ϕ^0	ϕ^1	ϕ^2	ϕ^3	ϕ^4
Le^c	$\left(\mathbf{\hat{1}}_{0},\mathbf{\hat{1}}_{0},\mathbf{\hat{3}}_{0}^{\prime} ight)$	$({\bf 1'}_0,{\bf 1'}_0,{\bf 3}_{-2})$	$ig(\hat{f 1}_0', \hat{f 1}_0', \hat{f 3}_{-4} ig)$	$({f 1}_0,{f 1}_0,{f 3'}_{-6})$	$ig(\hat{f 1}_0, \hat{f 1}_0, \hat{f 3}'_{-8} ig)$
$L\mu^c$	$ig({f \hat{1}}_0', {f \hat{1}}_0', {f \hat{3}}_{-2} ig)$	$({\bf 1}_0,{\bf 1}_0,{\bf 3}_{-4}')$	$\left(\mathbf{\hat{1}}_{0},\mathbf{\hat{1}}_{0},,\mathbf{\hat{3}}_{-6}^{\prime}\right)$	$({\bf 1'}_0,{\bf 1'}_0,{\bf 3}_{-8})$	$ig({f \hat{1}}_0', {f \hat{1}}_0', {f \hat{3}}_{-10} ig)$
$L au^c$	$({\bf 1}_0,{\bf 1}_0,{\bf 3'}_{-2})$	$\left({{{\hat {f 1}}_0},{{\hat {f 1}}_0},{{\hat {f 3}}'_{ - 4}}} \right)$	$({\bf 1'}_0,{\bf 1'}_0,{\bf 3}_{-6})$	$\left(\mathbf{\hat{1}}_{0}^{\prime},\mathbf{\hat{1}}_{0}^{\prime},\mathbf{\hat{3}}_{-8} ight)$	$({\bf 1}_0,{\bf 1}_0,{\bf 3'}_{-10})$
$L\Phi_{AC}N_A^c$	$({f 3'}_{-4},{f 1}_0,{f 1}_0)$	$\left({f \hat{3}}_{-4}',{f \hat{1}}_{0},{f \hat{1}}_{-2} ight)$	$(3_{-4},\mathbf{1'}_{0},\mathbf{1'}_{-4})$	$\left({f \hat{3}}_{-4},{f \hat{1}}_{0}^{\prime },{f \hat{1}}_{-6}^{\prime } ight)$	$(\mathbf{3'}_{-4},1_{0},1_{-8})$
$L\Phi_{BC}N_B^c$	$({f 1}_0,{f 3'}_{-2},{f 1}_0)$	$\left({{{\hat {f 1}}_0},{{\hat {f 3}}'_{ - 2}},{{\hat {f 1}}_{ - 2}} ight)$	$({\bf 1'}_0,{\bf 3}_{-2},{\bf 1'}_{-4})$	$\left({\hat{f 1}}_0',{\hat{f 3}}_{-2},{\hat{f 1}}_{-6}' ight)$	$({\bf 1}_0,{\bf 3'}_{-2},{\bf 1}_{-8})$
$N_A^c N_A^c$	$(1_{-8},1_{0},1_{0})$	$\left({{{\hat {f 1}}}_{ - 8}},{{{\hat {f 1}}}_0},{{{\hat {f 1}}}_{ - 2}} ight)$	$({\bf 1'}_{-8},{\bf 1'}_0,{\bf 1'}_{-4})$	$\left({\hat{f 1}}_{-8}',{\hat{f 1}}_{0}',{\hat{f 1}}_{-6}' ight)$	$(1_{-8},1_{0},1_{-8})$
$N_B^c N_B^c$	$({f 1}_0,{f 1}_{-4},{f 1}_0)$	$({f \hat{1}}_0,{f \hat{1}}_{-4},{f \hat{1}}_{-2})$	$({\bf 1'}_0,{\bf 1'}_{-4},{\bf 1'}_{-4})$	$\left({\hat{f 1}}_{0}^{\prime},{\hat{f 1}}_{-4}^{\prime},{\hat{f 1}}_{-6}^{\prime} ight)$	$(1_0,1_{-4},1_{-8})$
$N_A^c N_B^c$	$({\bf 1'}_{-4},{\bf 1'}_{-2},{\bf 1}_0)$	$\left({f \hat{1}}_{-4}',{f \hat{1}}_{-2}',{f \hat{1}}_{-2} ight)$	$(1_{-4},1_{-2},\mathbf{1'}_{-4})$	$\left({{{\hat {f 1}}}_{ - 4}},{{{\hat {f 1}}}_{ - 2}},{{{\hat {f 1}}'}_{ - 6}} ight)$	$({\bf 1'}_{-4},{\bf 1'}_{-2},{\bf 1}_{-8})$
$N_A^c \Phi_{AC} N_A^c$	$(3_{-8},1_{0},3_{0})$	$\left({f \hat{3}}_{-8},{f \hat{1}}_{0},{f \hat{3}}_{-2} ight)$	$({\bf 3'}_{-8},{\bf 1'}_0,{\bf 3'}_{-4})$	$\left({f \hat{3}}_{-8}',{f \hat{1}}_{0}',{f \hat{3}}_{-6}' ight)$	$(3_{-8},1_{0},3_{-8})$
$N_B^c \Phi_{AC} N_B^c$	$(3_0,1_{-4},3_0)$	$\left({f \hat{3}}_{0},{f \hat{1}}_{-4},{f \hat{3}}_{-2} ight)$	$(\mathbf{3'}_0,\mathbf{1'}_{-4},\mathbf{3'}_{-4})$	$\left({f \hat{3}}_{0}^{\prime},{f \hat{1}}_{-4}^{\prime},{f \hat{3}}_{-6}^{\prime} ight)$	$(3_0,1_{-4},3_{-8})$
$N_A^c \Phi_{AC} N_B^c$	$(\mathbf{3'}_{-4},\mathbf{1'}_{-2},3_0)$	$\left({f \hat{3}}_{-4}',{f \hat{1}}_{-2}',{f \hat{3}}_{-2} ight)$	$(3_{-4},1_{-2},\mathbf{3'}_{-4})$	$\left(\mathbf{\hat{3}}_{-4},\mathbf{\hat{1}}_{-2},\mathbf{\hat{3}}'_{-6} ight)$	$(\mathbf{3'}_{-4},\mathbf{1'}_{-2},3_{-8})$
$N_A^c \Phi_{BC} N_A^c$	$(1_{-8},3_0,3_0)$	$\left({{{f{\hat 1}}}_{ - 8}},{{f{\hat 3}}_0},{{f{\hat 3}}_{ - 2}} ight)$	$({\bf 1'}_{-8},{\bf 3'}_0,{\bf 3'}_{-4})$	$\left({\hat{f 1}}_{-8}',{\hat{f 3}}_{0}',{\hat{f 3}}_{-6}' ight)$	$(1_{-8},3_{0},3_{-8})$
$N_B^c \Phi_{BC} N_B^c$	$({f 1}_0,{f 3}_{-4},{f 3}_0)$	$\left({f \hat{1}}_{0},{f \hat{3}}_{-4},{f \hat{3}}_{-2} ight)$	$({\bf 1'}_0,{\bf 3'}_{-4},{\bf 3'}_{-4})$	$\left({\hat{f 1}}_0',{\hat{f 3}}_{-4}',{\hat{f 3}}_{-6}' ight)$	$(1_0,3_{-4},3_{-8})$
$N_A^c \Phi_{BC} N_B^c$	$({\bf 1'}_{-4},{\bf 3'}_{-2},{\bf 3}_0)$	$\left({\hat{1}}_{-4}',{\hat{3}}_{-2}',{\hat{3}}_{-2} ight)$	$(1_{-4},3_{-2},\mathbf{3'}_{-4})$	$\left(\mathbf{\hat{1}}_{-4},\mathbf{\hat{3}}_{-2},\mathbf{\hat{3}}_{-6}' ight)$	$({\bf 1'}_{-4},{\bf 3'}_{-2},{\bf 3}_{-8})$

- Still, there are corrections...
 - Mandatory?

Field	S'_4^A	S'_4^B	S'_4^C	$2k_A$	$2k_B$	$2k_C$
L	1	1	3	0	0	0
e^c	î	î	1 '	0	0	-12
μ^c	$\hat{1}'$	$\mathbf{\hat{1}}'$	1 '	0	0	-6
$ au^c$	1	1	1 '	0	0	-2
N_A^c	1 '	1	1	-4	0	0
N_B^c	1	1 '	1	0	-2	0
Φ_{AC}	3	1	3	0	0	0
Φ_{BC}	1	3	3	0	0	0
ϕ	î	î	î	0	0	+2

Yuk/Mass	S'_4^A	S'_4^B	S'_4^C	$2k_A$	$2k_B$	$2k_C$
$Y_e(au_C)$	1	1	3 '	0	0	6
$Y_{\mu}(au_C)$	1	1	3 '	0	0	4
$Y_{ au}(au_C)$	1	1	3 '	0	0	2
$Y_A(au_A)$	3 '	1	1	4	0	0
$Y_B(au_B)$	1	3 '	1	0	2	0
$M_A(\tau_A)$	1	1	1	8	0	0
$M_B(\tau_B)$	1	1	1	0	4	0

	ϕ^0	ϕ^1	ϕ^2	ϕ^3	ϕ^4
Le^c	$(\hat{f 1}_0,\hat{f 1}_0,\hat{f 3}'_{-12})$	$({f 1'}_0,{f 1'}_0,{f 3}_{-10})$	$({f \hat{1}}_0',{f \hat{1}}_0',{f \hat{3}}_{-8})$	$({f 1}_0,{f 1}_0,{f 3'}_{-6})$	$(\hat{1}_0,\hat{1}_0,\hat{3}'_{-4})$
$L\mu^c$	$(\hat{f 1}_0',\hat{f 1}_0',\hat{f 3}_{-6})$	$({\bf 1}_0,{\bf 1}_0,{\bf 3}_{-4}')$	$({f \hat{1}}_0,{f \hat{1}}_0,{f \hat{3}}'_{-2})$	$({f 1'}_0,{f 1'}_0,{f 3}_0)$	$(\hat{f 1}_0',\hat{f 1}_0',\hat{f 3}_{+2})$
$L\tau^c$	$({f 1}_0,{f 1}_0,{f 3'}_{-2})$	$(\hat{f 1}_0,\hat{f 1}_0,\hat{f 3}_0')$	$({\bf 1'}_0,{\bf 1'}_0,{\bf 3}_{+2})$	$\left({\hat{f 1}}_0',{\hat{f 1}}_0',{\hat{f 3}}_{+4} ight)$	$({\bf 1}_0,{\bf 1}_0,{\bf 3'}_{+6})$

Weighton Model(s)

- Same Littlest Seesaw Structure
- Automatic Hierarchies for the Charged Fermions

What about the Quarks?

What about the Quarks? Trivial!


```
if(time) then
   keep talking
else
   Thank you!
end if
```


What about the Quarks?

SU(5) Extension!

(Hopefully)

Work in Progress

Goal:

$$Y_u \sim \begin{pmatrix} \lambda^8 \ \lambda^5 \ \lambda^4 \ \lambda^2 \ \lambda^4 \ \lambda^2 \ \lambda^0 \end{pmatrix}, \qquad Y_d^T \sim \begin{pmatrix} \lambda^8 \ 0 \ 0 \ \lambda^7 \ \lambda^6 \ 0 \ \lambda^7 \ \lambda^5 \ \lambda^3 \end{pmatrix}, \qquad Y_\ell \sim \begin{pmatrix} \lambda^9 \ 0 \ 0 \ - \ \lambda^5 \ 0 \ - \ - \ \lambda^3 \end{pmatrix}$$

- Because: $y_e \sim \lambda^{8.9}\,,\; y_\mu \sim \lambda^{5.3}\,,\; y_\tau \sim \lambda^{3.3}\,, \ y_u \sim \lambda^{8.6}\,,\; y_c \sim \lambda^{4.4}\,,\; y_t \sim \lambda^{0.4}\,, \ y_d \sim \lambda^{8.2}\,,\; y_s \sim \lambda^{6.2}\,,\; y_b \sim \lambda^{3.4}\,, \ \theta_{12} \sim \lambda^1\,,\; \theta_{23} \sim \lambda^{2.3}\,,\; \theta_{13} \sim \lambda^{3.9}\,.$

- Work in Progress
 - Goal:

$$Y_u \sim \begin{pmatrix} \lambda^8 \ \lambda^5 \ \lambda^4 \ \lambda^2 \ \lambda^4 \ \lambda^2 \ \lambda^0 \end{pmatrix}, \qquad Y_d^T \sim \begin{pmatrix} \lambda^8 \ 0 \ 0 \ \lambda^7 \ \lambda^6 \ 0 \ \lambda^7 \ \lambda^5 \ \lambda^3 \end{pmatrix}, \qquad Y_\ell \sim \begin{pmatrix} \lambda^9 \ 0 \ 0 \ - \ \lambda^5 \ 0 \ - \ - \ \lambda^3 \end{pmatrix}$$

Two Weightons

$$Y_u \sim \begin{pmatrix} \phi_T^4 & \phi_T^3 & \phi_T^2 \\ \phi_T^2 & \phi_T \\ 1 \end{pmatrix} \qquad Y_d \sim \begin{pmatrix} \phi_F^3 & \phi_F^2 \phi_T & \phi_F \phi_T^2 \\ 0 & \phi_F^2 & \phi_F \phi_T \\ 0 & 0 & \phi_F \end{pmatrix}$$

- Work in Progress
 - Goal:

$$Y_u \sim \begin{pmatrix} \lambda^8 \ \lambda^5 \ \lambda^4 \\ \lambda^5 \ \lambda^4 \ \lambda^2 \\ \lambda^4 \ \lambda^2 \ \lambda^0 \end{pmatrix}, \qquad Y_d^T \sim \begin{pmatrix} \lambda^8 \ 0 \ 0 \\ \lambda^7 \ \lambda^6 \ 0 \\ \lambda^7 \ \lambda^5 \ \lambda^3 \end{pmatrix}, \qquad Y_\ell \sim \begin{pmatrix} \lambda^9 \ 0 \ 0 \\ - \ \lambda^5 \ 0 \\ - \ - \ \lambda^3 \end{pmatrix}$$

"Automatic" Quark Masses and Mixings
 (Order 1 coefficients)

- Leptonic Sector: $Y_{\ell} = \begin{pmatrix} y_{ee}\phi_F^3 & 0 & 0 \\ y_{\mu e}\phi_F^2\phi_T & y_{\mu\mu}\phi_F^2 & 0 \\ y_{\tau e}\phi_F\phi_T^2 & y_{\tau\mu}\phi_F\phi_T & y_{\tau\tau}\phi_F \end{pmatrix}$

"Same" Neutrino Structure

$$Y_D = \phi_T \begin{pmatrix} 0 & b \\ a & b \left(1 \pm \sqrt{6}\right) \\ -a & b \left(1 \mp \sqrt{6}\right) \end{pmatrix} \qquad M_M = \begin{pmatrix} M_A & 0 \\ 0 & M_B \end{pmatrix}$$

Small Corrections to Results

