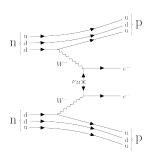
Towards distinguishing Dirac from Majorana neutrino mass with gravitational waves

Moinul Hossain Rahat

SUSY 2023 July 21, 2023

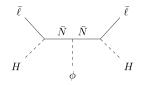
arXiv:2306.05389 [hep-ph] with S.F. King, and D. Marfatia



Neutrino mass

- Massless in the Standard Model, Dirac/Majorana nature indistinguishable in weak interactions
- Neutrino oscillations prove that they must be massive, go beyond the SM by adding right-handed partners
- ▶ Dirac mass vs. Majorana mass: is lepton number symmetry violated?
- ► Neutrinoless double beta decay: if neutrinos have Majorana mass [Schechter, Valle 1982]

Dirac vs Majorana signatures

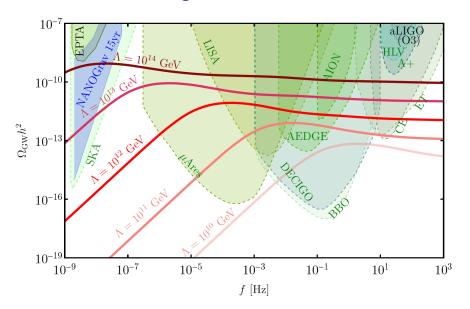

- Current constraint from KamLAND-Zen $|m_{\beta\beta}| \sim \mathcal{O}(10-100)$ meV
- Projected sensitivity of upcoming experiments

Experiment	$ m_{etaeta} $ (meV)	Experiment	$ m_{etaeta} $ (meV)
LEGEND	11 - 28	SNO+-II	20 - 70
nEXO	8 - 22	AMoRE-II	15 - 30
CUPID	6 - 17	PandaX-III	20 - 55

- Nonobservation of $0\nu\beta\beta$ does not guarantee Dirac nature
- ▶ Complementary tests from cosmology? CMB [Abazajian, Heeck 2019], primordial black holes [Lunardini, Perez-Gonzalez 2019], $\Delta N_{\rm eff}$ [Adshead, Cui, Long, Shamma 2020], $C\nu B$ [Hernandez-Milinero, Jiminez, Pena-Garay 2022]
- ► This work: gravitational wave signatures

Majorana mass model

ullet Type-I seesaw, SM extended with three heavy right-handed neutrinos $ar{N}_i$ and a scalar ϕ , both singlet under SM gauge groups, but charged under a gauged $U(1)_{B-L}$ symmetry


- lacktriangledown ϕ gets a nonzero VEV, spontaneously breaks $U(1)_{B-L}$, generates mass of the RHNs
- ► Light neutrino masses are generated after integrating out the heavy RHNs

$$\mathcal{M}_M \sim v^2 \mathcal{Y} \ \mathcal{M}_N^{-1} \ \mathcal{Y}^T$$

Cosmic string from $U(1)_{B-L}$ breaking

- Spontaneous breaking of $U(1)_{B-L}$ generates horizon-length string network
- \blacktriangleright Long strings intersect and produce closed loops, 90% are small loops that simply redshift away, 10% are large loops that primarily emit gravitational waves
- Loop size decreases as they lose energy, gravitational waves are created until all loops disappear
- $\Omega_{\rm GW}h^2$ has a rising slope at low frequencies, then flat over a large frequency range in the observable window
- ► Signal amplitude depends on the string tension, which is roughly determined by the symmetry breaking scale

GW from cosmic string network

Dirac mass model

- ► To be comparable to the Type-I seesaw model, consider no tree-level Dirac mass
- ▶ Can be generated from a dimension-5 operator (Δ is a heavy Dirac fermion, ν_R are RHNs, σ is a complex scalar)

- (i) Lepton number symmetry is protected, (ii) no tree-level Dirac mass term for neutrinos minimal symmetry is Z_2 under which σ and ν_R are odd
- Z_2 symmetry is spontaneously broken by σ , generates Dirac neutrino mass

Domain wall from Z_2 breaking

• Z_2 symmetric potential for σ

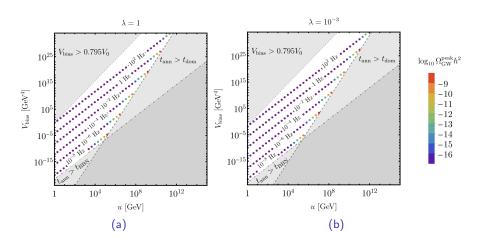
$$V(\sigma) = \frac{\lambda}{4}(\sigma^2 - u^2)^2$$

Two degenerate vacua at $\sigma = \pm u$, two domains

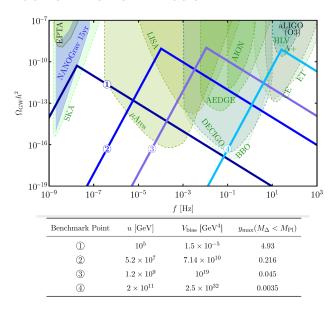

- ▶ Domain walls are problematic for cosmology, may dominate the energy budget, generate density perturbations etc.
- ▶ Way out: softly break the Z₂ symmetry

$$\Delta V(\sigma) = \epsilon u \sigma \left(\frac{\sigma^2}{3} - u^2\right)$$

Vacua still at $\sigma=\pm$, but non-degenerate, initiates the annihilation of the wall


Domain wall dynamics

- Infinite cluster of 'false' vacuum $(\sigma = -u)$ appears unless $V_{\rm bias} < 0.795 V_0$
- ▶ Two competing pressures, surface energy density controlled by u, and volume pressure controlled by $V_{\rm bias}$, wall collapses when they are equal



- ▶ Energy from domain wall annihilation is converted into gravitational waves, peaked signal with $\Omega_{\rm GW}h^2 \propto f^3$ for $f < f_{\rm peak}$ and $\Omega_{\rm GW}h^2 \propto f^{-1}$ for $f > f_{\rm peak}$
- ► Walls must annihilate before dominating the energy density of the Universe, and before BBN

Constraints on domain wall dynamics

GW from domain wall annihilation

Summary

- ► Two models for Majorana and Dirac mass generation for neutrinos considered, without tiny Yukawa couplings
- ightharpoonup Majorana mass generated from spontaneous breaking of gauged B-L symmetry and type-I seesaw mechanism, produces cosmic string induced gravitational waves
- ightharpoonup Dirac mass generated from spontaneous breaking of a Z_2 symmetry, necessary for preserving lepton number symmetry while prohibiting a tree-level Dirac mass term, produces domain wall induced gravitational waves
- Majorana mass model predicts a flat spectrum, potentially observable at multiple interferometers, Dirac mass model predicts a peaked spectrum, should be detected in a narrow band