

Searches for GMSB in ATLAS with higgsino next-to-lightest SUSY particles

Toshi Sumida (Kyoto University)

On behalf of the ATLAS collaboration

21 July 2023

SUSY 2023 @ University of Southampton Highfield Campus

Gauge Mediated SUSY Breaking

SUSY breaking mediated from hidden to visible sector by gauge interactions

- Lightest SUSY particle (LSP) : gravitino, \tilde{G}
 - Weakly interacting, neutral
 - Taken to be nearly massless : O(eV keV)
- Assuming R-parity conserved→SUSY particles produced in pairs
 - Decay to a stable gravitino LSP
 - Experimental signature : missing transverse momentum
- Next-to-lightest SUSY particle (NLSP)
 - Neutralino, $\tilde{\chi}_1^0$
 - \blacktriangleright From naive naturalness arguments, focus on relatively light <u>higgsino</u>, \tilde{H}
 - Decays to $h/Z + \tilde{G}$ (Coupling to photons suppressed)
 - Measurement with scanning the branching fraction: $B(\tilde{H} \to Z\tilde{G}) = 1 B(\tilde{H} \to h\tilde{G})$

Higgsino production and decays

- Production modes
 - Cascade with small mass difference
 - Considered in multi leptons analysis
 - Mass degenerate scenarios
 - ► Direct productions of higgsino NLSPs
- Categorization
 - Z boson decay
 - ► $Z \rightarrow \ell\ell$, bb, qq(light flavor)
 - Higgs decay
 - ► $h \rightarrow bb, \gamma\gamma$
- Analyses covered in this talk (by ATLAS)
 - 4 or more leptons

arXiv:2103.11684

- 2 leptons + jets

arXiv:2204.13072

- 0 lepton
 - ► 4b

arXiv:1806.04030

► 2b + 2q, 4q

arXiv:2108.07586

 \triangleright 2b + 2 γ

ATLAS-CONF-2023-009

√ Higgsino can be long-lived due to small coupling while focusing on prompt decays in this talk
cf.) displaced decay vertex arXiv:2304.12885

Variables

- Missing Transverse Energy (Missing E_T, MET)
 - $E_T^{\text{miss}} = |-\Sigma_i \vec{p}_T(i)|, i = \text{all objects}$
 - Important to identify LSP
- MET significance

$$S(E_T^{\text{miss}}) = E_T^{\text{miss}} / \sqrt{H_T}$$

- ► $H_T = \Sigma p_T$ (scalar sum of momentum)
- Transverse mass

$$M_T^2 = 2E_{T1}E_{T2}(1 - \cos\theta)$$

- Effective mass
 - $m_{\text{eff}} = E_T^{\text{miss}} + H_T$

Four leptons analysis

- Signal
 - Higgsino pair production (including cascade)
 - $\rightarrow Z(\ell\ell)Z(\ell\ell) + E_T^{\text{miss}}$
- Signal regions
 - >= 4 leptons
 - $m_{\ell\ell}$ close to Z mass for both lepton pairs

(for GMSB analysis)

- b-jet veto
- $E_T^{\text{miss}} > 100 \text{ or } 200 \text{ GeV}$
- Backgrounds
 - "Reducible": ZZ, ttZ
 - "Irreducible" : Z+jets, ttbar

Four leptons analysis

- Result
 - Better sensitivity due to low backgrounds for $Z \rightarrow \ell\ell$
 - Excluded up to ~ 550 GeV with $\tilde{\chi}_1^0 \to Z\tilde{G}$

Two leptons + jets analysis

- Signal
 - Higgsino pair production
 - $\rightarrow Z(\ell\ell) h/Z(bb/qq) + E_T^{\text{miss}}$
- Event selection
 - 2 leptons with opposite-sign electric charge (OS), at least 2 jets and $E_T^{\rm miss}$

- Diboson (VV), Top (tt, Wt), Z/γ* +jets:
 - MC normalization factors extract from CRs
 - ► Fake or non-prompt lepton data-driven (Matrix method)
 - ► Other rare SM processes from MC

Two leptons + jets analysis

- Results
 - Observed data in agreement with SM prediction
 - Exclude higgsino Next-to-LSP mass up to 900 GeV

Four b-jets analysis

- Signal
 - $h(bb) h(bb) + E_T^{\text{miss}}$
 - Requiring Higgs mass
- . High-mass search : $m_{\tilde{H}} > 300 \text{ GeV}$
 - $-E_T^{\text{miss}} > 200 \text{ GeV}$: trigger
 - >= 4 jets (>= 3 b-tagged)
 - ▶ Paired based on ΔR_{jj} (captures both h/Z)
 - Separated jets and large meff
 - tt normalized to data
 - Other backgrounds from Monte-Carlo
- . Low-mass search : $m_{\tilde{H}} < 300 \; \mathrm{GeV}$
 - b-jet trigger
 - Allows probing low-MET
 - >= 4b-jets
 - ► Use 4 w/ highest b-tag score paired based on ΔR_{jj} and m_{jj}
 - Multi-bins in MET and meff
 - ► Extract 2-tag→4-tag normalization and shape corrections in dedicated regions using purely data-driven BDT

Four b-jets analysis

- Signal regions
 - 56 complementary bins in low-mass selection
 - 8 complementary bins in high-mass selection
- Results
 - Largest excess is $\sim 2\sigma$
 - ► 4 data vs 1.0±0.2 background @ 200 -300 GeV
 - Excluded up to 900 GeV w/ $B(\tilde{H} \rightarrow h\tilde{G}) = 100\%$

(d) (\tilde{H}, \tilde{W})

All-hadronic analysis

- Signal
 - $-h/Z(qq) h/Z(bb/qq) + E_T^{\text{miss}}$
 - ► Two "boson-tagged" jets with large radii
 - up to two b-jets
- Simultaneous interpretation for the large mass difference region between LSP and NLSP
 - Methods applicable for inclusive searches for models with Bino/Wino/Higgsino LSP
- Boosted Boson Tagging
 - For highly boosted h/Z→qq/bb
 - Combinations with jet mass and jet-substructure variables for "2-pronginess"
 - Performance
 - ▶ e.g. ~ 50% efficiency in h→bb tagging with rejection factor of >1000 for light quark jets
 - Now the all-hadronic analysis possible against huge $Z \rightarrow \nu\nu$ + jets background

(a) (\tilde{W}, \tilde{B})

(b) (\tilde{H}, \tilde{B})

(c) (\tilde{W}, \tilde{H})

All-hadronic analysis

- Backgrounds
 - Z+jets
 - diboson
- Results
 - No signal excess
 - Extended sensitivity to higher mass regions
 - < 900 GeV excluded

yy + bb analysis

- Signal
 - $-h(\gamma\gamma) h/Z(bb) + E_T^{\text{miss}}$
- Methods
 - Three orthogonal SR to gain sensitivity to different Higgsino mass hypothesis and decay modes
- Backgrounds
 - Resonant background from H $\rightarrow \gamma\gamma$ (subdominant) determined from MC
 - Non-resonant background (dominant) estimated using data in the sidebands of $m\gamma\gamma$ distributions

yy + bb analysis

- Results
 - Excluded $m(\tilde{\chi}^0)$ ≤ 200 GeV in Higgsino pair production
 - Sensitivity extended at the lower mass region

Summary

- Several searches by ATLAS targeting GMSB scenario performed
 - Assuming prompt higgsino NLSP decays to $h/Z + \tilde{G}$
- Results
 - No signal seen
 - Constraining simplified models motivated by General Gauge Mediation
- Future
 - Much more data (140 → 400 /fb)
 coming in Run3 to explore wider regions
 - ► Stay tuned !!

Backup

Summary of ATLAS SUSY Searches

 10^{-1}

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

Mass scale [TeV]

March 2023

Model	Signature	$\int \mathcal{L} dt$ [fb ⁻	Mass limit		Reference
$ ilde{q} ilde{q}, ilde{q} \! o \! q \! ilde{\chi}_1^0$	0 e,μ 2-6 jets E_{7}^{r} mono-jet 1-3 jets E_{7}^{r}	miss 139 miss 139	 q̃ [1x, 8x Degen.] 1.0 	1.85	2010.14293
$\tilde{g}\tilde{g},\tilde{g}{ ightarrow}qar{q} ilde{\chi}_1^0$	_	miss 139	$ ilde{q}$ [8× Degen.] 0.9		2102.10874 2010.14293
	1		\widetilde{g} Forbidden	1.15-1.95 $m(\tilde{\chi}_1^0) = 1000 \text{ GeV}$	2010.14293
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 e, μ 2-6 jets	139	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2.2 $m(\tilde{\chi}_1^0) < 600 \text{ GeV}$	2101.01629
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$ $\tilde{z}\tilde{g}, \tilde{g} \rightarrow ggWZ\tilde{v}^0$	$ee, \mu\mu$ 2 jets $E_T^{\scriptscriptstyle ext{T}}$ 0 e, μ 7-11 jets $E_T^{\scriptscriptstyle ext{T}}$	139 miss 139	g õ	2.2 $m(\tilde{\chi}_{1}^{0})$ <700 GeV $m(\tilde{\chi}_{1}^{0})$ <600 GeV	2204.13072 2008.06032
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	SS e, μ 6 jets	139	$rac{\delta}{ ilde{g}}$	1.15 $m(\tilde{g})-m(\tilde{\chi}_1^0)=200 \text{ GeV}$	1909.08457
$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$	$egin{array}{lll} ext{0-1} & e, \mu & ext{3} & b & E_T^{\scriptscriptstyle ext{T}} \ ext{SS} & e, \mu & ext{6} & ext{jets} \end{array}$	^{niss} 139 139	$ ilde{g}$	2.45 $m(\tilde{\chi}_1^0) < 500 \text{GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_1^0) = 300 \text{GeV}$	2211.08028 1909.08457
$ ilde{b}_1 ilde{b}_1$	0 e,μ 2 b E_{T}^{n}	miss 139	$ ilde{b}_1 \\ ilde{b}_1 ag{0.68}$	1.255 $m(\tilde{\chi}_1^0) < 400 \text{GeV}$ $10 \text{GeV} < \Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 20 \text{GeV}$	2101.12527 2101.12527
$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 {\rightarrow} b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$egin{array}{cccc} 0 \ e, \mu & 6 \ b & E_7^7 \ 2 \ au & 2 \ b & E_7^7 \end{array}$	miss 139 miss 139		D.23-1.35 $\Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV} \\ \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, \ m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}$	1908.03122 2103.08189
$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{\rightarrow}t\tilde{\chi}_1^0$	-	miss 139	$ ilde{t}_1$	1.25 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$	2004.14060, 2012.03799
$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{ ightarrow}Wb\tilde{\chi}_1^0$	1 e, μ 3 jets/1 b E_T^n		\tilde{t}_1 Forbidden 0.65	$m(\tilde{\chi}_1^0)$ =500 GeV	2012.03799
$\tilde{t}_1\tilde{t}_1,\tilde{t}_1{ ightarrow}\tilde{ au}_1b u,\tilde{ au}_1{ ightarrow} au ilde{G}$	1-2 τ 2 jets/1 b E_T^{r}		\tilde{t}_1 Forbidden	1.4 $m(\tilde{\tau}_1)=800 \text{GeV}$	2108.07665
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 {\rightarrow} c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} {\rightarrow} c \tilde{\chi}_1^0$	$egin{array}{lll} 0 & e, \mu & & 2 & c & E_T^{\scriptscriptstyle ext{T}} \ 0 & e, \mu & & ext{mono-jet} & E_T^{\scriptscriptstyle ext{T}} \end{array}$	^{niss} 36.1 ^{niss} 139	$ \tilde{t}_1 $ 0.85	$\begin{array}{c} \operatorname{m}(\widetilde{\chi}_{1}^{0}) = 0 \operatorname{GeV} \\ \operatorname{m}(\widetilde{t}_{1},\widetilde{c}) - \operatorname{m}(\widetilde{\chi}_{1}^{0}) = 5 \operatorname{GeV} \end{array}$	1805.01649 2102.10874
$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	1-2 e, μ 1-4 b E_{I}^{n}	miss 139	\tilde{t}_1 0.067	-1.18 $m(\tilde{\chi}_2^0) = 500 \mathrm{GeV}$	2006.05880
$\tilde{t}_2\tilde{t}_2,\tilde{t}_2{ ightarrow}\tilde{t}_1+Z$	$3 e, \mu$ $1 b$ $E_T^{\rm r}$	niss T	\tilde{t}_2 Forbidden 0.86	$m(\tilde{\chi}_1^0) = 360 GeV, m(\tilde{t}_1) - m(\tilde{\chi}_1^0) = 40 GeV$	2006.05880
$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{ccc} \text{Multiple } \ell/\text{jets} & E_T^\Gamma \\ ee, \mu\mu & \geq 1 \text{ jet} & E_T^\Gamma \end{array}$	niss 139 niss 139	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} \qquad \qquad 0.96 $ $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} \qquad \qquad 0.205 $	$m(\tilde{\chi}_1^0)=0$, wino-bino $m(\tilde{\chi}_1^\pm)$ - $m(\tilde{\chi}_1^0)=5$ GeV, wino-bino	2106.01676, 2108.07586 1911.12606
$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW	e, μ E_T^{r}	^{miss} 139	$\tilde{\chi}_1^{\pm}$ 0.42	$m(\tilde{\chi}_1^0) = 0$, wino-bino	1908.08215
$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via Wh	Multiple ℓ /jets $E_{T}^{\hat{r}}$	niss 139 miss 139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden 1.0		2004.10894, 2108.07586
$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via $ ilde{\ell}_L/ ilde{ u}$	e, μ E_7^{n}	^{miss} 139	\tilde{X}_1^{\pm} 1.0	(' ' (- ' (- ')	1908.08215
$ \tilde{\tau}\tilde{\tau}, \tilde{\tau} \to \tau \tilde{\chi}_{1}^{0} \\ \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \to \ell \tilde{\chi}_{1}^{0} $	$2 au$ $E_{T}^{ m r}$	139	$ ilde{ au} = [ilde{ au}_{ m L}, ilde{ au}_{ m R,L}]$ 0.16-0.3 0.12-0.39	$m(\tilde{\chi}_1^0)=0$	1911.06660
$\ell_{L,R}\ell_{L,R}, \ell \rightarrow \ell \tilde{X}_1^{\circ}$	$\begin{array}{ccc} 2 \ e, \mu & & 0 \ ext{jets} & E_{T}^{ ext{r}} \\ ee, \mu\mu & & \geq 1 \ ext{jet} & E_{T}^{ ext{r}} \end{array}$	niss 139 miss 139 miss 139	$ ilde{\ell}$ 0.256	$\begin{array}{c} \operatorname{m}(\tilde{\chi}_{1}^{0}) = 0 \\ \operatorname{m}(\tilde{\ell}) \text{-} \operatorname{m}(\tilde{\chi}_{1}^{0}) = 10 \text{ GeV} \end{array}$	1908.08215 1911.12606
$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	$egin{array}{lll} 0 & e, \mu & & \geq 3 & b & E_7^{\mathrm{T}} \ 4 & e, \mu & & 0 & \mathrm{jets} & E_7^{\mathrm{T}} \ 0 & e, \mu & & \geq 2 & \mathrm{large} & \mathrm{jets} & E_7^{\mathrm{T}} \end{array}$	miss 36.1	\tilde{H} 0.13-0.23 0.29-0.88	$BR(ilde{\chi}^0_{\vec{A}} o h ilde{G}) = 1$	1806.04030
	$\begin{array}{ccc} 4 & e, \mu & 0 \text{ jets} & E_7^{\text{f}} \\ 0 & e, \mu & \geq 2 \text{ large jets } E_7^{\text{f}} \end{array}$	miss 36.1 miss 139 miss 139	$ ilde{H} ag{0.55} ag{0.45-0.93}$	$\begin{array}{c} BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 \end{array}$	2103.11684 2108.07586
	$2 e, \mu \ge 2 \text{ jets} E_T^n$		\tilde{H} 0.77	$BR(\tilde{\chi}_1^0 \to Z\tilde{G}) = BR(\tilde{\chi}_1^0 \to h\tilde{G}) = 0.5$	2204.13072
Direct $\tilde{\mathcal{X}}_1^+ \tilde{\mathcal{X}}_1^-$ prod., long-lived $\tilde{\mathcal{X}}_1^\pm$	Disapp. trk 1 jet $E_I^{ m r}$	miss 139	$ ilde{\mathcal{X}}_1^{\pm}$ 0.66 $ ilde{\mathcal{X}}_1^{\pm}$ 0.21	Pure Wino Pure higgsino	2201.02472 2201.02472
Stable \tilde{g} R-hadron	pixel dE/dx $E_T^{ m n}$	niss 139	$ ilde{m{arepsilon}}$	2.05	2205.06013
Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}$ $\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$	pixel dE/dx $E_T^{ m n}$ pixel dE/dx $E_T^{ m n}$ Displ. lep $E_T^{ m n}$	niss 139	\tilde{g} [$\tau(\tilde{g})$ =10 ns]	2.2 $m(\tilde{\chi}_1^0)$ =100 GeV	2205.06013
$\tilde{\ell} ilde{\ell}, ilde{\ell} o\ell ilde{G}$	Displ. lep E_{7}^{1}	^{niss} 139	$ ilde{e}, ilde{\mu}$	$ au(ilde{\ell})=$ 0.1 ns	2011.07812
		miss 139	$ ilde{ au}$ 0.34 $ ilde{ au}$ 0.36	$ au(ilde{\ell}) = 0.1 \; ext{ns} \ au(ilde{\ell}) = 10 \; ext{ns}$	2011.07812 2205.06013
$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$	3 e, µ	139	$\tilde{X}_{1}^{+}/\tilde{X}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625		2011.10543
$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$		^{miss} 139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$ 0.95	1.55 $m(\tilde{\chi}_1^0) = 200 \text{ GeV}$	2103.11684
$\tilde{g}\tilde{g}, \tilde{g} \to qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to qqq$ $\tilde{z} \tilde{z} = \tilde{z}_1^0 \tilde{z}_1^0$	4-5 large jets	36.1	$\tilde{g} = [m(\tilde{X}_1^0) = 200 \text{ GeV}, 1100 \text{ GeV}]$	1.3 1.9 Large λ''_{112}	1804.03568
$ \widetilde{t}\widetilde{t}, \widetilde{t} \to t\widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \to tbs \widetilde{t}\widetilde{t}, \widetilde{t} \to b\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_1^{\pm} \to bbs $	Multiple $\geq 4b$	36.1 139	\tilde{t} [λ''_{323} =2e-4, 1e-2] 0.55 1.0 \tilde{t} Forbidden 0.95	$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like $m(\tilde{\chi}_1^{\pm})$ =500 GeV	ATLAS-CONF-2018-003 2010.01015
$ \begin{array}{c} ti, t \to 0\lambda_1, \lambda_1 \to 00s \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \to bs \end{array} $	≥ 4 <i>b</i> 2 jets + 2 <i>b</i>	36.7	$\tilde{t}_1 [qq, bs]$ 0.42 0.61	Π(λ1)=300 GeV	1710.07171
$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \to q\ell$	2 e,μ 2 b		\tilde{t}_1	0.4-1.45 BR($\tilde{t}_1 \rightarrow be/b\mu$)>20%	1710.05544
	1 μ DV	36.1 136	\tilde{t}_1 [1e-10< λ'_{23k} <1e-8, 3e-10< λ'_{23k} <3e-9]	1.6 BR($\tilde{t}_1 \to q\mu$)=100%, $\cos \theta_t$ =1	2003.11956
$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^{\pm} \rightarrow bbs$	1-2 $e, \mu \ge 6$ jets	139	$\tilde{\chi}_{1}^{0}$ 0.2-0.32	Pure higgsino	2106.09609

^{*}Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Strong productions

The ATLAS detector

