Redefining Performance: New Techniques for ATLAS Jet & MET Calibration

SUSY23 Conference, Southampton

On behalf of the ATLAS Collaboration

Michael Holzbock

July 17, 2023

Outline

The LHC: A "Jetty" Environment

- Our "tools": Large-Hadron Collider (LHC) & ATLAS:
 pp-collisions at √s = 13 TeV (13.6) in Run 2 (3)
 recorded with multi-purpose detector
- Strongly-interacting quarks & gluons hadronise
 - → Reconstructed as **jets**: collimated spray of particles

- Jets produced copiously at LHC!
 - → Ingredient of nearly every SM measurement or BSM search
- Precise measurement of jet four-momenta crucial
 - → Improvements directly "leverage" our physics results
- Percent-level precision already achieved, but still improving!

Jet Reconstruction at ATLAS in Run 2

Main objective: cluster tracks and calorimeter deposits together to obtain properties of initial quark/gluon

Step 1: Create low-level cluster objects (constituents)

Topological Clusters

arXiv:1603.02934v3

Connected groups of calorimeter cells

Particle-Flow Objects (PFOs)

arXiv:1703.10485v2

Combine tracks and topo-clusters

Step 2: Group clusters/PFOs into jets

Anti-k_T Algorithm

[arXiv:0802.1189v2]

Sequentially gather nearby constituents

Here: focus on small-radius jets with R=0.4

ATLAS Run 2 Jet Calibration Sequence

Calibrate Jets in Simulation & Data to Particle Level Correct for Data/MC Discrepancies Absolute MC-Based Residual In Situ **Global Property** Pileup Corrections Calibration Calibration Calibration 1) Correction based on Correction of energy & Scale depends e.g. on Simulation not a perfect direction to particle-level quark/gluon nature of jet pileup density & jet area description of data 2) Removal of residual scale pileup dependence Improve resolution by In situ corrections derived Fdetector Response: $\mathcal{R} =$ sequentially removing in data w.r.t. Fparticle dependencies on visible well-measured reference features like n_{track} objects $(Z, \gamma, ...)$

ATLAS Run 2 Jet Calibration Sequence - Revised

Calibrate Jets in Simulation & Data to Particle Level

Correct for Data/MC Discrepancies

Pileup Corrections

- 1) Correction based on pileup density & jet area
- 2) Removal of residual pileup dependence

Sideband estimation of pileup density
1D → 3D residual pileup

correction

Absolute MC-Based Calibration

Correction of energy & direction to particle-level scale

Response:
$$\mathcal{R} = \frac{E^{detector}}{E^{particle}}$$

Use penalised splines to fit jet response

Global Property Calibration

Scale depends e.g. on quark/gluon nature of jet

Improve resolution by sequentially removing dependencies on visible features like n_{track}

DNN-based corrections

Focus on this in the following!

Residual *In Situ*Calibration

Simulation not a perfect description of data

In situ corrections derived in data w.r.t. well-measured reference objects $(Z,\gamma,..)$

Improved η -intercalibration Measurement of b-jet JES in γ +jet events

Global Jet Property Calibration

- After absolute calibration, response still depends on characteristics of jet (width, charged fraction, ...)
- Degrades jet energy resolution (JES)
- Mitigated by Global Sequence Calibration (GSC)
 - → Series of 6 corrections applied one after another

- Subsequent improvement of resolution after each step!
- Reduces also differences in MC predictions
- Limitation of GSC: variables need to be uncorrelated

Simultaneous calibration in many "dimensions" desirable

→ Perfect use case for Deep Neural Networks (DNNs)!

Global Neural Network Calibration (GNNC)

- Dedicated DNN trained in each η -bin to accommodate detector geometry
- DNNs designed to correct the p_T response by minimizing a leaky Gaussian Kernel loss:

$$Loss(x^{\text{target}}, x^{\text{pred}}) = -\frac{1}{\sqrt{2\pi}} exp\left(-\frac{(x^{\text{target}} - x^{\text{pred}})^2}{2\alpha^2}\right) + \beta |x^{\text{target}} - x^{\text{pred}}|,$$

$$p_{\text{T}} \text{ Response}$$
Tunable Parameters

Use more variables than in GSC to fully exploit potential of DNNs:
 More granular calorimeter information, jet kinematics & pile-up measures

Up to 30% improvement on JES!

Smaller differences in response between gluon and quark jets

→ reduced reduced flavour uncertainty as well (backup)

Reminder: p_T^{miss} Reconstruction

- Infer presence of "invisible" particles via momentum imbalance in transverse plane
- Basic reconstruction algorithm is taking negative vector sum:

- Several p_T^{miss} WPs available (Tight, Loose, ...) balancing resolution and pile-up resilience
- Track soft term (TST) contains tracks associated with hard-scatter vertex but not with any hard object
- Estimate for "p_T significance" via likelihood-based technique

METNet: ML-based p_T^{miss} Reconstruction

- General idea: performance of p_T WPs depend on event topology and level of pile-up
 - → Let a DNN choose optimal WP for each event!
- Regression-based "METNet" trained on 60 inputs
 - Predictions of jet/soft terms of each p_T miss WP
 - Lepton p_T^{miss} terms
 - Event-level pile-up quantities
- Training target: (p_x miss , p_y miss) at particle level
- Considered two different loss functions:
 - Huber loss & Huber + Sinkhorn loss
- Network trained on top-antitop events, evaluated on other topologies to validate generalization
- Training sample "flattened" up to $p_T^{miss} = 300$ GeV to avoid bias towards 0 in predictions

METNet: ML-based p_Tmiss Reconstruction

- General idea: performance of p_T miss WPs depend on event topology and level of pile-up
 - Let a DNN choose optimal WP for each event!
- Regression-based "METNet" trained on 60 inputs
 - Predictions of jet/soft terms of each p_T WP
 - Lepton p_T miss terms
 - Event-level pile-up quantities
- Training target: (p_x miss p_y niss) at particle level
- Considered two different loss functions:
 - Huber loss & Huber + Sinkhorn loss
- Network trained on top-antitop events, evaluated on other topologies to validate generalization
- Training sample "flattened" up to $p_{T}^{miss} = 300 \text{ GeV}$ to avoid bias towards 0 in predictions

METNet: Generalization

- METNet has superior resolution across the p_T^{miss} range trained on
- Generalizes well to topologies not seen during training, such as $Z \rightarrow \mu\mu$ and $WW \rightarrow \ell\nu\ell\nu$

METNet: Training Bias & Limitations

"Training bias": more events with low than with high $p_T^{miss} \rightarrow$ Challenging to tackle!

Limited performance of METNet outside training range ("extrapolation")

Classification-based METNet approach under study

→ Build weighted average of "classical" p_T miss WPs

Summary & Outlook

- Jets and missing transverse momentum essential part of nearly all ATLAS measurements & searches
- Improvements in these areas directly translate into better physics results
- Established reconstruction and calibration techniques already provide percentage-level precision
- Many ongoing efforts for further improvements to be applied in Run 3!
 - → Promising applications of ML-based techniques in jet calibration and p_T reconstruction

Extras

ATLAS Detector

Goal: Reconstruct products from pp-collisions: electrons, muons, jets, ...

Inner Detector

- Semiconductor & gas detectors
- Tracks and vertex reconstruction

Calorimeters

- LAr as active material
- Contain electromagnetic and hadronic showers
- Rebuild electrons, photons & jets

Muon Spectrometer

- Cover large area with gas detectors
- Reconstruction of muons

- Collisions occur at ~30 Mhz
- Up to ~65 simultaneous pp-interactions in Run 2

Global Neural Network Calibration Inputs

Calorimeter	$f_{\text{LAr0-3}*}$	The E_{frac} measured in the 0th-3rd layer of the EM LAr calorimeter
	$f_{\text{Tile}0*-2}$	The E_{frac} measured in the 0th-2nd layer of the hadronic tile calorimeter
	$f_{\rm HEC,0-3}$	The E_{frac} measured in the 0th-3rd layer of the hadronic end cap
		calorimeter
	$f_{\text{FCAL},0-2}$	The E_{frac} measured in the 0th-2nd layer of the forward calorimeter
	$N_{90\%}$	The minimum number of clusters containing 90% of the jet energy
Jet kinematics	$p_{\mathrm{T}}^{\mathrm{JES}}$ *	The jet $p_{\rm T}$ after the MCJES calibration
	$\eta^{ ext{det}}$	The detector η
Tracking	w _{track} *	The average $p_{\rm T}$ -weighted transverse distance in the η - ϕ plane
		between the jet axis and all tracks of $p_T > 1$ GeV ghost-associated
		with the jet
	$N_{\mathrm{track}}*$	The number of tracks with $p_T > 1$ GeV ghost-associated with the jet
	$f_{ m charged}*$	The fraction of the jet p_T measured from ghost-associated tracks
Muon segments	$N_{\text{segments}}*$	The number of muon track segments ghost-associated with the jet
Pile-up	μ	The average number of interactions per bunch crossing
	$N_{ m PV}$	The number of reconstructed primary vertices [arXiv:2303.17312]

GNNC - Flavor Uncertainties

