Revisiting the slepton coannihilation model with light higgsino

Atsuya Niki (U. Tokyo)

collaboration with Koichi Hamaguchi and Matthew To in progress

Dark Matter in SUSY Model

The existence of Dark Matter is inferred from cosmological observations.

 $\Omega_{DM}h^2 = 0.12$

Supersymmetric (SUSY) model provides some candidates.

Neutralino, Gravitino ...

We focus on neutralino dark matter, especially bino \tilde{B} .

Since bino is gauge singlet, it is **difficult** to search for Bino by collider experiments and direct detection.

In addition, the bino dark matter annihilation has **very small cross section**. To achieve the observed relic abundance, we should require other particles.

Slepton Coannihilation

To realize the large annihilation cross section, the well-known mechanism is the coannihilation.

Griest, Seckel (1991)

$$\langle \sigma_{eff} v
angle = \sum_{i,j} \langle \sigma_{ij} v
angle rac{n_i^{eq.}}{n^{eq.}} rac{n_j^{eq.}}{n^{eq.}}$$

Bino can coannihilate with scalar partner of matter, e.g. slepton, when these particles are degenerate with bino:

$$\delta m \sim m_{bino}/20$$

The effective annihilation cross section are calculated by micrOMEGAs.

Slepton Coannihilation

 $\mathcal{O}(100~\text{GeV})$ squarks are severely constrained by collider experiments due to the strong production process.

Slepton coannihilation model is allowed in ~ 100 GeV regions.

e.g. smuon coannihilation

Smuons can be produced at LHC:

$$p \ p \to \tilde{\mu}_{L/R} \ \tilde{\mu}_{L/R} \to \tilde{\chi}^0 \mu \ \tilde{\chi}^0 \mu,$$

Since smuon and bino are degenerate, the final state muons are soft.
ATLAS analysis (LHC Run 2) gives the constraint by soft lepton search.

ATLAS collaboration, arXiv:1911.12606

Light Higgsino

In the context of naturalness, higgsino \widetilde{H} is also motivated to be $\mathcal{O}(100~{\rm GeV})$.

The light higgsino provides plenty of phenomenologies in several experiments.

- Direct Detection (higgs exchange)
- Muon magnetic dipole moment, g-2 (next page)
- Collider experiment (electroweakino pair production)

Muon g-2

When bino, smuon and higgsino is light, SUSY contribution to muon g-2 is sizable.

These are proportional to $tan\beta$ ($tan\beta$ enhancement).

Moroi ('95) Carena, Giudice, Wagner ('95)

$$ilde{B}, ilde{H}, ilde{\mu}_R$$
 (BHR model)
$$a_{\mu}^{\mathrm{BHR}} pprox - rac{lpha_Y}{4\pi} rac{m_{\mu}^2}{M_1 \mu} an eta \cdot f_N \Biggl(rac{M_1^2}{m_{\mu_R}^2}, rac{\mu^2}{m_{\mu_R}^2}\Biggr)$$

 μ should be **negative** to explain the anomaly

$$\mu_{L} \xrightarrow{\widetilde{\mu}_{L/R}} \mu_{R}$$

$$\widetilde{B} - \widetilde{H}$$

$$ilde{B}$$
, $ilde{H}$, $ilde{\mu}_L$ (BHL model)
$$a_\mu^{
m BHL} pprox rac{lpha_Y}{8\pi} rac{m_\mu^2}{M_1 \mu} an eta \cdot f_N igg(rac{M_1^2}{m_{\mu_L}^2}, rac{\mu^2}{m_{\mu_L}^2}igg)$$

Model

In this talk, we focus on BHR model.

$$m_{\tilde{\ell}_R}$$
, M_1 , μ

is important parameters. We set $m_{\tilde{\ell}_R}$ on (M_1, μ) plane to explain the observed dark matter relic abundance.

To search for this model,

- (i) Dark matter direct detection
- (ii) Collider experiment

are important. We **update** several experimental constraints on this model with several parameter spaces.

Dark Matter Direct Detection

From bino-higgsino mixing, neutralino interacts with matter via higgs exchange.

If the heavy higgs is also in EW scale, CP-even heavy higgs exchange is also important.

$$\sigma_p^{SI} \sim \left[(F_p^{(d)} + F_u^{(p)})(m + \mu \sin 2\beta) \frac{1}{m_h^2} + \mu \tan \beta \cos 2\beta (-F_p^{(d)} + F_u^{(p)}/\tan^2 \beta) \frac{1}{m_H^2} \right]$$

If μ term is negative, heavy higgs contribution is destructive.

Huang, Wagner (2014)

We consider the LZ experiment for the spin-independent cross section constraint.

LHC Constraint

In addition to $\tilde{\ell}$ $\tilde{\ell}$ pair production, the model can be probed via electroweakino pair production.

$$pp \to \tilde{\chi}_i \tilde{\chi}_j$$

The signal significance depends on the branching ratio of higgsino.

In case of large $tan\beta$, neutralino/chargino

decay into $\tilde{\tau}$ or $\tilde{\nu}_{\tau}$ dominantly.

LHC Reinterpretation

ATLAS papers provide the upper limit of the cross section in the simplified model (e.g. wino production with 100% branching ratio).

These upper limits can be **reinterpreted** as the limits to the specified model. Then the parameter space is **excluded** if the following condition is satisfied:

$$\sigma(pp \to \tilde{\chi}\tilde{\chi}) \times Br(\tilde{\chi} \to \tilde{\chi}_1^0 X) Br(\tilde{\chi} \to \tilde{\chi}_1^0 X) > \sigma_{LHC}$$

Production cross section

Branching ratio

LHC upper limit in simplified model

For example, the constraint from WZ channel is obtained by the following inequality:

$$\sigma(pp \to \tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}) \times Br(\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z) Br(\tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 W) > \sigma_{LHC}$$

Result ($\tan \beta = 40$)

Hamaguchi, To, AN (in preparation)

*This is preliminary result. Δa_{μ} is calculated by using approximated formula.

BHR model (right-handed smuon) μ term is negative sign.

• Direct detection constraint from the LZ experiment (navy lines) for each value of heavy higgs. Heavy higgs is constrained by LHC, $m_H < 1800$ GeV for $\tan \beta = 40$.

ATLAS collaboration, arXiv: 2002.12223

- LHC constraint from the 2τ search (red filled region).
- Muon g-2 contours (black dotted lines). The discrepancy (BNL+FNAL) is $\Delta a_{\mu} = (2.51 \pm 0.59) \times 10^{-9}$

Summary

 Slepton coannihilation model with light higgsino can be probed by direct detection, collider experiment and muon g-2.

- We update the experimental results on these models. In this talk, BHR model with large $tan\beta$ is considered.
- We found that there remains some regions where muon g-2 contribution is not small. These regions will be probed by future collider experiment, like ILC.

Backup

Mass Spectrum

In our consideration, M_1 , μ , and $m_{\tilde{\ell}_{L,R}}$ (left- and right-handed slepton mass) is phenomenologically important.

The smuon mass eigenvalue can be approximated as soft mass + hyperfine splitting caused by EW breaking

BR:
$$m_{\tilde{\ell},R}^2 = M_R^2 - \sin^2 \theta_W \cos(2\beta) m_Z^2$$
,
BL:
$$\begin{cases} m_{\tilde{\ell},L}^2 = M_L^2 + \left(-\frac{1}{2} + \sin^2 \theta_W\right) \cos(2\beta) m_Z^2 ,\\ m_{\tilde{\nu},L}^2 = M_L^2 + \frac{1}{2} \cos(2\beta) m_Z^2 , \end{cases}$$

For left-handed slepton, **sneutrino is lighter than smuon**. Bino coannihilates with sneutrino, not smuon.

Branching Ratio

Chargino branching ratio

LHC Constraint

*Branching ratio also depends on sign of μ term. When $sgn(\mu) < 0$, the dominant decay mode of chargino is $\tilde{\chi}^+ \to \tilde{\tau} \nu$, not $\tilde{\chi}^+ \to \tilde{\nu} \tau$. Then the relevant process of 2τ channel is only $pp \to \tilde{\chi}_2^0 \tilde{\chi}_3^0$ in BHR model.

<u>ττ channel</u>

modes $\tilde{\chi} \to \tilde{\nu}(\tilde{\tau}) \tau$ is enhanced by large $tan \beta$.

In case of large $\tan \beta$, the most stringent LHC **constraint** comes from 2τ channel.

cf. Endo et. al. (2017)

LHC Constraint

500

 $|\mu|$ (GeV)

600

700

800

400

cross section (fb)

 10^{0}

200

300

In case of large tanβ, LHC Run 2 results do not constrain the model with WZ/h channels.

Hamaguchi, To, AN (in preparation)

 σ_{TH} (tan $\beta = 3$) σ_{TH} (tan $\beta = 15$)

 $\sigma_{\text{TH}} (\tan \beta = 40)$

2106.01676 2108.07586 2204.13072