Constraining the electroweakino sector of the MSSM through the combination of orthogonal LHC searches

Timothée Pascal

Laboratory of subatomic physics and cosmology, Grenoble, France

in collaboration with:

Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa, Sahana Narasimha. Théo Revmermier. Wolfgang Waltenberger

SUSY 2023

Introduction to SModelS

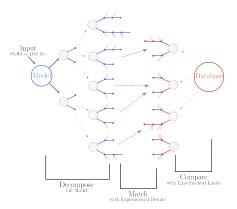
2 The combination of electroweakino LHC searches

Results to the electroweakino sector of the MSSM

Why combine LHC searches?

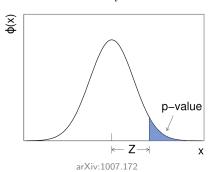
- Increases the results' robustness
- Enables the combination of search channels.
- Accounts for both excesses and under-fluctuations in a consistent way

Keep in mind:


- ATLAS and CMS use simplified models (i.e. BR=100%, pure winobino states most of the time)
- Searches are made channel by channel

Constraining the electroweakino sector of the MSSM through the combination of orthogonal LHC searches Introduction to SModelS

- Introduction to SModelS
- 2 The combination of electroweakino LHC searches
- 3 Results to the electroweakino sector of the MSSM


SModelS working principle

Public tool to confront BSM signals with a \mathbb{Z}_2 -like symmetry against simplified model results from the LHC.

Code and documentation available online: https://smodels.github.io/

$$L_{\mathsf{C}}(\mu) = \prod_{i} L_{i}(\mu)$$

 $\mu_{\rm UL}=\mu_{95}$ when p-value ≈ 0.05

A model point is excluded if
$$r = \frac{\sigma^{\rm BSM}}{\sigma_{\rm UL}^{\rm BSM}} = \frac{1}{\mu_{\rm UL}} \geqslant 1$$

$$L_{\mathsf{C}}(\mu) = \prod_{i} L_{i}(\mu)$$

For each individual likelihood (analysis), signal regions combination is possible using a full HistFactory models (ATLAS), encoded in a json file:

$$L_i(\mu) = \prod_{j=1}^{N} \text{Pois}(n_j^{obs}|\mu s_j + b_j + \theta_j) \prod_{\theta \in \{\theta\}} c_{\theta}(a_{\theta}|\theta)$$

where $s_j = \epsilon_j \mathcal{A}_j \sum \sigma \prod BR*\mathcal{L} ~|~ b_j = \mathsf{bkg} ~|~ \theta_j = \mathsf{nuisance}$ parameters

$$L_{\mathsf{C}}(\mu) = \prod_{i} L_{i}(\mu)$$

For each individual likelihood (analysis), signal regions combination is possible using a full HistFactory models (ATLAS), encoded in a json file:

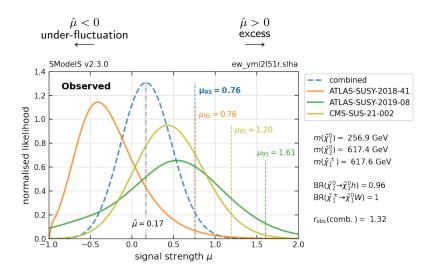
$$L_i(\mu) = \prod_{j=1}^{N} \text{Pois}(n_j^{obs}|\mu s_j + b_j + \theta_j) \prod_{\theta \in \{\theta\}} c_{\theta}(a_{\theta}|\theta)$$

where $s_j = \epsilon_j \mathcal{A}_j \sum \sigma \prod BR*\mathcal{L} \mid b_j = \text{bkg} \mid \theta_j = \text{nuisance parameters}$

Simplified likelihood encoded in a covariance matrix (CMS):

$$L_i(\mu) = \prod_{j=1}^{N} \operatorname{Pois}(n_j^{obs} | \mu s_j + b_j + \theta_j) \prod_{\theta \in \{\theta\}} e^{-\frac{1}{2} \overrightarrow{\theta}^T V^{-1} \overrightarrow{\theta}}$$

$$L_{\mathsf{C}}(\mu) = \prod_{i} L_{i}(\mu)$$


For each individual likelihood (analysis), signal regions combination is possible using a full HistFactory models (ATLAS), encoded in a json file:

$$L_i(\mu) = \prod_{j=1}^{N} \text{Pois}(n_j^{obs}|\mu s_j + b_j + \theta_j) \prod_{\theta \in \{\theta\}} c_{\theta}(a_{\theta}|\theta)$$

where $s_j = \epsilon_j \mathcal{A}_j \sum \sigma \prod BR*\mathcal{L} \mid b_j = \mathsf{bkg} \mid \theta_j = \mathsf{nuisance}$ parameters Simplified likelihood encoded in a covariance matrix (CMS):

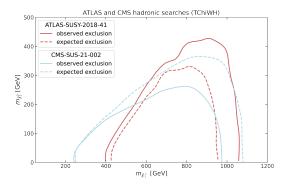
$$L_i(\mu) = \prod_{j=1}^{N} \operatorname{Pois}(n_j^{obs} | \mu s_j + b_j + \theta_j) \prod_{\theta \in \{\theta\}} e^{-\frac{1}{2} \overrightarrow{\theta}^T V^{-1} \overrightarrow{\theta}}$$

If the combination of signal regions (SRs) is not possible, use the most sensitive one ("best SR"), i.e. lowest $\mu_{\rm UL}$ obtained with $n_i^{obs}=b_j$

- Introduction to SModelS
- 2 The combination of electroweakino LHC searches
- 3 Results to the electroweakino sector of the MSSM

EWino searches in SModelS database v2.3

ID	Short Description	$\sqrt{\mathrm{s}} \; [\mathrm{TeV}]$	\mathcal{L} [fb ⁻¹]	arXiv	TxName	comb.
CMS-SUS-13-012	Multijet search for $\tilde{q}\tilde{q}$, $\tilde{g}\tilde{g}$	8	19.5	1402.4770	TChiWW	
					TChiWZ	
					TChiZZ	
CMS-SUS-16-039	$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \text{ into 2 or more } \ell + \not\!\!E_{T}$	13	35.9	1709.05406	TChiWZ	Cov.
					TChiWZoff	Cov.
CMS-SUS-16-048	$ \tilde{t}\tilde{t}, \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm} $ into 2 soft OS $\ell + \not\!\!E_{T}$	13	35.9	1801.01846	TChiWWoff	Cov.
CMS-SUS-20-004	$\tilde{H}\tilde{H}$ into $2h + \not\!\!E_T$	13	137	2201.04206	TChiHH	Cov.
CMS-SUS-21-002	Hadronic search for $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$	13	137	2205.09597	TChiWV	Cov.
ATLAS-SUSY-2013-11	$\tilde{\ell}\tilde{\ell}, \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp} \text{ into } 2\ell + E_{T}$	8	20.3	1403.5294	TChiWW	
ATLAS-SUSY-2013-12	$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ into $3\ell + \not\!\!E_{T}$	8	20.3	1402.7029	TChiWH	
					TChiWZ	
					TChiWZoff	
ATLAS-SUSY-2016-24	$ \tilde{\ell}\tilde{\ell}, \tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp} \text{ into 2 or } 3\ell + E_{T}$	13	36.1	1803.02762	TChiWZ	
ATLAS-SUSY-2017-03	$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ into 2 or $3\ell + \not\!\!E_{T}$	13	36.1	1806.02293	TChiWZ	
ATLAS-SUSY-2018-05	$\tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{\chi}\tilde{\chi}$ into $2\ell + \text{jets} + E_T$	13	139	2204.13072	TChiWZ	JSON (s)
					TChiWZoff	JSON (s)
ATLAS-SUSY-2018-06	$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ into $3\ell + E_{T}$	13	139	1912.08479	TChiWZ	
					TChiWZoff	
ATLAS-SUSY-2018-32	$ \tilde{\ell}\tilde{\ell}, \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp} $ into $2\ell + E_{T}$	13	139	1908.08215	TChiWW	JSON (s)
ATLAS-SUSY-2018-41	Hadronic search for $\tilde{\chi}^{\pm}$, $\tilde{\chi}^{0}$	13	139	2108.07586	TChiVV	Cov.
ATLAS-SUSY-2019-02	$\tilde{\ell}\tilde{\ell}, \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp} \text{ into } 2\ell + E_{T}$	13	139	2209.13935	TChiWW	Cov.
ATLAS-SUSY-2019-08	$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ into $1\ell + 2$ b-jets $+ E_{T}$	13	139	1909.09226	TChiWH	JSON
ATLAS-SUSY-2019-09	$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm}$ into $3\ell + E_{T}$	13	139	2106.01676	TChiWZ	JSON (s)
					TChiWZoff	JSON (s)

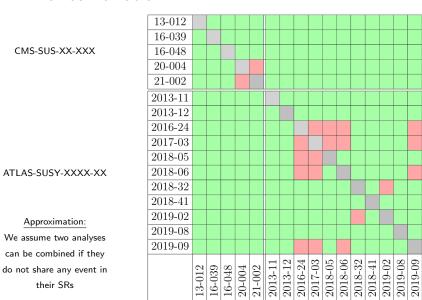

best SR

simplified likelihood

HistFactory model

V = W,Z,H (s) = simplified JSON

EWino searches in SModelS database v2.3


The two most sensitive and constraining analyses are the ATLAS and CMS hadronic searches

ATLAS sees an under-fluctuation, while CMS sees an excess:

Disclaimer

What will follow is not a SModels feature and should not be mistaken with the SModelS *combineAnas* option.

Trivial combination

Many combinations are possible, which one to choose?

List of all the analyses that give a result for the tested model: "CMS-SUS-20-004","CMS-SUS-21-002","ATLAS-SUSY-2018-05",...

Many combinations are possible, which one to choose?

- List of all the analyses that give a result for the tested model: "CMS-SUS-20-004","CMS-SUS-21-002","ATLAS-SUSY-2018-05"....
- Pick the first analysis and test if it is combinable with the second, if so, add the latter to the combination and test with the third, and so on

Many combinations are possible, which one to choose?

- List of all the analyses that give a result for the tested model: "CMS-SUS-20-004","CMS-SUS-21-002","ATLAS-SUSY-2018-05",...
- Pick the first analysis and test if it is combinable with the second, if so, add the latter to the combination and test with the third, and so on
 - Ly Before adding a new analysis to the combination, it must be combinable with all the other analyses already in the combination. Test the next analysis individually with each analysis in the combination

Many combinations are possible, which one to choose?

- List of all the analyses that give a result for the tested model: "CMS-SUS-20-004","CMS-SUS-21-002","ATLAS-SUSY-2018-05",...
- Pick the first analysis and test if it is combinable with the second, if so, add the latter to the combination and test with the third, and so on
 - □ Before adding a new analysis to the combination, it must be combinable with all the other analyses already in the combination. Test the next analysis individually with each analysis in the combination
 - Ly If two analysis belong to a different experiment or a different run, they are combinable, otherwise need to check with the combination matrix

Many combinations are possible, which one to choose?

- List of all the analyses that give a result for the tested model: "CMS-SUS-20-004","CMS-SUS-21-002","ATLAS-SUSY-2018-05",...
- Pick the first analysis and test if it is combinable with the second, if so, add the latter to the combination and test with the third, and so on
 - □ Before adding a new analysis to the combination, it must be combinable with all the other analyses already in the combination. Test the next analysis individually with each analysis in the combination
 - If two analysis belong to a different experiment or a different run, they are combinable, otherwise need to check with the combination matrix
- Repeat the process with the second analysis and so on

Many combinations are possible, which one to choose?

- List of all the analyses that give a result for the tested model: "CMS-SUS-20-004","CMS-SUS-21-002","ATLAS-SUSY-2018-05",...
- Pick the first analysis and test if it is combinable with the second, if so, add the latter to the combination and test with the third, and so on
 - Before adding a new analysis to the combination, it must be combinable with all the other analyses already in the combination. Test the next analysis individually with each analysis in the combination
 - If two analysis belong to a different experiment or a different run, they are combinable, otherwise need to check with the combination matrix
- Repeat the process with the second analysis and so on
- Once all the combinations have been found, remove the subsets
 - i.e. if you have "CMS-SUS-20-004" and "CMS-SUS-20-004,ATLAS-SUSY-2018-05", remove "CMS-SUS-20-004"

Many combinations are possible, which one to choose?

- List of all the analyses that give a result for the tested model: "CMS-SUS-20-004","CMS-SUS-21-002","ATLAS-SUSY-2018-05",...
- Pick the first analysis and test if it is combinable with the second, if so, add the latter to the combination and test with the third, and so on
 - □ Before adding a new analysis to the combination, it must be combinable with all the other analyses already in the combination. Test the next analysis individually with each analysis in the combination
 - If two analysis belong to a different experiment or a different run, they are combinable, otherwise need to check with the combination matrix
- Repeat the process with the second analysis and so on
- Once all the combinations have been found, remove the subsets
 - i.e. if you have "CMS-SUS-20-004" and "CMS-SUS-20-004,ATLAS-SUSY-2018-05", remove "CMS-SUS-20-004"
- • For each remaining combination, compute $\dfrac{L_{\mathrm{BSN}}^{\mathrm{exp}}}{L_{\mathrm{SM}}^{\mathrm{exp}}}$

Many combinations are possible, which one to choose?

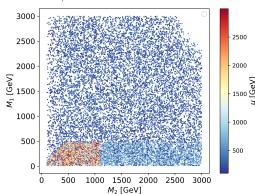
- List of all the analyses that give a result for the tested model: "CMS-SUS-20-004","CMS-SUS-21-002","ATLAS-SUSY-2018-05",...
- Pick the first analysis and test if it is combinable with the second, if so, add the latter to the combination and test with the third, and so on
 - □ Before adding a new analysis to the combination, it must be combinable with all the other analyses already in the combination. Test the next analysis individually with each analysis in the combination
 - If two analysis belong to a different experiment or a different run, they are combinable, otherwise need to check with the combination matrix
- Repeat the process with the second analysis and so on
- Once all the combinations have been found, remove the subsets
 - i.e. if you have "CMS-SUS-20-004" and "CMS-SUS-20-004,ATLAS-SUSY-2018-05", remove "CMS-SUS-20-004"
- • For each remaining combination, compute $\frac{L_{\rm BSM}^{\rm exp}}{L_{\rm SM}^{\rm exp}}$
- The combination with the lowest ratio is taken as the best combination (the most sensitive)

- Introduction to SModelS
- 2 The combination of electroweakino LHC searches
- 3 Results to the electroweakino sector of the MSSM

Selected points

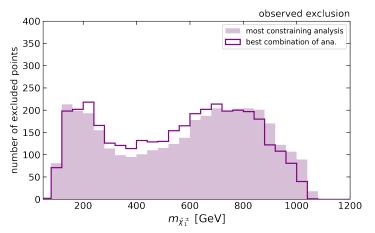
Random scan over:

(all other scales decoupled)


$$\begin{array}{cccc} 10~{\rm GeV} < & M_1 & < 3~{\rm TeV} \\ 100~{\rm GeV} < & M_2 & < 3~{\rm TeV} \\ 100~{\rm GeV} < & \mu & < 3~{\rm TeV} \\ & 5 < & \tan\beta & < 50 \end{array}$$

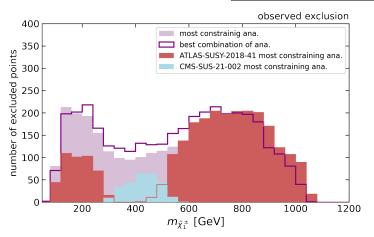
SUSY spectrum: SoftSUSY 4.1.11

NLO x-sec: Resummino 3.1.2


$$\begin{array}{l} m_{\tilde{\chi}_1^0} < 500 \; {\rm GeV} \\ m_{\tilde{\chi}_1^\pm} < 1200 \; {\rm GeV} \\ \Gamma_{\tilde{\chi}_1^\pm} > 10^{-11} \; {\rm GeV} \end{array}$$

In the end: 18305 points

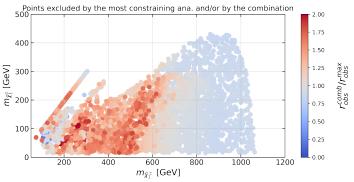
Most constraining analysis


$$\text{excluded} \Leftrightarrow r = \frac{\sigma^{\text{BSM}}}{\sigma^{\text{BSM}}_{\text{UL}}} = \frac{1}{\mu_{\text{UL}}} \geqslant 1$$

The exclusion power is enhenced by the combination for mid range $m_{\tilde{\chi}_1^\pm}$ and decreased for high $m_{\tilde{\chi}_1^\pm}$

Most constraining analysis

$$\text{excluded} \Leftrightarrow r = \frac{\sigma^{\text{BSM}}}{\sigma_{\text{UL}}^{\text{BSM}}} = \frac{1}{\mu_{\text{UL}}} \geqslant 1$$

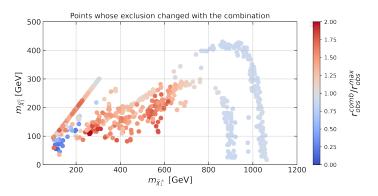


The most constraining analysis is the ATLAS hadronic search Red bars below 300 GeV: mainly higgsino LSP (some wino LSP too)

Variation of the exclusion power

$$\mathrm{excluded} \Leftrightarrow r = \frac{\sigma^{\mathrm{BSM}}}{\sigma_{\mathrm{UL}}^{\mathrm{BSM}}} = \frac{1}{\mu_{\mathrm{UL}}} \geqslant 1$$

Select the points excluded by the most constraining analysis and/or by the combination: 3974 points

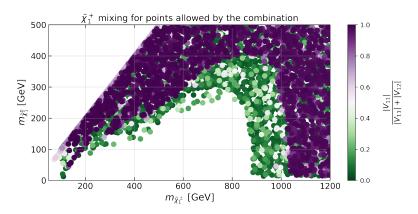

For $m_{\tilde{\chi}^{\pm}_{1}} <$ 200 GeV (compressed region): see later

For $m_{\tilde{\chi}_1^\pm} < 200$ GeV (offshell): mainly TChiWZoff, dominated by the ATLAS 3 ℓ + MET search For 200 GeV < $m_{\tilde{\chi}_1^\pm} < 600$ GeV: CMS hadronic search is combined with analyses which have recorded under-fluctuations (except for ATLAS 1 ℓ + 1 b-jet + MET search) For 600 GeV < $m_{\tilde{\chi}_1^\pm}$: the CMS hadronic search decreases the exclusion power

Variation of the exclusion power

$$\mathrm{excluded} \Leftrightarrow r = \frac{\sigma^{\mathrm{BSM}}}{\sigma_{\mathrm{UL}}^{\mathrm{BSM}}} = \frac{1}{\mu_{\mathrm{UL}}} \geqslant 1$$

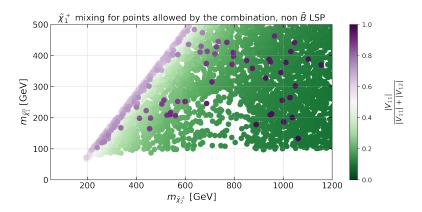
Select the points excluded only by the combination or un-excluded by it: 666 points.



Blue points on the bottom left: \tilde{B} LSP, TChiWZoff, excluded at first by ATLAS 3 ℓ + MET search and un-excluded by the combination when adding ATLAS and CMS 2 ℓ + MET searches

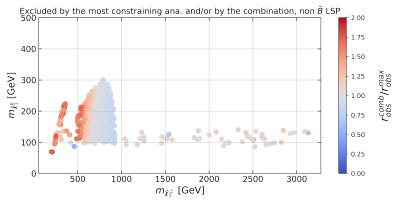
The upper "arc" is the exclusion contour for \tilde{W} NLSP and \tilde{B} LSP. The lower "arc" is the exclusion contour for \tilde{H} NLSP and \tilde{B} LSP.

Points allowed by the combination


The points not excluded by the combination can shed light on the nature of the two "arcs"

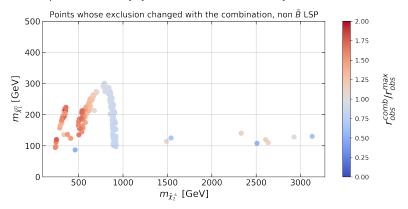
Purple: \tilde{W} NLSP Green: \tilde{H} NLSP

The $m_{ ilde{\chi}_2^\pm}$ vs $m_{ ilde{\chi}_1^0}$ plane


So far, the focus was on the \tilde{B} LSP. Let's now focus on \tilde{W} and \tilde{H} LSP

Purple points: \tilde{W} LSP. Green points: \tilde{H} LSP Except on the diagonal, mainly \tilde{W} NLSP and \tilde{H} LSP

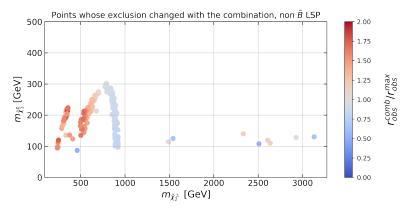
The $m_{ ilde{\chi}_2^\pm}$ vs $m_{ ilde{\chi}_1^0}$ plane


More decays due to the \tilde{H} LSP, the signal is reduced and so is the exclusion power Number of points excluded by most constraining anlysis and/or the combination: 610

For $m_{\tilde{\chi}^{\pm}_2} <$ 500 GeV: dominated by the ATLAS 3 ℓ + MET search (TChiWZ) For 500 GeV $< M_{\tilde{\chi}^{\pm}_2} <$ 1000 GeV: constrained by the ATLAS hadronic search For 1000 GeV $< m_{\tilde{\chi}^{\pm}_2}$: dominated by the ATLAS 3 ℓ + MET search (TChiWZoff)

The $m_{{ ilde \chi}_2^\pm}$ vs $m_{{ ilde \chi}_1^0}$ plane

Number of points excluded only by the combination or un-exclued by it: 193



For $m_{\tilde{\chi}^\pm_2} <$ 500 GeV: excluded when combining ATLAS 3 ℓ + MET search with ATLAS 2 ℓ + MET searches (TChiWZ)

For 500 GeV $< m_{\tilde{\chi}_2^\pm} <$ 750 GeV: the ATLAS hadronic search constraint is enhanced by the underfluctuation of the ATLAS 2 ℓ + jets + MET search

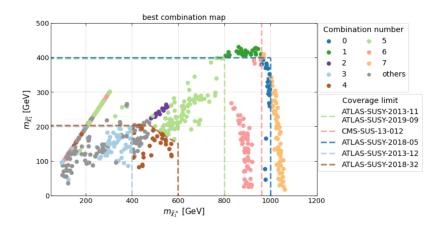
The $m_{ ilde{\chi}_2^\pm}$ vs $m_{ ilde{\chi}_1^0}$ plane

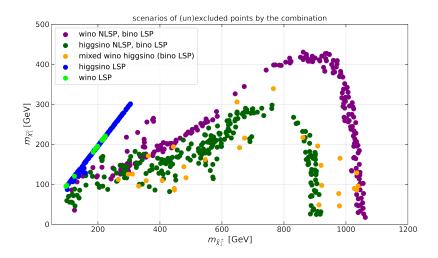
Number of points excluded only by the combination or un-exclued by it: 193

For 750 GeV $< m_{\tilde{\chi}_2^\pm} <$ 1000 GeV: the ATLAS hadronic search constraint is dampened by the excess of the CMS hadronic search

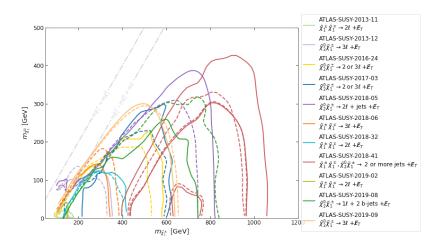
For 1000 GeV $< m_{\tilde{\chi}^\pm_2}$: ATLAS 3 ℓ + MET search is combined with ATLAS 2 ℓ + jets + MET search and with CMS 2 ℓ or more + MET searches (TChiWZoff)

Conclusion

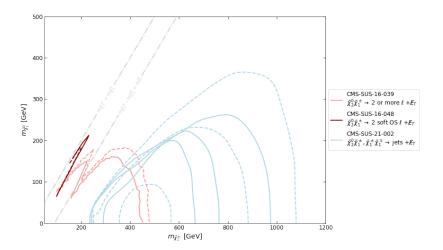

- LHC constraints set on EWino masses have been revisited in light of a global combination of EWino searches present in the SModelS database v2.3
- ullet The ATLAS 3 ℓ + MET search dominated the combination for off-shell decays
- The ATLAS and CMS hadronic searches dominated the combination for on-shell decays (ATLAS-SUSY-2018-41 and CMS-SUS-21-002)
- The excess seen by the CMS hadronic search seems to be compensated by the under-fluctuation seens by the ATLAS hadronic search
- Non EW scales were decoupled
- Next step: include long lived particles searches


Acknowledgments

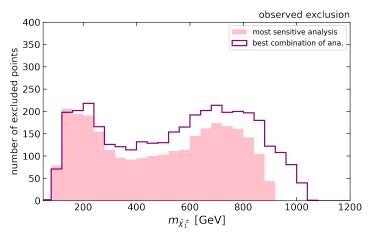
Many thanks to the SUSY 2023 organizers and to the coordinators of the phenomenology and experiment section.


This work was funded thanks to the ANR-15-IDEX-02 (APM@LHC), ANR-21-CE31-0023 (PRCI SLDNP) and IN2P3 master project "Théorie – BSMGA".

Backup Slides

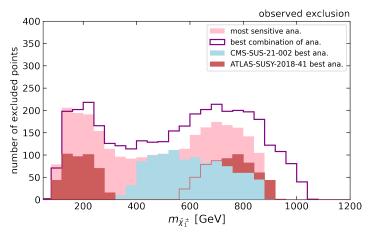


All ATLAS contours

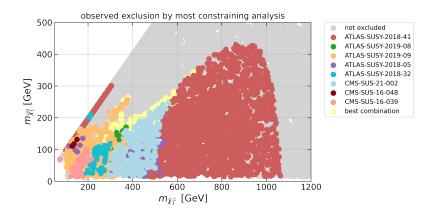


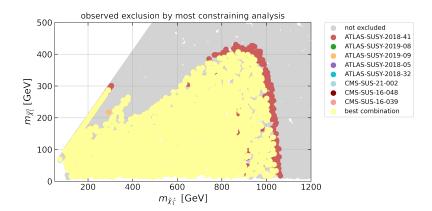
All CMS contours

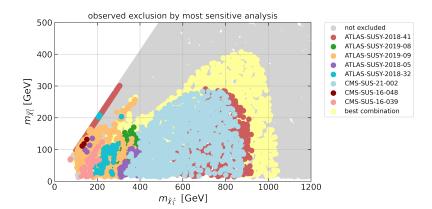
Most sensitive analysis

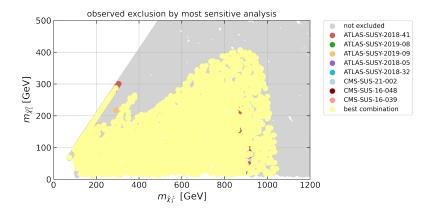

$$\text{excluded} \Leftrightarrow r = \frac{\sigma^{\text{BSM}}}{\sigma_{\text{UL}}^{\text{BSM}}} = \frac{1}{\mu_{\text{UL}}} \geqslant 1$$

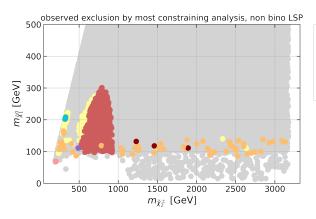
On the contrary the exclusion power is almost always enhanced when comparing to the most sensitive analysis (lowest $\mu_{\rm UL}$ obtained with $n_j^{obs}=b_j$)

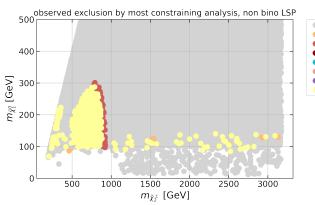

July 18, 2023 SUSY 2023 5/15

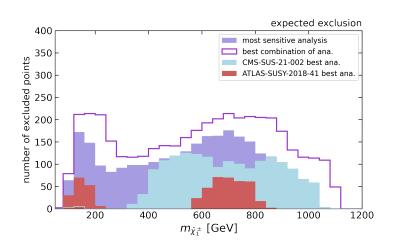

Most sensitive analysis

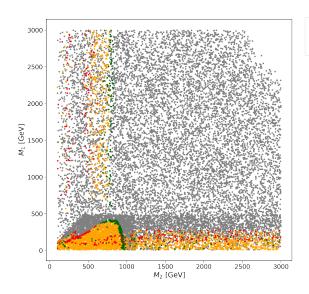



An analysis that observed an under-fluctuation is sensitive at high $m_{\tilde{\chi}_1^\pm}$

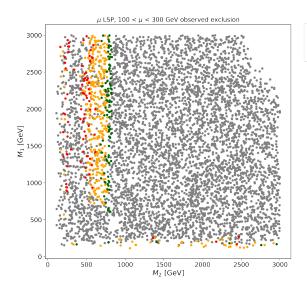

July 18, 2023 SUSY 2023 6/15







Backup Slides


$$\mathsf{excluded} \Leftrightarrow r^\mathsf{exp} = \frac{\sigma^\mathsf{BSM}}{\sigma^\mathsf{BSM, \, exp}_\mathsf{UL}} = \frac{1}{\mu^\mathsf{exp}_\mathsf{UL}} \geqslant 1$$

- not excluded
- excluded by max and comb
- unexcluded by comb
- excluded by comb only

Backup Slides

- not excluded
- excluded by max and comb
- · unexcluded by comb
 - excluded by comb only