Flavour Non-Universality vs Naturalness

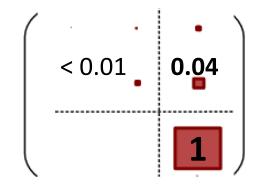
Joe Davighi, University of Zurich SUSY 2023, 21st July

Outline

- **1.** Motivation: Flavour puzzles \rightarrow accidental U(2) flavour symmetries
- 2. Models: Natural gauge explanations by deconstructing the SM near the TeV

3. Pheno: flavour + high pT + EW precision

$$G_{\rm SM,12} \times G_{\rm SM,3+Higgs} \rightarrow G_{\rm SM}$$


1. Flavour and accidental symmetries

The Flavour Puzzle(s)

Why huge (technically natural) hierarchies in SM Yukawa couplings $y \ \overline{\Psi}_L H \Psi_R$?

Masses: $1 \approx y_t \gg y_c \gg y_u \sim 10^{-5}$

Mixings: $V_{us} \gg V_{cb} \gg V_{ub}$

Yukawa matrices exhibit approximate $U(2)_L \times U(2)_R$ flavour symmetry

SM flavour

If New Physics is light (< 10 TeV), it also exhibits U(2) flavour symmetries

• Need to suppress eg kaon mixing, which probes effective scale $\sim 10^{5-6}~{\rm TeV}$

BSM flavour

$$(\psi_1 \quad \psi_2)$$
 = doublets of $U(2)$, ψ_3 = singlets of $U(2)$

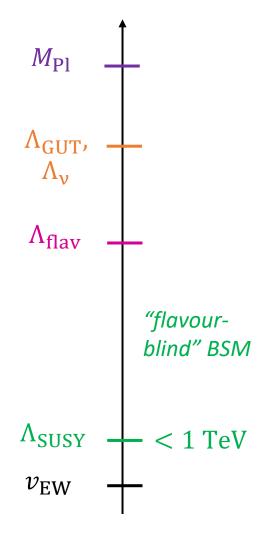
Kagan, Perez, Volansky, Zupan, <u>0903.1794</u> Barbieri et al, <u>1105.2296</u> Isidori, Straub, <u>1202.0464</u> Fuentes-Martin et al, <u>1909.02519</u> Tempting hypothesis: common dynamical origin!

These U(2) flavour symmetries emerge as accidental symmetries from a gauge symmetry (broken < 10 TeV) that is flavour non-universal (acts differently on 3^{rd} family, same on 1^{st} and 2^{nd} families)

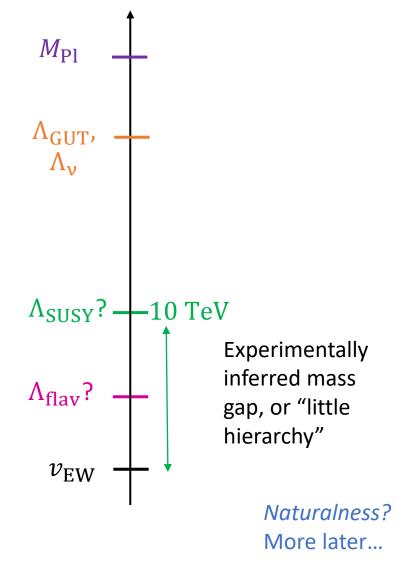
U(2) or U(3)?

Flavour-blind NP (traditional MFV) can also evade flavour bounds. D'Ambrosio, Giudice, Isidori, Strumia, hep-ph/0207036

MFV now ruled out to 10 TeV


European Strategy for Particle Physics, 2020 Briefing Book 1910.11775

Reasons to prefer U(2):


- U(3) cannot explain the flavour hierarchies; U(2) can!
- NP with U(2) can be *lighter* by coupling dominantly to 3^{rd} family

Old MFV picture (pre-LHC):

Maybe things are more like this:

2. Explaining the accidents: Deconstructing the SM

Flavour non-universality, non-horizontally

- Want $U(2)^n$ to emerge as accidental from a flavour non-universal gauge symmetry
- One approach is to "factorize the flavour problem" by gauging a horizontal symmetry e.g. $U(1)_X$

$$G = G_{SM} \times G_{hor} \rightarrow G_{SM}$$

Froggatt, Nielsen, Nucl Phys B (1979)

...

Deconstruction approach:

• A more intricate approach is to split apart (or "deconstruct") SM gauge symmetry by flavour:

$$G = G_{\text{SM},12} \times G_{\text{SM},3+\text{Higgs}} \rightarrow G_{\text{SM}}$$

Arkani-Hamed, Cohen, Georgi hep-th/0104005
... Craig, Green, Katz 1103.3708
... Bordone, Cornella, Fuentes-Martin, Isidori, 1712.01368 ...

Comments:

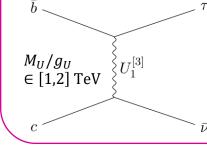
- Embedding of SM gauge interactions intrinsically non-universal in UV
- This breaking is generic for simple G: for any choice of gauge couplings, and any scalar rep $(R_1 \neq 1, R_2 \neq 1)$, you always breaks this to the diagonal (flavour universal) subgroup! Craig, Garcia-Garcia, Sutherland, 1704.07831
- So universality of SM really pops out "accidentally" from deconstructed G_{SM}

Flavour non-universality, non-horizontally

With Higgs charged under $G_{\rm SM,3}$, we can explain Yukawa hierarchies with accidental $U(2)^n$

$$SU(3)^{[12]} \times SU(3)^{[3]}$$

$$Y_{ij}^F \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$


Allows 2 x 2 matrix of light Yukawas (Higgs colourless)

Explains $V_{cb} \ll 1$

Doesn't explain $m_2 \ll m_3$

If we enlarge $SU(3)^{[3]} \rightarrow SU(4)^{[3]}$, can also explain $b \rightarrow c\tau\nu$ anomalies

1808.00942

Bordone, Cornella, Fuentes-Martin, Isidori, <u>1712.01368</u>; Greljo, Stefanek, <u>1802.04274</u>; Di Luzio, Fuentes-Martin, Greljo, Nardecchia, Renner,

Hint for deconstruction near TeV

$$SU(2)_L^{[12]} \times SU(2)_L^{[3]}$$

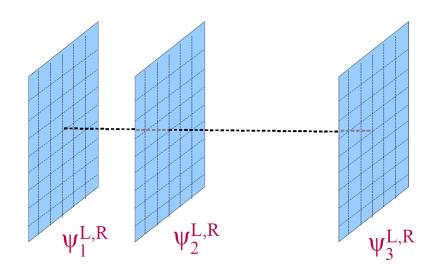
$$Y_{ij}^F \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & \times \end{pmatrix}$$

Rank-1 matrix, can be diagonalised by a RH-rotation that is unphysical (as in SM)

Explains
$$V_{cb} \ll 1$$

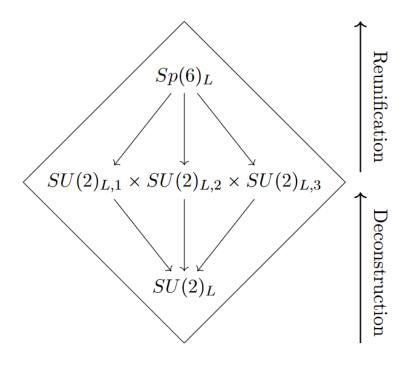
Explains $m_2 \ll m_3$

$$U(1)_{Y}^{[12]} \times U(1)_{Y}^{[3]}$$


$$Y_{ij}^F \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \times \end{pmatrix}$$

Explains $V_{cb} \ll 1$ Explains $m_2 \ll m_3$

Need to deconstruct EW gauge symmetry to explain $m_2 \ll m_3$


UV origin?

i. Fifth dimension; one bulk EW gauge group

Fuentes-Martin, Isidori, Lizana, Selimovic, Stefanek, 2203.01952

ii. Electroweak flavour unification via Sp(6)

Davighi, Tooby-Smith, 2201.07245

What of Naturalness?

Flavour deconstructed models all predict heavy gauge bosons X with big couplings to Higgs or top

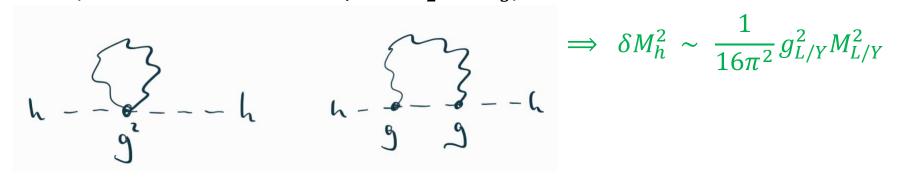
Unavoidable finite corrections to Higgs mass squared

$$\delta M_h^2 \sim \left(\frac{1}{16\pi^2}\right)^{\text{\#loops}} g_X^2 M_X^2$$

Farina, Strumia, Pappadopulo, <u>1303.7244</u>

If these corrections are $\gg M_h^2$ then the physical Higgs mass is *fine-tuned* (regardless of higher-scale stabilization), in absence of SUSY or compositeness in interim scales to soften/cancel δM_h^2

Absence of NP in colliders means a "little hierarchy" $\delta M_h^2|_{\rm SUSY} \sim {\rm TeV^2}$ is \sim observational fact


c.f. Giudice, <u>1710.07663</u>

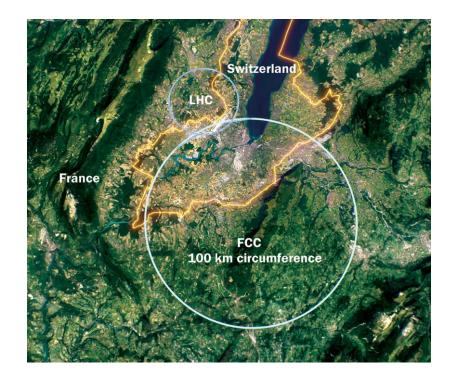
But we do not want to make the δM_h^2 fine-tuning worse with our flavoured New Physics!

→ Use naturalness as a guide in the space of deconstructed flavour models

Naturalness criteria: $\delta M_h^2 \lesssim (125 \text{ GeV})^2$ (aggressive), $\delta M_h^2 \lesssim (\text{TeV})^2$ (little hierarchy)

Deconstructing EW symmetries give 1-loop Higgs mass corrections: (recall we need this to explain $m_2 \ll m_3$)

Deconstructing colour gives 2-loop correction, but with big couplings:


$$-\frac{y_s}{y_4} \left(\frac{1}{G'} \right)^2 g_s^2 y_t^2 M_{G'}^2 \qquad \Rightarrow \delta M_h^2 \sim \left(\frac{1}{16\pi^2} \right)^2 g_s^2 y_t^2 M_{G'}^2 \qquad M_{G'} \lesssim 10 \ (80) \ \text{TeV}$$

Natural mass ranges remain viable:

$$M_{W_L'} \lesssim 2.5 (20) \text{TeV}$$
 $M_{Z_Y'} \lesssim 5 (40) \text{TeV}$
Since $g_Y \sim \frac{1}{2} g_L$, which also gives safer pheno (more later...)

$$M_{G'} \lesssim 10 \ (80) \text{ TeV}$$

3. Phenomenology

Flavoured SM gauge bosons

Focus on deconstructed EW: $SU(2)_{L,12} \times SU(2)_{L,3} \rightarrow SU(2)_L$ and $U(1)_{Y,12} \times U(1)_{Y,3} \rightarrow U(1)_Y$

$$J^{\mu} \sim g_{12}^2 (J_1^{\mu} + J_2^{\mu}) - 2g_3^2 J_3^{\mu}$$
, $J_3^{\mu} \supset D_{SM}^{\mu} H$, $g_{12}, g_3 > g$

Important SMEFT operators:

	Flavour (mixing, $bs\mu\mu$)	LHC Drell-Yan $pp \rightarrow ll \ (lv)$	Electroweak Precision
$SU(2)_{L,12} \times SU(2)_{L,3}$	$O_{qq}^{(3)}$, $O_{lq}^{(3)}$	$O_{lq}^{(3)}$ (ll and lv)	$O_{Hq}^{(3)}$, $O_{Hl}^{(3)}$
$U(1)_{Y,12} \times U(1)_{Y,3}$	$O_{qq}^{(1)}$, O_{dd} , $O_{lq}^{(1)}$, O_{qe} ,	$O_{lq}^{(1)}$, O_{qe} , O_{eu} , O_{ed} ,	$O_{Hq}^{(1)}, O_{Hl}^{(1)}, O_{He},, O_{HD}$

(assuming flavour aligned charged lepton Yukawa)

(+ve) shift in M_W only in deconstructed hypercharge case (custodial violating)

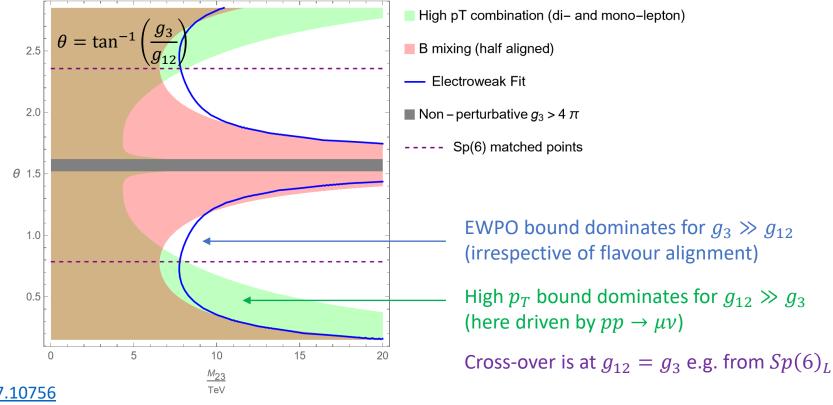
Current bounds: all 3 observable classes give very complementary constraints!

Deconstructed $SU(2)_L$ triplet

Naïve naturalness:

 $M_{W_{I}'} \lesssim 2.5 \ (20) \ {\rm TeV}$

Work in progress with Sophie Renner, Alastair Gosnay, David Miller


	Flavour (mixing, $bs\mu\mu$)	LHC Drell-Yan $pp \rightarrow ll \ (lv)$	Electroweak Precision
$SU(2)_{L,12} \times SU(2)_{L,3}$	$O_{qq}^{(3)}$, $O_{lq}^{(3)}$	$O_{lq}^{(3)}$ (ll and $l u$)	$O_{Hq}^{(3)}, O_{Hl}^{(3)}$

Current bounds, combined:

- High pT
- Flavour (B_s mixing)
- EW fit

All are important!

$$M_{W_I'} > 8 \text{ TeV}$$

High pT bounds computed using **HighPT** package:

Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10756

EW fit Based on likelihood function of

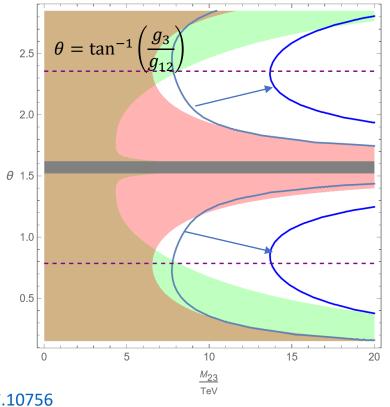
Bresó-Pla, Falkowski, González-Alonso 2103.12074

Deconstructed $SU(2)_L$ triplet

Naïve naturalness:

 $M_{W_L'} \lesssim 2.5 \ (20) \ {\rm TeV}$

Work in progress with Sophie Renner, Alastair Gosnay, David Miller


	Flavour (mixing, $bs\mu\mu$)	LHC Drell-Yan $pp \rightarrow ll \ (lv)$	Electroweak Precision
$SU(2)_{L,12} \times SU(2)_{L,3}$	$O_{qq}^{(3)}$, $O_{lq}^{(3)}$	$O_{lq}^{(3)}$ (ll and $l u$)	$O_{Hq}^{(3)}, O_{Hl}^{(3)}$

Current bounds, combined:

- High pT
- Flavour (B_s mixing)
- EW fit

Future:

$$M_{W_t'} > 14 (40) \text{ TeV}$$

■ High pT combination (di– and mono–lepton)

B mixing (half aligned)

Electroweak Fit

■ Non – perturbative $g_3 > 4 \pi$

---- Sp(6) matched points

Conservative & crude estimate of bound after \sim 3 months of FCC-ee running on Z pole ($10^4 \times LEP$ dataset)

More ambitious estimate using de Blas et al. $\underline{2206.08326}$ rules out $M_{W_I'} > 40 \text{ TeV}$!

High pT bounds computed using **HighPT** package:

Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch 2207.10756

EW fit Based on likelihood function of

Deconstructed $U(1)_Y Z'$ boson

Expect to provide the **most natural** model; double benefit from $g_Y \sim g_L/2$

- 1. Roughly x2 smaller Higgs mass correction
- Davighi, Stefanek <u>2305.16280</u>

2. Roughly x2 smaller NP effects

	natura	MACCI
IVAIVE	панна	
ITALITE	HUCUIU	

$$M_{Z_Y'} \lesssim 5 (40) \text{TeV}$$

See also

Fernández Navarro, King <u>2305.07690</u> See Mario F-N's talk!

Allanach, Davighi <u>1809.01158</u>

	Flavour (mixing, $bs\mu\mu$)	LHC Drell-Yan $pp o ll$	Electroweak Precision
$U(1)_{Y,12} \times U(1)_{Y,3}$	$O_{qq}^{(1)}$, O_{dd} , $O_{lq}^{(1)}$, O_{qe} ,	$O_{lq}^{(1)}$, O_{qe} , O_{eu} , O_{ed} ,	$O_{Hq}^{(1)}, O_{Hl}^{(1)}, O_{He},, O_{HD}$

LL 4-quark operators especially small thanks to $Y_Q g_Y \sim 1/18$

+ve shift in M_W currently preferred by EW fit (even ignoring CDF II measurement)

Naïve naturalness:

$$M_{Z_V'} \lesssim 5 (40) \text{TeV}$$

Deconstructed $U(1)_Y Z'$ boson

Expect to provide the **most natural** model; double benefit from $g_Y \sim g_L/2$

- 1. Roughly x2 smaller Higgs mass correction
- Davighi, Stefanek <u>2305.16280</u>

2. Roughly x2 smaller NP effects

		Flavour (mixing, $bs\mu\mu$)	LHC Drell-Yan $pp o ll$	Electroweak Precision
U(1)	$1)_{Y,12} \times U(1)_{Y,3}$	$O_{qq}^{(1)}$, O_{dd} , $O_{lq}^{(1)}$, O_{qe} ,	$O_{lq}^{(1)}, O_{qe}, O_{eu}, O_{ed}, \dots$	$O_{Hq}^{(1)}, O_{Hl}^{(1)}, O_{He},, O_{HD}$

LL 4-quark operators especially small thanks to $Y_Q g_Y \sim 1/18$

+ve shift in M_W currently preferred by EW fit (even ignoring CDF II measurement)

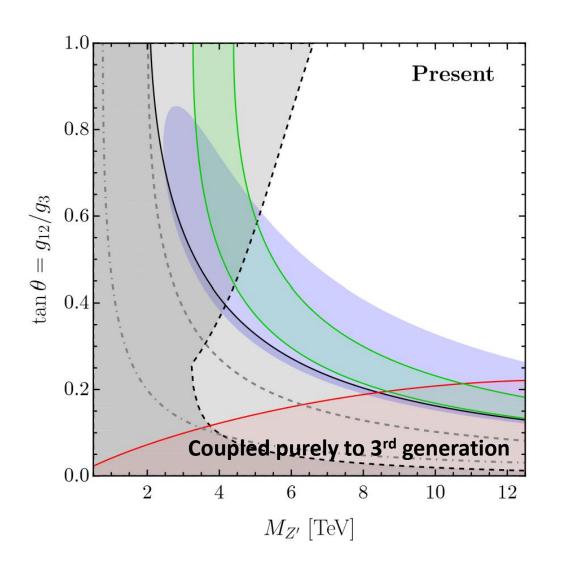

Explicit model:

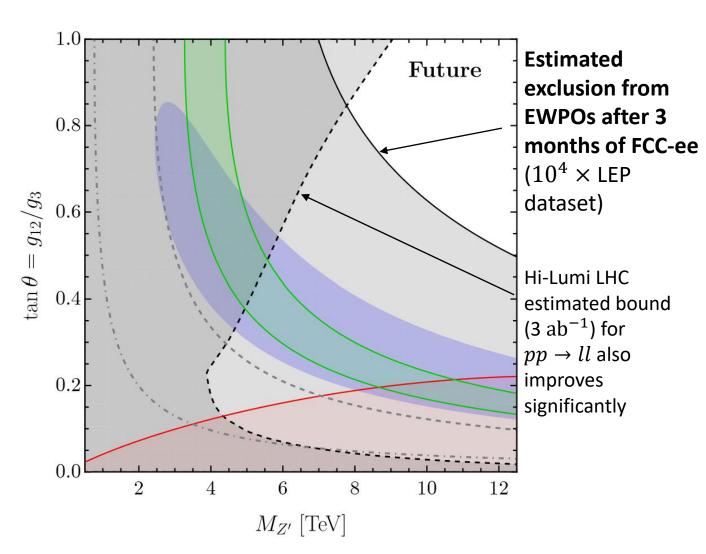
- TeV: $U(1)_{Y_{12}} \times U(1)_{Y_3} \rightarrow U(1)_Y$ by two scalars $\Phi_{q,H}$ (realises "model 1" flavour structure)
- Light Yukawas generated by UV states at ~ 10 TeV (safe choice of U(2)-breaking spurions):

Field	$SU(3)_c$	$SU(2)_L$	$U(1)_3$	$U(1)_{12}$	Generates:
H_{12}	1	2	0	1/2	$y_{c,s,\mu,u,d,e}, V_{us}$
$Q_{L,R}$	3	2	1/6	0	V_{cb}, V_{ub}

$$\frac{y_c}{y_t} \approx \frac{y_u^2}{y_u^3} \frac{f\langle \Phi_H \rangle}{m_{12}^2}$$

- RH mixing is zero at tree-level
- Semi-simple UV completion? Assume layer of SUSY / compositeness first kicks in around 10 TeV (for "best possible" solution to the *large* hierarchy problem)




- B_S mixing (with up-alignment! Suppressed by $Y_O g_Y$)
- $B_s \to \mu \mu$ exclusion (strong-ish because our $bs\mu\mu$ is $\approx C_{10}$)
- Electroweak fit (1 sigma) using a new M_W average
- ——— Electroweak fit (2 sigma exclusion) excluding CDF II M_W
- - - High p_T exclusion (recast of $pp \rightarrow ee, \mu\mu, \tau\tau$ searches)
- Percent tuning in M_h^2 (δM_h^2 now computed exactly in model)
 - A "natural" explanation of fermion mass hierarchies

$$M_{Z_Y'} \gtrsim 4 \text{ TeV}$$

- As for deconstructed $SU(2)_L$, lowest allowed mass from intersection of high p_T + EWPO
- Lighter mass (more natural) allowed, as anticipated

Deconstructed $U(1)_Y Z'$ boson

A key pheno message:

An EW precision machine like FCC-ee has power to completely exclude natural* flavour models based on "deconstructed" gauge interactions

- * Natural means:
 - 1. Electroweak stability: $\delta M_h^2 \lesssim (\text{TeV})^2$
 - 2. Order-1 marginal couplings in UV model

Thank you!

Backup

U(2) or U(3) ?

Pre-LHC, when < TeV SUSY or compositeness was anticipated, Minimal Flavour Violation (MFV) was an attractive way to pass flavour bounds. MFV now ruled out to 10~TeV

European Strategy for Particle Physics, 2020 Briefing Book 1910.11775

Recall "Traditional MFV": New Physics has approximate U(3) (flavour blind), broken only by $Y_{u,d,e}$

D'Ambrosio, Giudice, Isidori, Strumia, <u>hep-ph/0207036</u> Kagan, Perez, Volansky, Zupan, <u>0903.1794</u>

...

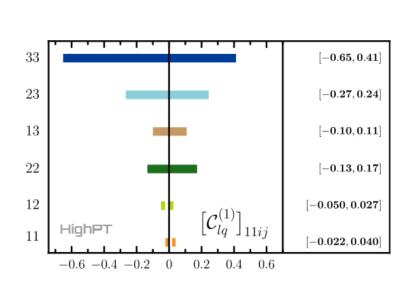
Reasons to prefer U(3):

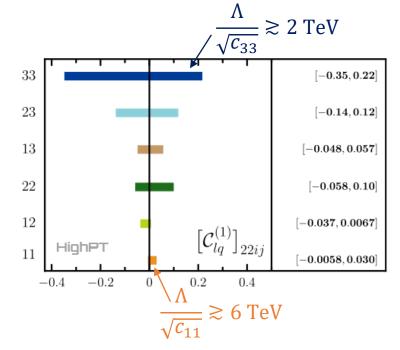
No extra input spurions (predictive)

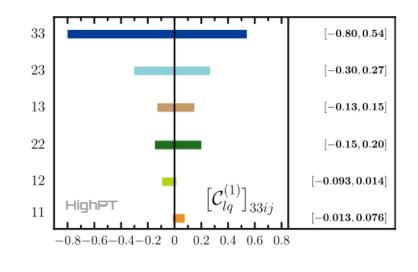
Reasons to prefer U(2):

- U(3) cannot explain the flavour hierarchies! Yukawas are just an "input"
- Extra spurions is reasonable from a UV perspective
- U(3) unnecessarily aggressive; NP could couple differently to 3^{rd} family
- E.g. if NP is "heavy-flavoured", LHC search bounds are weaker

U(2) or U(3)?


Reasons to prefer U(2):


• E.g. if NP is "heavy-flavoured", LHC search bounds are weaker


Example: High- p_T Drell-Yan tail constraints on semi-leptonic SMEFT operators

• For 33 vs 11 quark indices, bound on C/Λ^2 weaker by factor ~ 10

$$\mathcal{L} \sim \frac{C}{\Lambda^2} QQLL$$

Results from HighPT package:

Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch, <u>2207.10714</u> Allwicher, Faroughy, Jaffredo, Sumensari, Wilsch, <u>2207.10756</u>

UV completions?

Semi-simple UV

Nice UV requirement: \exists embedding $G \hookrightarrow$ semi-simple i.e. no fundamental gauged U(1)s:

- "Explain" hypercharge quantisation and origin of SM fermion reps
- has a shot at asymptotic freedom (couplings become weaker in UV)

Combined with finite naturalness + assuming no extra fermions, this greatly restricts space of UV models

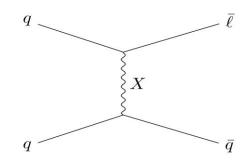
- All semi-simple extensions of 3-generation SM are classified;

 Allanach, Gripaios, Tooby-Smith, 2104.14555
- All feature one of the basic "vertical" unification patterns of Pati—Salam $SU(4) \times SU(2)_L \times SU(2)_R$, or SU(5) or SO(10) Pati, Salam, 1974, Georgi, Glashow, 1974, Georgi, 1975, Fritzsch, Minkowski, 1975

Semi-simple UV

Nice UV requirement: \exists embedding $G \hookrightarrow$ semi-simple i.e. no fundamental gauged U(1)s:

- "Explain" hypercharge quantisation and origin of SM fermion reps
- has a shot at asymptotic freedom (couplings become weaker in UV)


Combined with finite naturalness + assuming no extra fermions, this greatly restricts space of UV models

All semi-simple extensions of 3-generation SM are classified;

Allanach, Gripaios, Tooby-Smith, 2104.14555

• All feature one of the basic "vertical" unification patterns of Pati—Salam $SU(4) \times SU(2)_L \times SU(2)_R$, or SU(5) or SO(10) Pati, Salam, 1974, Georgi, Glashow, 1974, Georgi, 1975, Fritzsch, Minkowski, 1975

SU(5) & SO(10) feature LQs that give tree-level proton decay! $\Rightarrow M_X \gtrsim$ GUT scale So SU(5) & SO(10)-based options cannot appear in low-scale natural models

Semi-simple UV

From our bottom-up $G_{U} \times H_{12} \times G_{3}$, we have 4 options (up to choices of H_{12})

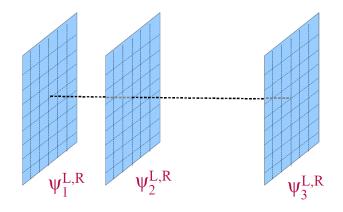
	G_U	G_3	H_{12}	Flavour structure
Model 1	$\mathrm{SU}(2)_L$	$SU(4)^{[3]} \times SU(2)_R^{[3]}$	×	$\begin{pmatrix} \epsilon_R & \epsilon_{\Omega} \\ \epsilon_R \epsilon_{\Omega} & 1 \end{pmatrix} \nabla \nabla \nabla$
Model 2	$SU(2)_R$	$SU(4)^{[3]} \times SU(2)_L^{[3]}$	×	$\begin{pmatrix} \epsilon_L & \epsilon_\Omega \epsilon_L \\ \epsilon_\Omega & 1 \end{pmatrix}$ ×
Model 3	SU(4)	$SU(2)_L^{[3]} \times SU(2)_R^{[3]}$	×	$\begin{pmatrix} \epsilon_L \epsilon_R & \epsilon_L \\ \epsilon_R & 1 \end{pmatrix}$
Model 4	Ø	$SU(4)^{[3]} \times SU(2)_L^{[3]} \times SU(2)_R^{[3]}$	×	$\begin{pmatrix} \epsilon_L \epsilon_R & \epsilon_\Omega \epsilon_L \\ \epsilon_R \epsilon_\Omega & 1 \end{pmatrix} \mathbf{\nabla}$

Higgs and ψ_3 , dominate M_h^2

 $\psi_{1,2}$, small impact on M_h^2 , can UV complete at higher E

Davighi, Isidori 2303.01520

29


What is the origin of the flavour deconstruction?

 $G_{\text{SM},12} \times G_{\text{SM},3} \to G_{\text{SM}}$ could be last step in a multi-scale breaking from fully deconstructed $G_1 \times G_2 \times G_3$; scale hierarchy $\Lambda_{12} > \Lambda_3$; $G_1 \times G_2 \to G_{12}$ breaking resolves 1-2 substructure

Example origin 1: Fifth dimension

Realise multiple flavour sites via multiple stable branes in 5d bulk

Craig, Green, Katz <u>1103.3708</u>
Cacciapaglia et al, <u>1501.03818</u>
Panico, Pomarol <u>1603.06609</u>
Bordone et al, <u>1712.01368</u>
Navarro, King <u>2209.00276</u>
Davighi, Isidori, Pesut <u>2212.06163</u>

Fuentes-Martin, Isidori, Lizana, Selimovic, Stefanek, <u>2203.01952</u>

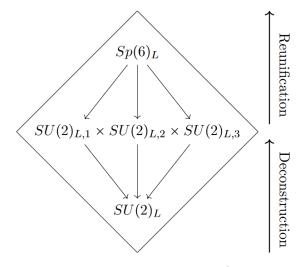
One bulk electroweak $SO(5) \supset SU(2)_L \times SU(2)_R$ gauge symmetry

- Holographic Higgs as light pNGB
- Fermions localised on 3 branes $\rightarrow \prod_{i=1}^{3} (SU(2)_{L,i} \times SU(2)_{R,i})$ in effective 4d description
- $SU(2)_R$ more sharply localised on branes ($SU(2)_L$ is "more universal"; approaching "model 1")

What is the origin of the flavour deconstruction?

 $G_{\text{SM},12} \times G_{\text{SM},3} \to G_{\text{SM}}$ could be last step in a multi-scale breaking from fully deconstructed $G_1 \times G_2 \times G_3$; scale hierarchy $\Lambda_{12} > \Lambda_3$; $G_1 \times G_2 \to G_{12}$ breaking resolves 1-2 substructure

Example origin 2: 4d gauge flavour unification


Complete UV unification of matter into two Weyls $\psi_L \oplus \psi_R$; implies one of 3 gauge groups

E.g.
$$SU(4) \times \prod_{i=1}^{3} (SU(2)_{L,i} \times SU(2)_{R,i}) \hookrightarrow SU(4) \times Sp(6)_{L} \times Sp(6)_{R}$$

- $2^{\oplus 3} \hookrightarrow 6$: all SM fermions in just 2 fields Ψ_L and Ψ_R
- Offers a "gauge answer" to "why 3 generations?"
- Higgs \hookrightarrow (6, 6); EW-breaking vev also breaks flavour symmetry

Allanach, Gripaios, Tooby-Smith, 2104.14555

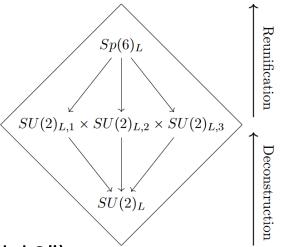
Davighi, Tooby-Smith, <u>2201.07245</u> Davighi, <u>2206.04482</u>

What is the origin of the flavour deconstruction?

 $G_{\text{SM},12} \times G_{\text{SM},3} \to G_{\text{SM}}$ could be last step in a multi-scale breaking from fully deconstructed $G_1 \times G_2 \times G_3$; scale hierarchy $\Lambda_{12} > \Lambda_3$; $G_1 \times G_2 \to G_{12}$ breaking resolves 1-2 substructure

Example origin 2: 4d gauge flavour unification

Complete UV unification of matter into two Weyls $\psi_L \oplus \psi_R$; implies one of 3 gauge groups


E.g. $SU(4) \times \prod_{i=1}^{3} (SU(2)_{L,i} \times SU(2)_{R,i}) \hookrightarrow SU(4) \times Sp(6)_{L} \times Sp(6)_{R}$

- $2^{\oplus 3} \hookrightarrow 6$: all SM fermions in just 2 fields Ψ_L and Ψ_R
- Offers a "gauge answer" to "why 3 generations?"
- Higgs \hookrightarrow (6, 6); EW-breaking vev also breaks flavour symmetry

BUT: flavour-universal SU(4) breaking must be $\gtrsim 200$ TeV due to $K_L \to e^+\mu^-$ vs. natural scale for SU(4) breaking is 10 (80) TeV

Allanach, Gripaios, Tooby-Smith, 2104.14555

Davighi, Tooby-Smith, <u>2201.07245</u> Davighi, <u>2206.04482</u>

A natural realisation could require e.g. $SUSY \le 20_3 \text{TeV}$ (same for any "model 3")

What is the origin of the flavour deconstruction?

 $G_{\text{SM},12} \times G_{\text{SM},3} \to G_{\text{SM}}$ could be last step in a multi-scale breaking from fully deconstructed $G_1 \times G_2 \times G_3$; scale hierarchy $\Lambda_{12} > \Lambda_3$; $G_1 \times G_2 \to G_{12}$ breaking resolves 1-2 substructure

Example origin 3:

"Hybrid" approach prioritizing flavour and naturalness:

Davighi, Isidori <u>2303.01520</u>

- ✓ Realises "Model 1" with nicest flavour structure
- ✓ Keeping $SU(2)_L$ universal helps "seclude" δM_h^2 from large corrections
- ✓ Complete model has all 1-loop gauge beta functions negative