Gravitational Waves and Gravitino Mass in No-Scale SUGRA Wess-Zumino model with Polonyi Term

The 30th International Conference on Supersymmetry and Unification of Fundamental Interactions

July 2023

Miguel Crispim Romão

with Stephen F. King (appearing soon)

LIP-Minho, Pheno Group

Southampton HEP mcromao@lip.pt

Outline

- Introduction and Motivation
- 2. Parameter Space Scan
 - a. Random Sampling
 - b. Artificial Intelligence Guided
- 3. Gravitational Wave Spectrum
- 4. Conclusions

1) Introduction and Motivation

Introduction and Motivation

No-Scale SUGRA Inflation

2013 - Ellis, Nanopoulos, Olive

$$egin{align} K_{ENO} &= -\,3\,\log\left(T + ar{T} - rac{\Phiar{\Phi}}{3}
ight) \ W_{ENO} &= rac{\hat{\mu}}{2}\Phi^2 - rac{\lambda}{3}\Phi^3 \ \end{gathered}$$

Starobinsky Inflation:

$$\chi = rac{1}{\sqrt{2}}(x+i\,y),\, T+ar{T}=c$$
 $\Phi = \sqrt{3\,c} anh\left(rac{\chi}{\sqrt{3}}
ight)$
 $\hat{\mu} = \mu\sqrt{c/3}$

No-Scale Supergravity Realization of the Starobinsky Model of Inflation - Ellis, Nanopoulos, Olive - Phys. Rev. Lett. 111, 111301 [1305.1247]

C.f. Olive talk yesterday morning

Introduction and Motivation No-Scale SUGRA Inflation

2017 - MCR, Stephen F. King

$$W_{CRK}=W_{ENO}+M^2\Phi=M^2\Phi+rac{\hat{\mu}}{2}\Phi^2-rac{\lambda}{3}\Phi^3$$

 Starobinsky-like Inflation with SUSY breaking

Starobinsky-like inflation in no-scale supergravity Wess-Zumino model with Polonyi term - MCR, Stephen F. King - JHEP 07 (2017) 033 [1703.08333]

Introduction and Motivation No-Scale SUGRA Inflation

2022 - Spanos, Stamou

$$W = W_{ENO}$$

$$K_{NSS} = -3\log \left(T + ar{T} - rac{\Phiar{\Phi}}{3} + ae^{-b\left(\Phi + ar{\Phi}
ight)^2}ig(\Phi + ar{\Phi}ig)^4
ight)$$

- Kahler potential modification produces a kink in the inflaton potential
- Kink slows down the inflaton, leading to a second inflationary stage with an enhanced power spectrum which leads to the production of Gravitational Waves (GW)

Introduction and Motivation

No-Scale SUGRA Inflation

2023 - MCR, Stephen F. King

$$egin{align} W_{CRK} &= W_{ENO} + M^2 \Phi = M^2 \Phi + rac{\hat{\mu}}{2} \Phi^2 - rac{\lambda}{3} \Phi^3 \ K_{NSS} &= -3 \log \left(T + ar{T} - rac{\Phi ar{\Phi}}{3} + a e^{-b \left(\Phi + ar{\Phi}
ight)^2} ig(\Phi + ar{\Phi} ig)^4
ight) \end{aligned}$$

- Study the impact of the Polonyi term in GW production
- Study the impact of the kink in SUSY breaking
- Assess whether the phenomenology of GW and the phenomenology of SUSY breaking interact

2) Parameter Space Scan

Parameter Space Scan The Dynamic Inflaton Solution

Need to find the dynamical background solution

$$rac{d^2x}{d\,N^2} + 3\,rac{d\,x}{d\,N} - rac{1}{2}igg(rac{d\,x}{d\,N}igg)^3 + igg(3-rac{1}{2}igg(rac{d\,x}{d\,N}igg)^2igg)\partial_x\ln V = 0$$

Keep track of field redefinitions

$$egin{aligned} \mathcal{L}_{kin} \supset K_{\Phiar{\Phi}} \Big|_{\Phi=\phi} |\partial_{\mu}\phi|^2, \ rac{1}{2} (\partial_{\mu}x)^2 = \Big|rac{d\,x}{d\,\Phi}\Big|^2 \Big|_{\Phi=\phi} |\partial_{\mu}\phi|^2 \ dx = \sqrt{2\,K_{\Phiar{\Phi}}} \Big|_{\Phi=\phi} d\phi, \ \partial_x
ightarrow rac{1}{\sqrt{2\,K_{\Phiar{\Phi}}} \Big|_{\Phi=\phi}} \partial_{\phi} \end{aligned}$$

Parameter Space Scan

Planck and m_{3/2}

 Planck-constrained observables at pivot scale, k*=0.05 Mpc⁻¹, from slow-roll at tip of the potential

$$egin{aligned} r &\simeq 16 \, \epsilon_V, \, n_s \simeq 1 - 6 \, \epsilon_V + 2 \, \eta \ &\epsilon_V = rac{1}{2} igg(rac{\partial_x V}{V}igg)^2igg|_{x=x^*}, \, \eta_V = rac{\partial_{x,x} V}{V}igg|_{x=x^*} \end{aligned}$$

Gravitino mass computed at the global minimum

$$egin{align} V \propto \left|\partial_\chi W
ight|^2 &= 0 \ \left\langle \Phi
ight
angle &= rac{1}{2\,\lambda} igg(\hat{\mu} \pm \sqrt{\hat{\mu}^2 + 4\,M^2\lambda}igg) \ m_{3/2}^2 &= e^K |W|^2igg|_{\Phi = \left\langle \Phi
ight
angle} \end{aligned}$$

Parameter Space Scan

Planck and m_{3/2}

 Allow for more parametric freedom around the points found in [1703.08333, 2205.05595]

$$egin{aligned} a &\in [-1.5, -0.5], \, b \in [10, 30], \, c \in 0.065 \, imes [0.95, 1.05] \ M &= \sqrt{\mu \, d} \ ext{with} \, \, d \in 10^{[-8, -2]} \ \lambda &= \mu \, l \ ext{with} \, \, l \, \in [0.33327, 1/3] \ \phi^* &\in \sqrt{3 \, c} \, imes [0.95, 1.00] \end{aligned}$$

- Scanned just over 1M points
- For all points in the this scan, the potential was found to be always positive semi-definite
 - The global minimum is found at V=0
 - Real and imaginary components never mix

Parameter Space Scan Planck and m_{3/2}

Parameter Space Scan Planck and m_{3/2}

Planck observables are mostly constrained by **d**, the parameter that controls the Gravitino mass, and **b**, the (main) parameter that controls the kink

Parameter Space Scan

Planck and m_{3/2}

Gravitino mass is bounded at O(1000) TeV

Parameter Space Scan Potential Shapes

Unfortunately, most of the points do not exhibit the desired potential features to generate GW

Parameter Space Scan Challenges to Produce Gravitational Waves

- None of the points exhibit a power spectrum enhancement large enough to produce GW
- Inflaton needs to be slowed down enough in the kink (~ two-stage inflation)
- It has been extensively discussed by Stamou and Spanos that one needs to tweak and fine tune the b parameter
 - Manual tweaking the value of **b** of points from the scan would then spoil Planck observables, N^* , $< x >_{final}$

Need a better approach to find points with **good inflation** and with a **pronounced enough kink** to produce **GW**

Parameter Space Scan Artificial Intelligence Guided Scan

Exploring Parameter Spaces with Artificial Intelligence and Machine Learning Black-Box Optimisation Algorithms - Fernando Abreu de Souza, MCR, Nuno Filipe Castro, Mehraveh Nikjoo, Werner Porod, Phys.Rev.D 107 (2023) 3, 035004 [2206.09223]

- It was recently proposed that one can scan parameter spaces with Artificial Intelligence and Machine Learning black-box optimisation algorithms
- The methodology:
 - Choose a set of **criteria**: Planck observables and good inflation, location and length of the kink, (slow-roll approximation) power spectrum enhancement at kink
 - Quantify how badly a point is performing under the criteria
 - Employ an intelligent search algorithm that looks for points that fit all the criteria (we used CMA-ES, an evolutionary strategy)

$$egin{align} P_{R,sr} &\simeq rac{1}{8\,\pi^2}rac{H^2}{arepsilon_H} \ arepsilon_H &= rac{1}{2}igg(rac{dx}{dN}igg)^2 \ H^2 &= rac{V}{3-arepsilon_H} \ \end{align}$$

Parameter Space Scan Artificial Intelligence Guided Scan

- The algorithm could not find points that completely satisfied all the criteria
- However, the best points found were easy to manually tune to satisfy all the criteria!
- Point found (significant digits are important)
 - o a= -1.0056852832254333
 - o b=22.25263984321967
 - o c=0.06805097493690469
 - o d=5.34383527502627 x 10⁻⁰⁷
 - o l=0.33328322912577735
 - \circ $\phi^* = 0.43520666936934826$
- Kink does not slow down the inflation enough

Parameter Space Scan Artificial Intelligence Guided Scan

- But this point can be easily tuned!
 - b=22.25263984321967 x 0.998343
- With minimal impact on observables
 - o r: 0.116302 -> 0.116312
 - n_s: 0.957572 -> 0.957567
 - o m_{3/2}: 2791.03 GeV -> 2791.15 GeV

This is a promising point to produce GW! However, we need to go beyond the slow-roll approach to compute the power spectrum

Gravitational Waves Spectrum Beyond Slow-Roll

- When "rolling through" the kink, the inflaton dynamics violate the slow-roll assumptions
- In fact, it was observed [Adams, Creswell, Easther, 0102236] that the slow-roll approximation actually underestimates the peak of power spectrum
- We need to go beyond the slow-roll approximation

Beyond Slow-Roll

 Following [Ringeval 07, Stamou 21, SS 21,22], for each GW mode with wave-number k the contribution to the power spectrum is

$$P_R=rac{k^3}{2\,\pi^2}|R_k|^2,\,R_k=\Psi+rac{\delta x}{dx/dN}$$

where Ψ is the Bardeen potential, and δx the inflaton perturbations, obtained by solving (with appropriate initial conditions)

$$\begin{split} \frac{d^2\delta x}{dN^2} &= -\left(3 - \frac{1}{2}\left(\frac{dx}{dN}\right)^2\right)\frac{d\delta x}{dN} - \frac{1}{H^2}\partial_{x,x}^2V\delta x - \frac{k^2}{a^2H^2}\delta x + 4\frac{d\Psi}{dN}\frac{dx}{dN} - \frac{2\Psi}{H^2}\partial_xV + \frac{d^2\Psi}{dN^2} - \left(3 - \frac{1}{2}\left(\frac{dx}{dN}\right)^2\right)\frac{d\Psi}{dN} - \left(3 - \frac{1}{2}\left(\frac{dx}{dN}\right)^2\right)$$

Beyond Slow-Roll

- Following [Ringeval 07, NSS 20, Stamou 21, SS 21, 22], the steps to obtain present day power spectrum
 - Compute the background solution, x(N)
 - For each mode k interest
 - Obtain N₁, the "time" at which **k** crosses the Hubble radius
 - **Evolve** Ψ , δx from N_{ic} until the end of inflation
 - We notice that initial conditions (not shown here) only depend on $x(N_{ic})$, k, $a(N_{ic})$
 - N_{ic} can be set "close" to N_{k} , say $k_{ic} \sim 10^{-3}$ k
 - The power spectrum for the mode k is

$$P_R=rac{k^3}{2\,\pi^2}|R_k|^2,\,R_k=\Psi+rac{\delta x}{dx/dN}$$

Beyond Slow-Roll

- Peak gets further enhanced when compared to slow-roll approximation
- Peak is also wider
- ullet Using $1\,\mathrm{Mpc^{-1}}=0.97154\, imes10^{-14}\mathrm{s}$ $k=2\,\pi\,f$

we expect the peak of GW spectrum to be around 0.1 Hz -> Space-based interferometers

Final Computation

Having P_R, we can finally compute the (present day) GW spectrum.
 Following [Espinosa, et al 1804.07732, SS 21, 22]

$$h^2\Omega_{GW}(k) = rac{\Omega_r}{36} \int_0^{1/\sqrt{3}} \mathrm{d}d \int_{1/\sqrt{3}}^{\infty} \mathrm{d}s igg[rac{\left(s^2 - 1/3
ight) \left(d^2 - 1/3
ight)}{s^2 - d^2} igg]^2 P_R(k\,X) P_R(k\,Y) ig(I_c^2 + I_s^2ig) \ X = rac{\sqrt{3}}{2} (s+d), \, Y = rac{\sqrt{3}}{2} (s-d) \ I_c = -36\, \pi rac{\left(s^2 + d^2 - 2
ight)^2}{\left(s^2 - d^2
ight)^3} \Theta(s-1) \ I_s = -36 rac{\left(s^2 + d^2 - 2
ight)^2}{\left(s^2 - d^2
ight)^2} igg[rac{\left(s^2 + d^2 - 2
ight)}{\left(s^2 - d^2
ight)} \log \left| rac{d^2 - 1}{s^2 - 1}
ight| + 2 igg]$$

Gravitational Waves Spectrum Present Day Spectrum

With $m_{3/2}=2791.15\,\mathrm{GeV}$

Sensitivity curves from [Schmitz 2002.04615]

4) Conclusions

Conclusions

And Future Work

- We have presented a No-Scale SUGRA inflationary potential which has a Starobinsky limit
 - We extend the Wess-Zumino superpotential to include a Polonyi term => SUSY breaking and gravitino mass after inflation
 - We considered a non-minimal Kahler potential which imprints a kink on the inflaton potential => Production of GW
- We found the parameter space region with GW production to be very restricted, but found points with the aid of an Artificial Intelligence search algorithm
 - GW spectrum detectable by space-based interferometers
 - SUSY breaking has a natural upper bound for successful inflation m_{3/2}< 1000 TeV
 - Gravitino mass and GW spectrum are mostly uncorrelated
- Future work
 - Study Primordial Black Hole production in the model
 - Understand if we can improve the AI search to fine tune the relevant parameters

Thanks!

mcromao@lip.pt miguel@miguelromao.me