

Probing the nature of electroweak symmetry breaking with Higgs boson pair-production at ATLAS

Ligang Xia (Nanjing University)

On behalf of ATLAS collaboration

Contents

- Introduction to electroweak symmetry breaking
- Overview of searches for Higgs boson pair production (HH)
- Searches for HH productions
 - HH→bbbb
 - HH→bbττ
 - HH→bbγγ
- Combination of HH or HH+H measurements
- Recent results in HL-LHC era
- Summary

Electroweak Symmetry Breaking

- In the electroweak sector of SM, fermions and Higgs fields respect the SU(2)xU(1) symmetry.
- However, the ground state of Higgs field does not. This leads to spontaneous electroweak symmetry breaking (EWSB). At the same time, W/Z bosons and fermions acquire non-zero masses.
- EWSB is directly driven by the special shape of Higgs potential. With the discovery of Higgs boson, we know the key parameter $\lambda = \frac{1}{2} \left(\frac{m_H}{v} \right)^2 \approx \frac{1}{8}$. It describes the Higgs self-interactions, i.e. hhh and hhhh couplings, in the SM.
- Di-Higgs production is a crucial mean to probe Higgs potential directly.

Overview of Higgs boson pair researches in ATLAS

- In SM, Higgs pairs are mainly produced in the gluon-gluon fusion process (Non-Resonant production, NR). Vector-boson fusion is also included.
- New Physics, e.g. SUSY, may appear as new loop-contribution in non-resonant HH
 productions or predict new scalar resonances decaying to two Higgs bosons.
- For Non-Resonant production, SUSY may enhance the rate or modify the kinematic properties (e.g. m_{HH}) and measured in the kappa formalism/EFT paradigm.
- All main decay modes are used in the searches.
 - ✓ High branching fraction
 - ✓ Precise Higgs reconstruction
 - ✓ High background suppression

Non-resonant production

Resonant production

	bb	ww	ττ	ZZ	γγ
bb (33%				
WW	25%	4.6%			
ττ	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0005%

Overview of Higgs boson pair researches in ATLAS

- ✓ We will cover the following researches in this talk.
- √ We'll present latest results based on full Run2 data in ATLAS (139 fb⁻¹).

Process	Final state	Reference
HH→bbbb	>=4 jets (>=2 b-jets)	Arxiv:2301.03212
HH→bbbb	>=4 small-R jets or 2 large-R jets	PRD105,092002(2022)
HH→bbττ	2b+>1 had. tau	Arxiv:2209.10910
HH→bbγγ	$2b+2\gamma$	PRD106,052001(2022)
HH combination	HH→bbbb/bbττ/bbγγ	CONF-HDBS-2019-30
HH+H combination	$HH\rightarrow bbbb/bb\tau\tau/bb\gamma\gamma$, $H\rightarrow WW/ZZ/\tau\tau/\gamma\gamma$	PLB843(2023)137745
HEFT interpretation	HH→bbττ/bbγγ	PUB-HDBS-2021-31
HL-LHC prospects	HH→bbbb/bbττ/bbγγ	PUB-HDBS-2022-11 (bbbb, comb.) ATL-PHYS-PUB-2021-044 (bb $\tau\tau$) ATL-PHYS-PUB-2022-001 (bb $\gamma\gamma$)

Many more results will be published soon!

Search for nonresonant pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

- Consider both ggF and VBF productions modes.
- Select events with at least 4 central b-tagged jets ("4b"). For VBF, 2 additional jets are required with m_{ii} >1TeV and $\Delta \eta_{ii}$ >3.
- They are paired to form 2 Higgs candidates. Use the one with smallest ΔR for the higher-pT jet pair.
- Further require $X_{\rm HH}$ <1.6 and sub categories are defined based on $X_{\rm HH}$ and $\Delta\eta_{\rm HH}$ to improve the sensitivity.

$$X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \,\text{GeV}}{0.1 \,m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \,\text{GeV}}{0.1 \,m_{H2}}\right)^2}$$

- Multijet bkg is dominant and estimated in a data-driven way.
 - Events selected as SR except requiring =2 b-tagged jets ("2b") and reweight them to the 4b SR.
 - Reweighting functions are obtained via a Neural Network in CR.

VBF,HH

Arxiv:2301.03212

Search for nonresonant pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

- m_{HH} is used to obtain signal sensitivity.
- Greatest syst. unc. is from bkg. estimation.
 and ggF HH signal theory uncertainty
- · Main results:
 - κ_{λ} in [-3.9, 11.1] (exp. [-4.8, 10.8])
 - κ_{2V} in [-0.03, 2.11] (exp. [-0.05, 2.12])
 - Constraints on HEFT benchmark models and SMEFT parameters are also provided!

Parameter	Expected Constraint		Observed Constraint		
	Lower	Upper	Lower	Upper	
c_H	-20	11	-22	11	
c_{HG}	-0.056	0.049	-0.067	0.060	
$c_{H\square}$	-9.3	13.9	-8.9	14.5	
c_{tH}	-10.0	6.4	-10.7	6.2	
C_{tG}	-0.97	0.94	-1.12	1.15	

SMEFT

- Two complementary channels:
 - Resolved: b-quarks → individual small-R jets, targeting low-mass X up to 1.5 TeV
 - At least 4 b-tagged jets
 - · b-jets are paired to form 2 Higgs candidates via a BDT training
 - Boosted: H→bb → single large-R jet, targeting high-mass X up to 5 TeV
 - At least 2 large-R jets with pT>450, 250 GeV
 - 3 SRs defined based on b-tagging status of the associated track jets

3000

1000

Data

Stat. uncertainty

Multi-jet bkg. is dominant and estimated with the same method as the non-resonant HH→bbbb (previous slide).

- m_{HH} is used to obtain signal sensitivity.
- Resolved channel is limited by background estimation.
- Boosted channel is limited by statistical uncertainties.
- Main results:
 - No significant evidence of a signal m_x = 251~5000 GeV!
 - Upper limits on the production XS in two models are provided.
 - Exclude the bulk Randall-Sundrum model with m_G = 298~1460 GeV

Search for resonant and non-resonant Higgs boson pair production in the $b\bar{b}\tau^+\tau^-$ decay channel using 13 TeV $p\,p$ collision data from the ATLAS detector

- Select events with 2 b-tagged jets and 2 tau candidates
 - $\tau_{had}\tau_{had}$: two oppositely charged τ_{had} : single tau triggers (STT), di-tauhad triggers (DTT)
 - $\tau_{lep}\tau_{had}$: an electron/muon and an oppositely charged τ_{had} : single lepton triggers (SLT), lepton-plus-tauhad triggers (LTT)
 - Further conditions: MMC mττ>60 GeV (to suppress Drell-Yan), m_{bb}<150 GeV (to reject tt bkg.)
 - Fake τ_{had} background (tt/Multi-jet) estimated with semi-data-driven methods
- Machine Learning methods (BDT,NN,PNN) are used to extract signals.

Search for resonant and non-resonant Higgs boson pair production in the $b\bar{b}\tau^+\tau^-$ decay channel using 13 TeV pp collision data from the ATLAS detector

- Obs. upper limit of HH production XS to SM value is 4.7 (3.9).
- HH resonance is searched from 251 GeV to 1600 GeV.
- A broad excess observed between 0.7 to 1.2 TeV with a local significance 3.1σ (globally 2.0σ).

Search for Higgs boson pair production in the two bottom quarks plus two photons final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

- Select events with 2 b-tagged jets and >=2 photons
- Non-Resonant selection:

$$m_{b\bar{b}\gamma\gamma}^* = m_{b\bar{b}\gamma\gamma} - m_{b\bar{b}} - m_{\gamma\gamma} + 250 \text{ GeV}$$

- 2 regions: $m_{bb\gamma\gamma}^*>350$ (SM signal), $m_{bb\gamma\gamma}^*<350$ (BSM signal e.g. $\kappa_{\lambda}=10$)
- Dedicated BDT trained between benchmark HH signal and a combined background
- For each mass region, two categories defined based on BDT score.
- Resonant selection:
 - Joint BDT for all resonance masses (reweighted to the same mHH as bkg.) and background.
 - Two BDTs trained against 1) continuum bkg. $(\gamma \gamma)$ and 2) peaking bkg. (ZH,ttH) and combined.
 - Events must pass a minimum BDT score value and be in m_X window +/-2 σ .

- Signal sensitivity obtained from a simultaneuous fit to the mγγ distributions.
- Dominant systematic uncertainty due to functional from for the continuum background (spurious signal).
- Main results:
 - Constraint on κ_λ in [-1.5, 6.7] (exp. [-2.4, 7.7])
 - No significant evidence for HH resonances
 - X→HH cross section upper limits: 640-44 fb for m_X=251-1000 GeV.

Combination of searches for non-resonant and resonant Higgs boson pair production in the $b\bar{b}\gamma\gamma$, $b\bar{b}\tau^+\tau^-$ and $b\bar{b}b\bar{b}$ decay channels using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

CONF-HDBS-2019-30 PLB843(2023)137745

- All signal regions are orthogonal!
- Simultaneous fit to data with uncertainties from common source fully correlated when possible
- Main results:
 - Obs. (exp.) U.L. on HH signal strength is 2.4 (2.9).
 - Exclude κ_λ outside [-0.6, 6.6] ([-2.1, 7.8])
 - HH resonances with mass = 251GeV~3TeV are searched.
 - No significance evidence, cross section U.L. provided

Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at $\sqrt{s} = 13$ TeV

PLB843(2023)137745

- Higgs self-coupling λ_{HHH} can be directly accessed in HH productions.
- It also contributes to single Higgs production XS and BR via NLO electroweak corrections.

Analysis channel

$$HH \rightarrow b\bar{b}\gamma\gamma$$

 $HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$
 $HH \rightarrow b\bar{b}b\bar{b}$

$$H \rightarrow \gamma \gamma$$

 $H \rightarrow ZZ^* \rightarrow 4\ell$
 $H \rightarrow \tau^+ \tau^-$
 $H \rightarrow WW^* \rightarrow e\nu\mu\nu \text{ (ggF,VBF)}$
 $H \rightarrow b\bar{b} \text{ (VH)}$
 $H \rightarrow b\bar{b} \text{ (VBF)}$
 $H \rightarrow b\bar{b} \text{ (t\bar{t}H)}$

- 3 HH channels and 7 single H channels are considered.
- Negligible overlapping among the signal regions
- Exclude κ_{λ} outside [-0.6, 6.6] (HH only) outside [-0.4, 6.3] (HH+H)

Exclude κ_{2V} outside [0.1, 2.0] (HH)

HEFT interpretations of Higgs boson pair searches in $b\bar{b}\gamma\gamma$ and $b\bar{b}\tau\tau$ final states and of their combination in ATLAS

- Effective Field Theories: describe the effects of New physics in terms of effective couplings at low-energy scale
- 5 Wilson Coefficients and 7 HEFT benchmark models are considered! c_{hhh} c_{tth} c_{ggh} c_{gghh} c_{tthh}

400 500 600 700 800 900 1000

CONF-HDBS-2019-30

HL-LHC prospects for measurements of HH production

- High Luminosity LHC project:
 - C.m. energy=14 TeV, Int. lumi.=3000 fb-1, Starts in 2029
- Extrapolate the latest Run2 results
 - Assume the same detector performance as in Run2
 - 13 TeV → 14 TeV, 140 fb-1 → 3000 fb-1, data-driven bkg. is also scaled properly.

Different systematic uncertainty scenarios are evaluated.

PUB-HDBS-2022-11 (bbbb, comb.) ATL-PHYS-PUB-2021-044 (bb $\tau\tau$) ATL-PHYS-PUB-2022-001 (bb $\gamma\gamma$)

Summary

- Latest searches for Higgs boson pair production using full Run2 dataset are presented. No significant excess above SM prediction is observed.
- Stringent constraints are obtained on the Higgs self-coupling from individual measurements and also combined measurements (κ_{λ} in [-0.4, 6.3])
- Resonances decaying to Higgs pair are searched for mass from 251 GeV to 5 TeV.
 U.L. of production XS are provided.
- HL-LHC expects to see SM Higgs self-coupling with 3.4σ .
- More and more exciting experimental results will be public soon!

• BACK UP

BACK UP for bbbb (NR)

$$X_{Wt} = \min \left[\sqrt{\left(\frac{m_{\rm jj} - m_W}{0.1 m_{\rm jj}} \right)^2 + \left(\frac{m_{\rm jjb} - m_t}{0.1 m_{\rm jjb}} \right)^2} \right]$$
 Further require $X_{\rm Wt} > 1.5$ to suppress tt bkg.

BACK UP for bbbb (R)

$$X_{HH} = \sqrt{\left(\frac{m(H_1) - 120 \text{ GeV}}{0.1 \times m(H_1)}\right)^2 + \left(\frac{m(H_2) - 110 \text{ GeV}}{0.1 \times m(H_2)}\right)^2}.$$

BACK UP for bbtata

back up for bbyy

$$BDT_{tot} = \frac{1}{\sqrt{C_1^2 + C_2^2}}$$

$$\times \sqrt{C_1^2 \left(\frac{BDT_{\gamma\gamma} + 1}{2}\right)^2 + C_2^2 \left(\frac{BDT_{SingleH} + 1}{2}\right)^2}.$$

$$C_1$$
=0.65, C_2 =1- C_1

(a) ggF HH production mode

local significance: 3.2 sigma global significance: 2.1 sigma

(d) Run 2 systematic uncertainties

BACK UP for HEFT combination

Benchmark model	c_{hhh}	c_{tth}	c_{ggh}	c_{gghh}	c_{tthh}
SM	1	1	0	0	0
BM 1	3.94	0.94	1/2	1/3	-1/3
BM 2	6.84	0.61	0.0	-1/3	1/3
BM 3	2.21	1.05	1/2	1/2	-1/3
BM 4	2.79	0.61	-1/2	1/6	1/3
BM 5	3.95	1.17	1/6	-1/2	-1/3
BM 6	5.68	0.83	-1/2	1/3	1/3
BM 7	-0.10	0.94	1/6	-1/6	1

(d) Run 2 systematic uncertainties

Overview of Higgs boson pair researches in ATLAS

	bb	WW	ττ	ZZ	γγ
bb	33%				
WW	25%	4.6%			
ττ	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.09%	0.013%	0.0005%