Measurements of Higgs boson production and decay rates and their interpretation with the ATLAS experiment

Yesenia Hernández Jiménez - Stony Brook University On behalf of the ATLAS Collaboration SUSY 2023 - 18.07.2023

Introduction

- After the Higgs discovery the overall goal is precision measurements to search for deviations from the SM predictions.
- ATLAS recorded ~140 fb⁻¹ of good pp collision data at 13 TeV with LHC Run 2 during 2015-2018.
- LHC started Run 3 collisions at 13.6 TeV: ~36 fb⁻¹ of data was recorded last year.

This talk mainly summarises the latest publications of Higgs boson production and decay rates with ATLAS full Run 2 and Run 3 dataset.

Overview

 $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$

2023/06/20: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$ xsec Run 3: CERN-EP-2023-114

2022/07/18: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$ total and diff xsec: JHEP 05 (2023) 028

H→WW: ggF+VBF, VH

2023/01/17: $H \rightarrow WW$ ggf differential xsec: CERN-EP-2022-228 2022/07/01: $H \rightarrow WW$ ggf+VBF STXS/couplings: CERN-EP-2022-078 2022/11/07: $H \rightarrow WW$ VH: ATLAS-CONF-2022-067

ATLAS+CMS $H \rightarrow Z\gamma$

2023/05/24: ATLAS+CMS $H \rightarrow Z\gamma$: ATLAS-CONF-2023-025

Higgs Run 2 combination

2022/07/04: Comb Higgs coupling: Nature 607, pages 52-59 (2022)

BSM Higgs searches 2023/01/25 H→inv, comb: Phy. Lett. B 842 (2023) 137963 2023/01/24 Higgs+X, H→γγ: CERN-EP-2022-232

$H \rightarrow \gamma \gamma \& H \rightarrow ZZ \rightarrow 4l$: Run 3 with ~30fb⁻¹

Yesenia Hernández Jiménez

18.07.2023

$H \rightarrow \gamma \gamma + H \rightarrow ZZ$ and $H \rightarrow WW$: differential cross-sections

JHEP 05 (2023) 028

$H \rightarrow \gamma \gamma + H \rightarrow ZZ Run 2$ combination!

Total Higgs boson production **crosssection in agreement with the SM:** $55.5^{+4.0}_{-3.8}$ pb (55.6 ± 2.8) pb

p_T^H used to probe the Yukawa coupling of the Higgs to bottom and charm quarks.

Stony Brook University

CERN-EP-2022-228

H→WW full Run 2

> Events with at most one jet.

Differential fiducial cross-section: results are consistent with SM expectations

50

100 150

H→WW*: ggF+VBF STXS/couplings

10 GeV

Events /

Data / Pred.

Total – Bkg.

6000

4000

3000

2000

1000

1.2

0.8

0.6

800 600 400

200

5000 ggF SR

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

H→*WW**→*ev*µ*v*

CERN-EP-2022-078

Event selection

Consider e_{μ} events and split in Njets

Discriminants: **ggF**: 0,1,>=2jets \rightarrow **mT VBF**: >=2 jets \rightarrow **DNN**

H→WW*: ggF+VBF STXS/couplings

CERN-EP-2022-078

Simplified Template Cross-Section results: 11 kinematical fiducial regions in Njet, pT^H and m_{jj}

p-value = 53%	1.21 0.82 0.58	Total (+0.16 -0.16 (+0.57 ((Stat. Syst.)	SM Unc.
	1.21 0.82 0.58	+0.16 -0.16 (+0.57	+0.08 +0.14	
	0.82 0.58	+0.57	-0.08 ' -0.13 /	± 0.07
	0.58	-0.59	$^{+0.30}_{-0.30}$, $^{+0.49}_{-0.51}$)	± 0.14
		+0.48 -0.48 ($^{+0.32}_{-0.32}$, $^{+0.36}_{-0.36}$)	± 0.15
	1.46	+0.80 -0.77 ($^{+0.63}_{-0.62}$, $^{+0.49}_{-0.47}$)	± 0.19
	1.59	+0.89 -0.87 ($^{+0.44}_{-0.44}$, $^{+0.78}_{-0.76}$)	± 0.22
	2.11	+0.87 -0.83 ($^{+0.68}_{-0.66}$, $^{+0.55}_{-0.51}$)	± 0.26
	0.05	+0.57 -0.57 ($^{+0.42}_{-0.38}$, $^{+0.39}_{-0.41}$)	± 0.07
	0.56	+0.63 -0.58 ($^{+0.53}_{-0.48}$, $^{+0.35}_{-0.34}$)	± 0.07
	1.18	+0.52 -0.45 ($^{+0.45}_{-0.41}$, $^{+0.25}_{-0.19}$)	± 0.07
	1.14	+0.40 -0.36 ($^{+0.37}_{-0.34}$, $^{+0.15}_{-0.14}$)	± 0.08
(1.17	+0.49 -0.44 ($^{+0.45}_{-0.40}$, $^{+0.20}_{-0.17}$)	± 0.05
0 1 2	3	4	5 6	7
	σ·B		/ (σ·B)
	••••••••••••••••••••••••••••••••••••••	H→WW	/*' (° – H-	→WW*′SI
	0 1 2	$\begin{array}{c} 0 1 2 3 \\ \sigma \cdot B_{\mu} \end{array}$	0 1 2 3 4 $\sigma B_{H \to WW}$	0 1 2 3 4 5 6 $\sigma \cdot B_{H \rightarrow WW^*} / (\sigma \cdot B_{H \rightarrow WW^*})$

xsec x BR(H \rightarrow WW) and STXS results in agreement with SN

Targeting WH and ZH productions: 2, 3 and 4 leptons in the final state

• 8 SRs according to the number, flavour and charges of the leptons

Opposite-sign 2I (VH, V→qq) Same-sign 2I (WH): <u>ee, mm, emu</u> 3I (WH): <u>Z-depleted/enriched</u> 4I (ZH): Same-flavour opposite sign (SFOS) •3e1m + 1m3e: <u>1-SFOS</u>→ highest sensitivity •4e, 4m, 2e2m: <u>2-SFOS</u>

• Use of MVA techniques to separate Higgs signal from main SM backgrounds for all channels

$H \rightarrow WW^*: VH$

ATLAS-CONF-2022-067

Results in agreement with SM within 1.8σ

Most sensitive channels limited by statistics \rightarrow will highly benefit from new Run 3 data

 \rightarrow Statistical down fluctuation in the most sensitive bin for SS 2 μ channel results in WH signal strength~0

4l is the most sensitive

Strong evidence (almost observation) of ZH(\rightarrow WW): Z₀=4.6 σ

SUSY 2023

ATLAS+CMS Run 2 combination!

Similar strategies in both analyses:

ATLAS: 6 categories (1 BDT for VBF + 5 with different lepton flavour & $Z\gamma$ kinematics for ggF) **CMS:** 8 categories (1 for VH and ttH + 7 BDT)

First evidence for $H \rightarrow Z\gamma$ with 3.4 σ significance

Signal strength 2.2 ± 0.7 : agrees with SM within 1.9 s.d

ATLAS combination: xsec and couplings

Nature 607, pages 52-59 (2022)

Unprecedented ATLAS combination of production modes and decay processes of the Higgs boson

- Higgs boson couplings strength modifiers following SM prediction at high accuracy.
- Higgs boson production cross section in many kinematic regions compatible with SM expectations.

SUSY 2023

H→invisible

Light dark matter particles may be produced in decays of the Higgs boson that would appear invisible to the detector $\rightarrow E_T^{miss}$

Run 1 + Run 2 combination!

Many Higgs production modes: ggF, VBF, VH and ttH and final states

Upper limit on BR(H→invisible)=0.107 obs (0.077 exp) @95%CL

Phy. Lett. B 842 (2023) 137963

Results also interpreted in models where the Higgs boson acts as a portal to dark matter

SUSY 2023

Higgs+X, $H \rightarrow \gamma \gamma$

Model independent search with $H \rightarrow \gamma \gamma + X$

22 final states depending of the particles associated to the Higgs boson:

 \rightarrow e, μ , τ , γ , (b-tagged) jets and E_T^{miss}.

No significant excess above the SM observed

Conclusions

- Full Run 2 dataset allows measurements of many Higgs production / decay modes.
- The analyses with the full Run 2 ATLAS data are well established:
 - Discovery channels start to enter precision regime: <10% uncertainty.
 - Differential measurements and small branching ratio channels still have significant statistical uncertainties.
 - All measurements are compatible with SM predictions.
- First Run 3 Higgs result using 13.6TeV data combining H→γγ and H→ZZ→4I.

Looking forward to more Run 3 results to come!

Backup Slides

$H \rightarrow \gamma \gamma \& H \rightarrow ZZ \rightarrow 4l$: Run 3 with ~30fb⁻¹

CERN-EP-2023-114

Source	Uncertainty [%]	Source	Uncertainty [%]
Statistical uncertainty	14.0	Statistical uncertainty	25.1
Systematic uncertainty	10.3	Systematic uncertainty	7.9
Background modelling (spurious signal)	6.0	Electron uncertainties	6.3
Photon trigger and selection efficiency	5.8	Muon uncertainties	3.8
Photon energy scale & resolution	5.5	Luminosity	2.0
Luminosity	2.2		2.2
Pile-up modelling	1.2	ZZ* theoretical uncertainties	0.7
Higgs boson mass	0.1	Reducible background estimation	0.6
Theoretical (signal) modelling	< 0.1	Other uncertainties	<1.0
Total	17.4	Total	26.4

H→WW: differential cross-sections

Contribution	$\left \begin{array}{c} \Delta \sigma_{p_T^H < 30 GeV} \\ \hline \sigma_{p_T^H < 30 GeV} \\ \end{array} \right[\%]$	$\left \begin{array}{c} \Delta \sigma_{30 GeV < p_T^H < 60 GeV} \\ \hline \sigma_{30 GeV < p_T^H < 60 GeV} \end{array} [\%] \right.$	$\frac{\Delta \sigma_{60GeV < p_T^H < 120GeV}}{\sigma_{60GeV < p_T^H < 120GeV}} \begin{bmatrix} \% \end{bmatrix}$	$\left \begin{array}{c} \frac{\Delta \sigma_{120 GeV < p_T^H}}{\sigma_{120 GeV < p_T^H}} \left[\% \right] \right.$
Total relative uncertainty	19	51	108	62
Total systematic uncertainty	17	41	81	45
Statistical uncertainties from data	8.5	29	72	43
Statistical uncertainties from Monte Carlo simulation	6.2	15	17	18
Experimental systematic uncertainty	10	24	58	31
Flavour tagging	4.9	6.1	13	18
Jet Energy Scale	4.9	17	30	21
Jet Energy Resolution	4.8	8.4	12	10
Missing transverse energy	4.6	8.2	11	8.2
Muons	4.6	4.2	4.8	2.3
Electrons	3.2	2.2	2.5	1.1
Misidentified objects	3.9	10	3.3	1.3
Pile-up	3.8	1.2	6.9	4.4
Luminosity	2.7	4.5	3.5	2.8
Systematic uncertainty from theory	11	27	23	25
on gluon-fusion production	6.1	7.1	4.7	5.2
on Vector Boson Fusion production	2.4	1.8	2.7	3.2
on top quark production	4.3	20	18	21
on decays of $Z \to \tau \tau$	4.2	5.9	2.2	3.9
on the WW background	7.3	10	12	6.0
on other diboson processes	5.9	14	7.8	8.8
Background normalization factors CERN-E	P-2022-228 2.3	0.7	0.9	0.6

SUSY 2023

18

$H \rightarrow WW^*$: VH (2lOS and 3l)

ATLAS-CONF-2022-067

$H \rightarrow WW^*$: VH (2SSl ee and $e\mu$)

ATLAS-CONF-2022-067