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Is the SM Higgs sector overly minimalistic?

Asking to accomplish three different tasks simultaneously: 

While it is remarkable that the measurements are consistent with one-doublet 
Higgs sector, the gauge and fermion structure of the SM does not require it 
to be minimalistic!

The Higgs sector can be richer and implement the concept of multiple generations

In fact, the SM Higgs sector is totally “exhausted”, i.e. cannot do other tasks 
what it is expected to do, in general:  

I. INTRODUCTION16

• W and Z bosons through the kinetic term |DµH|2;17

• down-type quarks and leptons through the Yukawa terms Q̄LHdR;18

• up-type quarks through the Yukawa terms Q̄LH̃dR (with H̃ ⌘ i�2H⇤);19

• does not explain the hierarchical flavour patterns (masses and mixing);20

• no FCNCs generated by the Higgs boson exchange (too “boring” flavour properties);21

• CP-violation can only be inserted by hands;22

• the absence of cosmological EWPT, hence, no sizeable baryon asymmetry.23

Over a few decades, a substantial e↵ort of the particle physics community has been24

devoted to unveiling the proton structure at high energies in both longitudinal and transverse25

dimensions relative to the collision axis. Since a long ago, it has been well-known that the26

most detailed information on a given compound quantum system can be unwound through27

the knowledge of kinematical distributions of its constituents over phase space. In the28

case of the nucleon target, for instance, this information is contained in the Wigner parton29

distribution in Quantum Chromodynamics (QCD) [? ? ? ? ? ? ? ? ] which represents30

a comprehensive visualisation of the partonic structure of the nucleon in five dimensions,31

also referred to as the multi-dimensional parton imaging or tomography. Such an imaging32

has grown into a paradigm in contemporary studies of hadron structure in high-energy33

particle collisions [? ]. For this reason, the Wigner distribution is also referred to as the34

“mother of all distributions” [? ? ? ] as it is connected to other, lower-dimensional parton35

distributions through its integration over one or more dimensions. Its Fourier transform36

known as the Generalized Transverse Momentum Dependent Distribution (GTMD) [? ? ?37

? ] is also widely used for modelling the nucleon structure (for earlier reviews on this topic,38

see e.g. Refs. [? ? ]).39

While the Wigner distribution (and GTMD) encodes all the non-perturbative QCD dy-40

namics of parton constituents inside the nucleon, it is not calculable in the framework of per-41

turbative QCD and represents the main non-perturbative ingredient of QCD factorization.42

Therefore, development of phenomenological methods and techniques enabling to constrain43

the Wigner distribution directly from the experimental data (the co-called “partonometry”)44

is necessary to make further significant advances in nucleon imaging [? ? ? ].45

A direct measurement of the Wigner distribution appears to be a challenging problem as46

it generally requires the most detailed knowledge of particle kinematics in the final state in47

a clean environment (i.e. with the maximal degree of exclusivity). The main question we48

would like to address here is which particular phenomenological probes can be utilised for49

constraining the phase space distributions. The pioneering study of Ref. [? ] has proposed50

that the gluon Wigner distribution at small x can be probed experimentally in exclusive51

dijet photoproduction in Deep Inelastic Scattering (DIS), in particular, by measuring the52

correlation in azimuthal angle between the produced dijet transverse momentum and the53

recoiled nucleon transverse momentum (see also Ref. [? ]). Follow-up work of Ref. [? ] has54

elaborated on this possibility more quantitatively considering exclusive dijet photoproduc-55

tion in ultraperipheral collisions (UPCs). Theoretical uncertainties for existing models for56

2

I. INTRODUCTION16

• W and Z bosons through the kinetic term |DµH|2;17

• down-type quarks and leptons through the Yukawa terms Q̄LHdR;18

• up-type quarks through the Yukawa terms Q̄LH̃dR (with H̃ ⌘ i�2H⇤);19

• does not explain the hierarchical flavour patterns (masses and mixing);20

• no FCNCs generated by the Higgs boson exchange (too “boring” flavour properties);21

• CP-violation can only be inserted by hands;22

• the absence of cosmological EWPT, hence, no sizeable baryon asymmetry.23

Over a few decades, a substantial e↵ort of the particle physics community has been24

devoted to unveiling the proton structure at high energies in both longitudinal and transverse25

dimensions relative to the collision axis. Since a long ago, it has been well-known that the26

most detailed information on a given compound quantum system can be unwound through27

the knowledge of kinematical distributions of its constituents over phase space. In the28

case of the nucleon target, for instance, this information is contained in the Wigner parton29

distribution in Quantum Chromodynamics (QCD) [? ? ? ? ? ? ? ? ] which represents30

a comprehensive visualisation of the partonic structure of the nucleon in five dimensions,31

also referred to as the multi-dimensional parton imaging or tomography. Such an imaging32

has grown into a paradigm in contemporary studies of hadron structure in high-energy33

particle collisions [? ]. For this reason, the Wigner distribution is also referred to as the34

“mother of all distributions” [? ? ? ] as it is connected to other, lower-dimensional parton35

distributions through its integration over one or more dimensions. Its Fourier transform36

known as the Generalized Transverse Momentum Dependent Distribution (GTMD) [? ? ?37

? ] is also widely used for modelling the nucleon structure (for earlier reviews on this topic,38

see e.g. Refs. [? ? ]).39

While the Wigner distribution (and GTMD) encodes all the non-perturbative QCD dy-40

namics of parton constituents inside the nucleon, it is not calculable in the framework of per-41

turbative QCD and represents the main non-perturbative ingredient of QCD factorization.42

Therefore, development of phenomenological methods and techniques enabling to constrain43

the Wigner distribution directly from the experimental data (the co-called “partonometry”)44

is necessary to make further significant advances in nucleon imaging [? ? ? ].45

A direct measurement of the Wigner distribution appears to be a challenging problem as46

it generally requires the most detailed knowledge of particle kinematics in the final state in47

a clean environment (i.e. with the maximal degree of exclusivity). The main question we48

would like to address here is which particular phenomenological probes can be utilised for49

constraining the phase space distributions. The pioneering study of Ref. [? ] has proposed50

that the gluon Wigner distribution at small x can be probed experimentally in exclusive51

dijet photoproduction in Deep Inelastic Scattering (DIS), in particular, by measuring the52

correlation in azimuthal angle between the produced dijet transverse momentum and the53

recoiled nucleon transverse momentum (see also Ref. [? ]). Follow-up work of Ref. [? ] has54

elaborated on this possibility more quantitatively considering exclusive dijet photoproduc-55

tion in ultraperipheral collisions (UPCs). Theoretical uncertainties for existing models for56

2



3

More than one Higgs “generation”: NHDM

NHDM quark Yukawa sector:  

Multi-Higgs-doublet models A hidden beauty: CP4-3HDM Conclusions

Quark masses and mixing

With N Higgs doublets �a, the procedure is the same:
X

a

⇣
Q̄Li�

(a)
ij �adRj + q̄Li�

(a)
ij �̃auRj

⌘
+ h.c .

Vacuum coresponds to a vev alignment h�0
ai = va/

p
2, which gives

Md =
1p
2

X

a

�(a)va , Mu =
1p
2

X

a

�(a)v⇤
a .

Dangerous tree-level FCNC ! can be avoided with natural flavour
conservation via discrete symmetries [Weinberg, Glashow, 1977; Pachos,
1977].

Individual �(a) and �(a) can be very simple, symmetry-constrained. In Md

and Mu, this symmetry is ruined but can leave traces in masses/mixing.

If complex vevs va get a relative phase, then CP-violation can appear
spontaneously for real � and � [T.D.Lee, 1973, Branco, 1979].

Igor Ivanov (CFTP, IST) What NHDM can do for you Uni. Lund 11/29
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Separate textures can be simple, constrained by flavour symmetries that leave 
traces in quarks masses and mixing

VEV alignment:

Consequences:
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BGL-like 3HDM: scalar sector

Impose a family symmetry:

J
H
E
P
1
1
(
2
0
2
1
)
0
7
9

BGL-like 3HDM — all one needs to do is copying the procedure detailed in the previous
section for the first two doublets, while keeping the third doublet VEVless. For that to
happen one would consider the construction of the Inert Doublet Model (IDM) [47–50] and
impose a Z2 symmetry on the third doublet, φ3 → −φ3. This model would have FCNCs in
the visible sector and also a dark matter candidate stemming from the third doublet. An
interesting model would be recovered, however it would not solve our aim to obtain a larger
freedom to fit the flavour observables in comparison to what one has in the 2HDM BGL
model. Thus we are compelled to consider a 3HDM wherein all doublets acquire VEVs.

Let us start by describing the scalar sector of the model, which contains three spin-0
SU(2) doublets, φ1, φ2 and φ3.

3.1 The scalar sector

The scalar doublets are made to transform under the U(1) × Z2 symmetry as follows:

U(1) : φ1 → eiαφ1 , φ3 → eiαφ3 . (3.1a)
Z2 : φ1 → −φ1 , φ2 → φ2 , φ3 → φ3 . (3.1b)

We further require the scalar potential to be CP-invariant, i.e to be invariant under the
usual CP transformations,

φ1 → φ∗
1 , φ2 → φ∗

2 , φ3 → φ∗
3 , (3.2)

such that it can be written as

V0(φ1,φ2,φ3) = µ2
1
(
φ†
1φ1

)
+ µ2

2
(
φ†
2φ2

)
+ µ2

3
(
φ†
3φ3

)
+ λ1

(
φ†
1φ1

)2

+λ2
(
φ†
2φ2

)2
+ λ3

(
φ†
3φ3

)2
+ λ4

(
φ†
1φ1

) (
φ†
2φ2

)
+ λ5

(
φ†
1φ1

) (
φ†
3φ3

)

+λ6
(
φ†
2φ2

) (
φ†
3φ3

)
+ λ7

(
φ†
1φ2

) (
φ†
2φ1

)
+ λ8

(
φ†
1φ3

) (
φ†
3φ1

)

+λ9
(
φ†
2φ3

) (
φ†
3φ2

)
+ λ10

{(
φ†
1φ3

)2
+ h.c.

}
. (3.3)

The most general potential that softly breaks the U(1) × Z2 flavor symmetry is given by

Vsoft(φ1,φ2,φ3) = µ2
12φ

†
1φ2 + µ2

13φ
†
1φ3 + µ2

23φ
†
2φ3 + h.c. , V = V0 + Vsoft . (3.4)

Here, due to the CP symmetry all the parameters in V = V (φ1,φ2,φ3) are real. We have
introduced real soft breaking terms, in Vsoft, to avoid the appearance of a massless axion
in the physical spectrum. Recall that the same procedure was necessary for the 2HDM
BGL [51, 52], due to the analogous breaking of the U(1) symmetry given by eq. (2.8).

After spontaneous symmetry breaking, all doublets acquire real VEVs3 and are ex-
panded as

φk =
(

w+
k

1√
2(vk + hk + izk)

)

, (k = 1, 2, 3) , (3.5)

3It is obviously possible to obtain spontaneous CP violation within a 3HDM, via complex VEVs, but we
do not consider that more generic case in the current work.
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BGL-like 3HDM — all one needs to do is copying the procedure detailed in the previous
section for the first two doublets, while keeping the third doublet VEVless. For that to
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freedom to fit the flavour observables in comparison to what one has in the 2HDM BGL
model. Thus we are compelled to consider a 3HDM wherein all doublets acquire VEVs.

Let us start by describing the scalar sector of the model, which contains three spin-0
SU(2) doublets, φ1, φ2 and φ3.

3.1 The scalar sector

The scalar doublets are made to transform under the U(1) × Z2 symmetry as follows:

U(1) : φ1 → eiαφ1 , φ3 → eiαφ3 . (3.1a)
Z2 : φ1 → −φ1 , φ2 → φ2 , φ3 → φ3 . (3.1b)

We further require the scalar potential to be CP-invariant, i.e to be invariant under the
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The most general potential that softly breaks the U(1) × Z2 flavor symmetry is given by

Vsoft(φ1,φ2,φ3) = µ2
12φ

†
1φ2 + µ2

13φ
†
1φ3 + µ2

23φ
†
2φ3 + h.c. , V = V0 + Vsoft . (3.4)

Here, due to the CP symmetry all the parameters in V = V (φ1,φ2,φ3) are real. We have
introduced real soft breaking terms, in Vsoft, to avoid the appearance of a massless axion
in the physical spectrum. Recall that the same procedure was necessary for the 2HDM
BGL [51, 52], due to the analogous breaking of the U(1) symmetry given by eq. (2.8).

After spontaneous symmetry breaking, all doublets acquire real VEVs3 and are ex-
panded as

φk =
(

w+
k

1√
2(vk + hk + izk)

)

, (k = 1, 2, 3) , (3.5)

3It is obviously possible to obtain spontaneous CP violation within a 3HDM, via complex VEVs, but we
do not consider that more generic case in the current work.
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BGL-like 3HDM — all one needs to do is copying the procedure detailed in the previous
section for the first two doublets, while keeping the third doublet VEVless. For that to
happen one would consider the construction of the Inert Doublet Model (IDM) [47–50] and
impose a Z2 symmetry on the third doublet, φ3 → −φ3. This model would have FCNCs in
the visible sector and also a dark matter candidate stemming from the third doublet. An
interesting model would be recovered, however it would not solve our aim to obtain a larger
freedom to fit the flavour observables in comparison to what one has in the 2HDM BGL
model. Thus we are compelled to consider a 3HDM wherein all doublets acquire VEVs.

Let us start by describing the scalar sector of the model, which contains three spin-0
SU(2) doublets, φ1, φ2 and φ3.

3.1 The scalar sector

The scalar doublets are made to transform under the U(1) × Z2 symmetry as follows:

U(1) : φ1 → eiαφ1 , φ3 → eiαφ3 . (3.1a)
Z2 : φ1 → −φ1 , φ2 → φ2 , φ3 → φ3 . (3.1b)

We further require the scalar potential to be CP-invariant, i.e to be invariant under the
usual CP transformations,

φ1 → φ∗
1 , φ2 → φ∗

2 , φ3 → φ∗
3 , (3.2)

such that it can be written as

V0(φ1,φ2,φ3) = µ2
1
(
φ†
1φ1

)
+ µ2

2
(
φ†
2φ2

)
+ µ2

3
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φ†
3φ3

)
+ λ1
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φ†
1φ1

)2

+λ2
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2φ2

)2
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3φ3
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(
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)
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)2
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}
. (3.3)

The most general potential that softly breaks the U(1) × Z2 flavor symmetry is given by

Vsoft(φ1,φ2,φ3) = µ2
12φ

†
1φ2 + µ2

13φ
†
1φ3 + µ2

23φ
†
2φ3 + h.c. , V = V0 + Vsoft . (3.4)

Here, due to the CP symmetry all the parameters in V = V (φ1,φ2,φ3) are real. We have
introduced real soft breaking terms, in Vsoft, to avoid the appearance of a massless axion
in the physical spectrum. Recall that the same procedure was necessary for the 2HDM
BGL [51, 52], due to the analogous breaking of the U(1) symmetry given by eq. (2.8).

After spontaneous symmetry breaking, all doublets acquire real VEVs3 and are ex-
panded as

φk =
(

w+
k

1√
2(vk + hk + izk)

)

, (k = 1, 2, 3) , (3.5)

3It is obviously possible to obtain spontaneous CP violation within a 3HDM, via complex VEVs, but we
do not consider that more generic case in the current work.
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BGL-like 3HDM — all one needs to do is copying the procedure detailed in the previous
section for the first two doublets, while keeping the third doublet VEVless. For that to
happen one would consider the construction of the Inert Doublet Model (IDM) [47–50] and
impose a Z2 symmetry on the third doublet, φ3 → −φ3. This model would have FCNCs in
the visible sector and also a dark matter candidate stemming from the third doublet. An
interesting model would be recovered, however it would not solve our aim to obtain a larger
freedom to fit the flavour observables in comparison to what one has in the 2HDM BGL
model. Thus we are compelled to consider a 3HDM wherein all doublets acquire VEVs.

Let us start by describing the scalar sector of the model, which contains three spin-0
SU(2) doublets, φ1, φ2 and φ3.

3.1 The scalar sector

The scalar doublets are made to transform under the U(1) × Z2 symmetry as follows:

U(1) : φ1 → eiαφ1 , φ3 → eiαφ3 . (3.1a)
Z2 : φ1 → −φ1 , φ2 → φ2 , φ3 → φ3 . (3.1b)

We further require the scalar potential to be CP-invariant, i.e to be invariant under the
usual CP transformations,

φ1 → φ∗
1 , φ2 → φ∗

2 , φ3 → φ∗
3 , (3.2)

such that it can be written as

V0(φ1,φ2,φ3) = µ2
1
(
φ†
1φ1

)
+ µ2

2
(
φ†
2φ2

)
+ µ2

3
(
φ†
3φ3

)
+ λ1

(
φ†
1φ1

)2

+λ2
(
φ†
2φ2

)2
+ λ3

(
φ†
3φ3

)2
+ λ4

(
φ†
1φ1

) (
φ†
2φ2

)
+ λ5

(
φ†
1φ1

) (
φ†
3φ3

)

+λ6
(
φ†
2φ2

) (
φ†
3φ3

)
+ λ7

(
φ†
1φ2

) (
φ†
2φ1

)
+ λ8

(
φ†
1φ3

) (
φ†
3φ1

)

+λ9
(
φ†
2φ3

) (
φ†
3φ2

)
+ λ10

{(
φ†
1φ3

)2
+ h.c.

}
. (3.3)

The most general potential that softly breaks the U(1) × Z2 flavor symmetry is given by

Vsoft(φ1,φ2,φ3) = µ2
12φ

†
1φ2 + µ2

13φ
†
1φ3 + µ2

23φ
†
2φ3 + h.c. , V = V0 + Vsoft . (3.4)

Here, due to the CP symmetry all the parameters in V = V (φ1,φ2,φ3) are real. We have
introduced real soft breaking terms, in Vsoft, to avoid the appearance of a massless axion
in the physical spectrum. Recall that the same procedure was necessary for the 2HDM
BGL [51, 52], due to the analogous breaking of the U(1) symmetry given by eq. (2.8).

After spontaneous symmetry breaking, all doublets acquire real VEVs3 and are ex-
panded as

φk =
(

w+
k

1√
2(vk + hk + izk)

)

, (k = 1, 2, 3) , (3.5)

3It is obviously possible to obtain spontaneous CP violation within a 3HDM, via complex VEVs, but we
do not consider that more generic case in the current work.
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BGL-like 3HDM — all one needs to do is copying the procedure detailed in the previous
section for the first two doublets, while keeping the third doublet VEVless. For that to
happen one would consider the construction of the Inert Doublet Model (IDM) [47–50] and
impose a Z2 symmetry on the third doublet, φ3 → −φ3. This model would have FCNCs in
the visible sector and also a dark matter candidate stemming from the third doublet. An
interesting model would be recovered, however it would not solve our aim to obtain a larger
freedom to fit the flavour observables in comparison to what one has in the 2HDM BGL
model. Thus we are compelled to consider a 3HDM wherein all doublets acquire VEVs.

Let us start by describing the scalar sector of the model, which contains three spin-0
SU(2) doublets, φ1, φ2 and φ3.

3.1 The scalar sector

The scalar doublets are made to transform under the U(1) × Z2 symmetry as follows:

U(1) : φ1 → eiαφ1 , φ3 → eiαφ3 . (3.1a)
Z2 : φ1 → −φ1 , φ2 → φ2 , φ3 → φ3 . (3.1b)

We further require the scalar potential to be CP-invariant, i.e to be invariant under the
usual CP transformations,

φ1 → φ∗
1 , φ2 → φ∗

2 , φ3 → φ∗
3 , (3.2)

such that it can be written as

V0(φ1,φ2,φ3) = µ2
1
(
φ†
1φ1

)
+ µ2

2
(
φ†
2φ2

)
+ µ2

3
(
φ†
3φ3

)
+ λ1

(
φ†
1φ1

)2

+λ2
(
φ†
2φ2

)2
+ λ3

(
φ†
3φ3

)2
+ λ4

(
φ†
1φ1

) (
φ†
2φ2

)
+ λ5

(
φ†
1φ1

) (
φ†
3φ3

)

+λ6
(
φ†
2φ2

) (
φ†
3φ3

)
+ λ7

(
φ†
1φ2

) (
φ†
2φ1

)
+ λ8

(
φ†
1φ3

) (
φ†
3φ1

)

+λ9
(
φ†
2φ3

) (
φ†
3φ2

)
+ λ10

{(
φ†
1φ3

)2
+ h.c.

}
. (3.3)

The most general potential that softly breaks the U(1) × Z2 flavor symmetry is given by

Vsoft(φ1,φ2,φ3) = µ2
12φ

†
1φ2 + µ2

13φ
†
1φ3 + µ2

23φ
†
2φ3 + h.c. , V = V0 + Vsoft . (3.4)

Here, due to the CP symmetry all the parameters in V = V (φ1,φ2,φ3) are real. We have
introduced real soft breaking terms, in Vsoft, to avoid the appearance of a massless axion
in the physical spectrum. Recall that the same procedure was necessary for the 2HDM
BGL [51, 52], due to the analogous breaking of the U(1) symmetry given by eq. (2.8).

After spontaneous symmetry breaking, all doublets acquire real VEVs3 and are ex-
panded as

φk =
(

w+
k

1√
2(vk + hk + izk)

)

, (k = 1, 2, 3) , (3.5)

3It is obviously possible to obtain spontaneous CP violation within a 3HDM, via complex VEVs, but we
do not consider that more generic case in the current work.
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where vk represent the VEVs of each doublet which satisfy v21 + v22 + v23 = (246GeV)2. The
minimization of the potential yields three equations that can be conveniently resolved by
expressing the quadratic mass parameters µ2

1, µ2
2 and µ2

3 in terms of the three VEVs and
other couplings as follows:

µ2
1 = −1

2

[

2λ1v
2
1 + (λ4 + λ7) v22 + (λ5 + λ8 + 2λ10) v23 +

2
(
µ2
13v3 + µ2

21v2
)

v1

]

, (3.6a)

µ2
2 = −1

2

[

2λ2v
2
2 + (λ4 + λ7) v21 + (λ6 + λ9) v23 +

2
(
µ2
21v1 + µ2

23v3
)

v2

]

, (3.6b)

µ2
3 = −1

2

[

2λ3v
2
3 + (λ6 + λ9) v22 + (λ5 + λ8 + 2λ10) v21 +

2
(
µ2
13v1 + µ2

23v2
)

v3

]

. (3.6c)

For latter use, we parameterize the VEVs as,

v1 = v sin β1 cosβ2 , v2 = v sin β2 , v3 = v cosβ1 cosβ2 , v =
√
v21 + v22 + v23 (3.7)

and setting v13 =
√
v21 + v23, define the following orthogonal matrix which rotates the

gauge eigenstates into the so-called Higgs basis, greatly simplifying the analysis of the
scalar sector,

Oβ =




v1/v v2/v v3/v

v3/v13 0 −v1/v13
v1v2/(vv13) −v13/v v2v3/(vv13)



 =




sin β1 cosβ2 sin β2 cosβ1 cosβ2

cosβ1 0 − sin β1
sin β1 sin β2 − cosβ2 cosβ1 sin β2



 .

(3.8)
We now turn our attention to the physical scalar spectrum of the model. Since we

are considering a potential with explicit CP conservation and a vacuum which does not
spontaneously break CP, the neutral scalars have definite CP quantum numbers. The
scalar spectrum of the model is composed of a pair of pseudoscalars, a trio of CP-even
scalars and a pair of charged scalars, to be discussed in what follows.

In this work, we have studied the properties of the Higgs sector in the so-called Higgs
alignment limit such that one of the physical scalars coincides with the SM Higgs boson
(i.e. features its mass and interactions). In order to ensure this in the input data prepared
for our parameter scans we would like to utilise an inversion procedure and require the
alignment limit at the level of input parameters. Such an inversion procedure would enable
us to express the parameters of the scalar potential in terms of physical masses, VEVs and
mixing angles.

The mass terms for the pseudoscalar sector can be straightforwardly extracted from the
scalar potential — they will correspond to the terms quadratic in the zk (k = 1, 2, 3) fields,
after one has replaced the expression for the doublets of eq. (3.5) into the potential (3.3)
and (3.4). One obtains

V mass
P =

(
z1 z2 z3

) M2
P

2




z1
z2
z3



 , (3.9)
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This means that putting mh = 125GeV, α1 = β2 and α2 = −β1 + π/2 will ensure the
presence of a 125GeV SM Higgs boson in the spectrum — that is the exact alignment limit
of this model, forcing the interactions between h and the electroweak gauge bosons Z, W
(as well as with SM fermions, see below) to be exactly identical to those of the SM.

In practice, the exact alignment implies that (M̃2
S)11 = m2

h and (M̃2
S)12 = (M̃2

S)13 = 0
where we define the Higgs basis mass matrix

M̃2
S ≡ Oβ ·M2

S · O!
β . (3.28)

This can be further solved with respect to λ1, λ2 and λ10 such that one can write

λ1 =
1
2v41

[
m2

h(v21 − v23) + 2v43λ3 − v21v
2
2(λ4 + λ7) + v22v

2
3(λ6 + λ9)

]
,

λ2 =
1
2v22

[
m2

h − v21(λ4 + λ7) − v23(λ6 + λ9)
]
,

λ10 =
1
2v21

[
m2

h − 2v23λ3 − v21(λ5 + λ8) − v22(λ6 + λ9)
]
.

(3.29)

At this point, it is instructive to summarise the above steps. First of all, in order to
make our numerical calculations technically feasible and time efficient, in this work the
analysis of the scalar spectrum (couplings, mixing and masses) is performed entirely at
tree level. We note that the scalar potential in eqs. (3.3) and (3.4) contains sixteen real
parameters. Among them, the quadratic parameters µ2

1, µ2
2 and µ2

3 can be traded in favor of
the three VEVs, v1, v2 and v3 or equivalently v, tan β1 and tan β2. In our numerical studies
we take advantage of the exact alignment limit in order to randomly sample tan β1, tan β2,
λ3,...,9 as well the soft parameters µ2

13, µ2
21 and µ2

23 such that, using eq. (3.29), one obtains
the correct λ1, λ2 and λ10 quartic couplings compatible with an exact alignment of the
SM-like Higgs boson. While off-alignment deviations are beyond the scope of this article,
we provide in appendix A generic formulas to obtain the gauge eigenbasis parameters if
the physical masses and mixing angles are provided as inputs.

3.2 The Yukawa sector

Alongside the scalar field transformations of eq. (3.1) the following quark fields are assumed
to transform nontrivially under the U(1) × Z2 flavor symmetry:

U(1) : QL3 → eiαQL3 , pR3 → e2iαpR3 , (3.30a)
Z2 : QL3 → −QL3 , pR3 → −pR3 , nR3 → −nR3 , (3.30b)

with α the same arbitrary phase of eq. (3.1), and the rest of the quark fields remain unaf-
fected under said symmetry transformations. In eq. (3.30), as before, QLa = (pLa, nLa)T
denotes the left-handed quark doublet of the a-th generation whereas pRa and nRa denote
the a-th generation (unrotated) up (positively charged) and down (negatively charged)
type quark singlets respectively. Notice the similarity between these transformation laws
and those of the BGL model, eq. (2.8).
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The quark Yukawa Lagrangian for a 3HDM will then have the general form

LY = −
3∑

k=1

[
Q̄La(Γk)ab φk nRb + Q̄La(∆k)ab φ̃k pRb + h.c.

]
, (3.31)

where as before Γk and ∆k stand for the Yukawa matrices in the down and up quark sectors
respectively. Due to specific charge assignments given for the Higgs doublets and quark
fields under U(1) × Z2 these Yukawa matrices will have the following textures:

Γ1 =




0 0 0
0 0 0
× × 0



 , ∆1 =




0 0 0
0 0 0
0 0 0



 , Γ2,∆2 =




× × 0
× × 0
0 0 0



 , Γ3,∆3 =




0 0 0
0 0 0
0 0 ×



 . (3.32)

Therefore, the quark mass matrices that emerge from these Yukawa matrices have the
following structure:

Mp =
1√
2

3∑

k=1
∆kvk =




× × 0
× × 0
0 0 ×



 , Mn = 1√
2

3∑

k=1
Γkvk =




× × 0
× × 0
× × ×



 . (3.33)

We then rotate from the p and n fields to the physical quark states u and d via rotation
matrices VL, VR, UL and UR identical to those of eq. (2.4). We thus obtain diagonal mass
matrices as in eq. (2.3), and the CKM matrix is, as before, given by V = V †

LUL. Let us
now analyse carefully the Yukawa couplings between the neutral scalar eigenstates and the
physical quarks, with particular attention to any FCNC couplings which may arise.

In the alignment limit, with α1 = β1 and α2 = β2, the physical scalar h completely
overlaps with H0. In that limit, the other physical scalars, H1 and H2, will, in general, be
an orthogonal mixture of the intermediate states defined above, H ′

1 and H ′
2.

Now, the terms in the Yukawa Lagrangian pertaining to the interactions between CP-
even scalars and quarks are

L CP even
Y = − 1√

2

[

n̄L

( 3∑

k=1
Γkhk

)

nR + p̄L

( 3∑

k=1
∆khk

)

pR + h.c.
]

, (3.34)

from which, using the rotation matrix of eq. (3.19) to express the hk in terms of H0, we
can obtain

L H0
Y = − H0

v

[

n̄L

(
1√
2

3∑

k=1
Γkvk

)

nR + p̄L

(
1√
2

3∑

k=1
∆kvk

)

pR + h.c.
]

,

= − H0
v

[
d̄LDddR + ūLDuuR + h.c.

]
.

(3.35)

In writing the last step, we have made use of eqs. (3.33) and (2.3). Thus we see that H0
possesses SM like Yukawa coupling at tree level. This is a close analogy to the BGL model,
where we explained how, in the exact 2HDM alignment limit, the h state had identical
Yukawa interactions to those of the SM Higgs boson.
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The quark Yukawa Lagrangian for a 3HDM will then have the general form

LY = −
3∑

k=1

[
Q̄La(Γk)ab φk nRb + Q̄La(∆k)ab φ̃k pRb + h.c.

]
, (3.31)

where as before Γk and ∆k stand for the Yukawa matrices in the down and up quark sectors
respectively. Due to specific charge assignments given for the Higgs doublets and quark
fields under U(1) × Z2 these Yukawa matrices will have the following textures:

Γ1 =




0 0 0
0 0 0
× × 0



 , ∆1 =




0 0 0
0 0 0
0 0 0



 , Γ2,∆2 =




× × 0
× × 0
0 0 0



 , Γ3,∆3 =




0 0 0
0 0 0
0 0 ×



 . (3.32)

Therefore, the quark mass matrices that emerge from these Yukawa matrices have the
following structure:

Mp =
1√
2

3∑

k=1
∆kvk =




× × 0
× × 0
0 0 ×



 , Mn = 1√
2

3∑

k=1
Γkvk =




× × 0
× × 0
× × ×



 . (3.33)

We then rotate from the p and n fields to the physical quark states u and d via rotation
matrices VL, VR, UL and UR identical to those of eq. (2.4). We thus obtain diagonal mass
matrices as in eq. (2.3), and the CKM matrix is, as before, given by V = V †

LUL. Let us
now analyse carefully the Yukawa couplings between the neutral scalar eigenstates and the
physical quarks, with particular attention to any FCNC couplings which may arise.

In the alignment limit, with α1 = β1 and α2 = β2, the physical scalar h completely
overlaps with H0. In that limit, the other physical scalars, H1 and H2, will, in general, be
an orthogonal mixture of the intermediate states defined above, H ′

1 and H ′
2.

Now, the terms in the Yukawa Lagrangian pertaining to the interactions between CP-
even scalars and quarks are

L CP even
Y = − 1√

2

[

n̄L

( 3∑

k=1
Γkhk

)

nR + p̄L

( 3∑

k=1
∆khk

)

pR + h.c.
]

, (3.34)

from which, using the rotation matrix of eq. (3.19) to express the hk in terms of H0, we
can obtain

L H0
Y = − H0

v

[

n̄L

(
1√
2

3∑

k=1
Γkvk

)

nR + p̄L

(
1√
2

3∑

k=1
∆kvk

)

pR + h.c.
]

,

= − H0
v

[
d̄LDddR + ūLDuuR + h.c.

]
.

(3.35)

In writing the last step, we have made use of eqs. (3.33) and (2.3). Thus we see that H0
possesses SM like Yukawa coupling at tree level. This is a close analogy to the BGL model,
where we explained how, in the exact 2HDM alignment limit, the h state had identical
Yukawa interactions to those of the SM Higgs boson.
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The quark Yukawa Lagrangian for a 3HDM will then have the general form

LY = −
3∑

k=1

[
Q̄La(Γk)ab φk nRb + Q̄La(∆k)ab φ̃k pRb + h.c.

]
, (3.31)

where as before Γk and ∆k stand for the Yukawa matrices in the down and up quark sectors
respectively. Due to specific charge assignments given for the Higgs doublets and quark
fields under U(1) × Z2 these Yukawa matrices will have the following textures:

Γ1 =




0 0 0
0 0 0
× × 0



 , ∆1 =




0 0 0
0 0 0
0 0 0



 , Γ2,∆2 =




× × 0
× × 0
0 0 0



 , Γ3,∆3 =




0 0 0
0 0 0
0 0 ×



 . (3.32)

Therefore, the quark mass matrices that emerge from these Yukawa matrices have the
following structure:

Mp =
1√
2

3∑

k=1
∆kvk =




× × 0
× × 0
0 0 ×



 , Mn = 1√
2

3∑

k=1
Γkvk =




× × 0
× × 0
× × ×



 . (3.33)

We then rotate from the p and n fields to the physical quark states u and d via rotation
matrices VL, VR, UL and UR identical to those of eq. (2.4). We thus obtain diagonal mass
matrices as in eq. (2.3), and the CKM matrix is, as before, given by V = V †

LUL. Let us
now analyse carefully the Yukawa couplings between the neutral scalar eigenstates and the
physical quarks, with particular attention to any FCNC couplings which may arise.

In the alignment limit, with α1 = β1 and α2 = β2, the physical scalar h completely
overlaps with H0. In that limit, the other physical scalars, H1 and H2, will, in general, be
an orthogonal mixture of the intermediate states defined above, H ′

1 and H ′
2.

Now, the terms in the Yukawa Lagrangian pertaining to the interactions between CP-
even scalars and quarks are

L CP even
Y = − 1√

2

[

n̄L

( 3∑

k=1
Γkhk

)

nR + p̄L

( 3∑

k=1
∆khk

)

pR + h.c.
]

, (3.34)

from which, using the rotation matrix of eq. (3.19) to express the hk in terms of H0, we
can obtain

L H0
Y = − H0

v

[

n̄L

(
1√
2

3∑

k=1
Γkvk

)

nR + p̄L

(
1√
2

3∑

k=1
∆kvk

)

pR + h.c.
]

,

= − H0
v

[
d̄LDddR + ūLDuuR + h.c.

]
.

(3.35)

In writing the last step, we have made use of eqs. (3.33) and (2.3). Thus we see that H0
possesses SM like Yukawa coupling at tree level. This is a close analogy to the BGL model,
where we explained how, in the exact 2HDM alignment limit, the h state had identical
Yukawa interactions to those of the SM Higgs boson.
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The quark Yukawa Lagrangian for a 3HDM will then have the general form

LY = −
3∑

k=1

[
Q̄La(Γk)ab φk nRb + Q̄La(∆k)ab φ̃k pRb + h.c.

]
, (3.31)

where as before Γk and ∆k stand for the Yukawa matrices in the down and up quark sectors
respectively. Due to specific charge assignments given for the Higgs doublets and quark
fields under U(1) × Z2 these Yukawa matrices will have the following textures:

Γ1 =




0 0 0
0 0 0
× × 0



 , ∆1 =




0 0 0
0 0 0
0 0 0



 , Γ2,∆2 =




× × 0
× × 0
0 0 0



 , Γ3,∆3 =




0 0 0
0 0 0
0 0 ×



 . (3.32)

Therefore, the quark mass matrices that emerge from these Yukawa matrices have the
following structure:

Mp =
1√
2

3∑

k=1
∆kvk =




× × 0
× × 0
0 0 ×



 , Mn = 1√
2

3∑

k=1
Γkvk =




× × 0
× × 0
× × ×



 . (3.33)

We then rotate from the p and n fields to the physical quark states u and d via rotation
matrices VL, VR, UL and UR identical to those of eq. (2.4). We thus obtain diagonal mass
matrices as in eq. (2.3), and the CKM matrix is, as before, given by V = V †

LUL. Let us
now analyse carefully the Yukawa couplings between the neutral scalar eigenstates and the
physical quarks, with particular attention to any FCNC couplings which may arise.

In the alignment limit, with α1 = β1 and α2 = β2, the physical scalar h completely
overlaps with H0. In that limit, the other physical scalars, H1 and H2, will, in general, be
an orthogonal mixture of the intermediate states defined above, H ′

1 and H ′
2.

Now, the terms in the Yukawa Lagrangian pertaining to the interactions between CP-
even scalars and quarks are

L CP even
Y = − 1√

2

[

n̄L

( 3∑

k=1
Γkhk

)

nR + p̄L

( 3∑

k=1
∆khk

)

pR + h.c.
]

, (3.34)

from which, using the rotation matrix of eq. (3.19) to express the hk in terms of H0, we
can obtain

L H0
Y = − H0

v

[

n̄L

(
1√
2

3∑

k=1
Γkvk

)

nR + p̄L

(
1√
2

3∑

k=1
∆kvk

)

pR + h.c.
]

,

= − H0
v

[
d̄LDddR + ūLDuuR + h.c.

]
.

(3.35)

In writing the last step, we have made use of eqs. (3.33) and (2.3). Thus we see that H0
possesses SM like Yukawa coupling at tree level. This is a close analogy to the BGL model,
where we explained how, in the exact 2HDM alignment limit, the h state had identical
Yukawa interactions to those of the SM Higgs boson.
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In the above matrix, we find

(B2
C)22 = − 1

2v1v3v213

[
v51v3(2λ10 + λ8) + v1

(
v22v

3
3λ7 + v53(2λ10 + λ8)

)
+ 2v41µ2

13 + 4v21v23µ2
13

+ 2v33(v3µ2
13 + v2µ

2
21) + v31

(
2v33(2λ10 + λ8) + v22v3λ9 + 2v2µ2

23
)]

,

(B2
C)23 = − v

[
v1v2v3(λ7 − λ9) + 2v3µ2

21 − 2v1µ2
23
]

2v213
,

(B2
C)33 = − v2

[
v21v2λ7 + 2v1µ2

21 + v3(v2v3λ9 + 2µ2
23)
]

2v3v213
. (3.15)

Then, one switches to the mass basis in the charged scalar mass matrix as follows,

Oγ2 · (BC)2 · OT
γ2 =




0 0 0
0 m2

C1 0
0 0 m2

C2



 , (3.16a)

with the charged mixing matrix

Oγ2 =




1 0 0
0 cos γ2 − sin γ2
0 sin γ2 cos γ2



 , (3.16b)

and where mC1 and mC2 denote the masses of the two physical charged scalars, H±
1 and

H±
2 , respectively.

Repeating the procedure above also for the CP-even states, we obtain

V mass
S =

(
h1 h2 h3

)M2
S

2




h1
h2
h3



 , (3.17)

where M2
S is a 3 × 3 symmetric mass matrix. In explicit form,

M2
S =





−µ2
21v2 + µ2

13v3 − 2λ1v31
v1

v1v2(λ4 + λ7) + µ2
21 v1v3(2λ10 + λ5 + λ8) + µ2

13

v1v2(λ4 + λ7) + µ2
21 −µ2

21v1 + µ2
23v3 − 2λ2v32
v2

v2v3(λ6 + λ9) + µ2
23

v1v3(2λ10 + λ5 + λ8) + µ2
13 v2v3(λ6 + λ9) + µ2

23 −µ2
13v1 + µ2

23v2 − 2λ3v33
v3





.

(3.18)
Switching to the Higgs basis, 


H0
H ′

1
H ′

2



 = Oβ ·




h1
h2
h3



 . (3.19)

we notice that the state H0 has the same gauge and Yukawa couplings at tree level as those
of the SM Higgs boson.
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In a similar manner, we can write down the Yukawa couplings of H ′
1 and H ′

2 with the
down type quarks as follows:

L
H′

1,H
′
2

Y = −H ′
1
v

d̄LNd1dR − H ′
2
v

d̄LNd2dR + h.c. , (3.36)

where the matrices Nd1 and Nd2 are given by

Nd1 =
v√
2v13

U †
L(Γ1v3 − Γ3v1)UR ,

Nd2 = U †
L

[
v2
v13

1√
2
(Γ1v1 + Γ3v3) − v13

v2

1√
2

Γ2v2

]
UR .

(3.37a)

To simplify further the expressions for Nd1 and Nd2, we go back to the textures of the mass
matrices in eq. (3.33). From the block diagonal structure of Mu, one can conclude that the
corresponding bidiagonalizing matrices, VL and VR, should have block diagonal structures
too. In fact, we can choose

VL =




× × 0
× × 0
0 0 1



 (3.38)

with the understanding that the phase of (Mu)33 can always be absorbed into (VR)33. Here,
unlike the BGL example of section 2, we are choosing to single out the third family. Then,
from eq. (2.5) we obtain

(UL)3A = V3A , (3.39)

which means that the third row of UL is identical to that of the CKM matrix, as occurred
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Figure 1. STU electroweak precision observables for all sampled points. Only coloured points pass
the STU analysis with a confidence level (CL) of, at least, 95%.

rejected. However, as expected in a model with multiple doublets, it is not difficult to find
regions of parameter space for which all constraints on the oblique parameters are satisfied.

In figure 2 we show the effect of non-flavour constraints on the allowed parameter space.
Here, the impact of restrictions from the LHC experiments, both in terms of measurement
of the Higgs bosons’ properties or in the searches for extra scalars, incorporated in the
HS/HB framework have been analysed. Unitarity bounds on the model’s quartic couplings
are also imposed, as well as precision electroweak constraints via the S, T and U parameters,
each leading to a considerable reduction of the allowed parameter space. We see a close
correlation between mA1 and mH1 for large values, stemming mostly from unitarity and
electroweak precision constraints. Note, the same tendency of near-degeneracy is observed
in the mass spectrum of the 2HDM. Furthermore our scan generates very low masses for the
scalars, which are excluded by various direct collider searches and implemented in HS/HB.
It is important to mention that the size of the input soft masses, together with that of the
quartic couplings in table 2 set, approximately, the scale of the physical BSM scalars.

In figure 3 we show how some of the QFV observables might further constrain the
model’s parameter space that survives the Higgs physics, unitarity and electroweak preci-
sion constraints. For instance, the dependency of the ratio of the b → sγ width computed in
the BGL-like 3HDM to the expected SM value as a function of mH1 is shown in figure 3(a).
Here, we observe a dispersion around the SM value such that some of the points deviate
by more than 2σ. The 1σ band is defined in the first line of table 1. In analogy to many
known versions of the 2HDM, the b → sγ constraint is a very important one, excluding a
number of parameter points which otherwise could be perfectly acceptable. Not all flavour
variables yield strong constraints, though — in figure 3(b) we show the values obtained
within our parameter scan for the Kaon system CP-violating εK phase. One notices a
rather minuscule variation around the SM value after all other QFV observables have been
constrained to lie within a 2σ interval of their respective SM-expected values. This is
clearly an indication that there are no substantial FCNC contributions to this observable
in the considered BGL-like 3HDM.
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Figure 2. Scatter plots of the allowed parameter space under several constraints imposed by the
BGL-like 3HDM. While on the right panel, b), we plot the masses of the two lightest BSM CP-even
scalars H1 and H2, the left one, a), showcases the relation between H1 and its heavy CP-even
counterpart H2.

Figure 3. Scatter plots of parameter space allowed by several constraints imposed on the BGL-like
3HDM. In the left panel, (a), we show the results for b → sγ, namely, the ratio of 3HDM-to-SM
branching fractions for B → Xsγ reaction while in the right panel, (b), we plot an analogous ratio
for εK , both in terms of the H1 mass. The colour code is as in figure 2 and grey points are excluded,
at 2σ level, by at least one QFV observable.
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Figure 2. Scatter plots of the allowed parameter space under several constraints imposed by the
BGL-like 3HDM. While on the right panel, b), we plot the masses of the two lightest BSM CP-even
scalars H1 and H2, the left one, a), showcases the relation between H1 and its heavy CP-even
counterpart H2.
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Figure 3. Scatter plots of parameter space allowed by several constraints imposed on the BGL-like
3HDM. In the left panel, (a), we show the results for b → sγ, namely, the ratio of 3HDM-to-SM
branching fractions for B → Xsγ reaction while in the right panel, (b), we plot an analogous ratio
for εK , both in terms of the H1 mass. The colour code is as in figure 2 and grey points are excluded,
at 2σ level, by at least one QFV observable.
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imposed on the BGL-like 3HDM. The colour code is the same as in figure 3.

in a Type I 2HDM — again to be expected, certain regions of our parameter space should
mimic well the Type-I behaviour. A similar phenomenon was observed for a 2HDM with
tree-level FCNCs, see [9].

We further observe that the values of the B → Xsγ width in our model approach the
corresponding SM value for very large values of the lightest charged Higgs boson mass.5
This is not surprising since NP contributions to this observable depend on the inverse of
the square of the extra scalars’ masses and are thus expected to approach zero as those
masses tend to infinity. In figure 5 on the other hand, considering again the full set of
phenomenological constraints, we observe how the inverted procedure we are using to
constrain the Yukawa sector yields an excellent agreement with other QFV observables —
there we plot the values of εK as a function of the lightest charged Higgs boson mass, and see
how close it gets to the SM value for all the generated points. We see that this observable
attains, in this model, values extremely close to the SM prediction, with deviations of the
order of ∼ 0.01%. To put these results in context, the current experimental uncertainty on
εK stands at less than 0.5% of its central value. The minimal value of the charged Higgs
boson mass that still reproduces the experimental value of εK and satisfies all constraints
is found to be ∼ 150GeV.

For completeness, let us also consider the B-meson mass differences. These are the
observables which in the SM are generated by one-loop box diagrams but also receive
tree-level contributions in theories with scalar mediated FCNC interactions in the down-
quarks sector. Again, and as expected, we see in figures 6 and 7 that the values obtained
in the BGL-like 3HDM for ∆MBs and ∆MBd approach their SM values for large enough
masses of the extra scalars. We also see that our scanning procedure produces values of
∆MBd extremely close to that of the SM (even for lower masses), with a larger dispersion

5As we saw in figure 2(b), theoretical and experimental constraints imposed upon the model force the
extra scalars to have small mass splittings for large values of their mass. A value of mH±

1
above 1TeV thus

corresponds to all other scalar particles having masses of the same order.
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Figure 6. Bs mass difference as a function of the CP-even H1 and pseudoscalar A1 masses. The
colour code is as in figure 4.

Figure 7. Bd mass difference as a function of heavier CP-even Higgs boson masses. The colour
code is the same as in figure 4.

found in ∆MBs , still within a 2σ variation. This is clearly due to the fact that we chose
a specific structure for the Yukawa matrices in eq. (3.42) in order to single out the third
generation. Furthermore, for a BGL-like model, the FCNC interactions are expected to be
suppressed by the CKM matrix elements, which, for the B-meson oscillation observables
under consideration, explains how contributions to ∆MBd , which involve a “jump” across
two generations, are more suppressed than those contributions to ∆MBs , for which scalars
only “jump” one generation in their QFV interactions.

While we do not show all the numerical results explicitly, we have analysed a wealth
of other flavour physics observables, encountering 1σ agreement with current experimental
bounds for all of them. These included the remaining QFV observables such as neutral
Kaon mass differences, neutral B mesons decays to muon and electron pairs and other
leptonic sector measurements, Z → bb̄ observables etc.
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Figure 9. The pseudoscalar A1 production cross section in gluon-gluon fusion at the LHC center
of mass energy of 13TeV, times its decay branching ratio to τ τ̄ as a function of mA1 . Grey points
represent the sets of scenarios excluded by not obeying at least one QFV observable at 2σ. Blue
points, both dark and light shades, correspond to an agreement with all QFV observables at least
at 2σ level. Those points that are further allowed by all imposed constraints are represented by
the dark blue points. The 1 and 2σ observation limits available from the CMS Collaboration for
searches in this channel are taken from [74].

Until the end of LHC operation we can expect an increase in accumulated luminosity
by at least a factor of 100, which would roughly lower the exclusion lines shown in figure 9
by an order of magnitude. As such, we can expect the searches in this channel to at least
exclude parts of the parameter space for mA1 < 400GeV. In fact, we see in figure 9 that the
maximum of the signal strength occurs for mA1 ! 350GeV, which is unsurprising, given
that this value roughly corresponds to twice the top mass. In fact, it is well known that the
gluon-gluon fusion cross section has a local maximum for a c.o.m. energy equal to twice
the top mass, both for the production of a CP-even or a CP-odd scalar.

The di-tau channel is also appropriate in searches for a heavier CP-even state, as we
see in figure 10. As before, take notice of the expected sharp drop in the value of the signal
rate for masses mH1 > 2mt. Both in direct production via gluon-gluon fusion into H1, or in
its associated production with a bottom quark pair, the obtained signal strength including
the branching ratio for H1 → τ τ̄ is very close to the current CMS sensitivity for the lower
mass region. Thus, we see that our BGL-like 3HDM is close to being probed by the current
LHC data, and before the end of the next LHC run certain parts of its parameter space can
also be tested in direct searches for BSM scalars. We therefore provide five representative
benchmark points in table 3 to be searched for in the LHC run-III. These were chosen such
that they obey all theoretical and experimental contraints on the scalar, gauge and fermion
sectors, and further satisfying the following criteria:

• BP1 corresponds to the lightest CP-even BSM Higgs boson found in our scans with
massmH1 = 249 GeV. This point also corresponds the lightest charged Higgs scenario
with mH±

1
= 101 GeV;
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Figure 10. The signal strength for production of a CP-even scalar via the gluon-gluon fusion
mechanism (a) times its branching ratio to τ τ̄ , and (b) with associated production of a bb̄-pair
times its branching fraction to τ τ̄ , as a function of the lightest CP-even mass, mH1 . The colour
code is the same as in figure 9 and the exclusion bounds in both panels were also taken from [74].

• BP2 represents the second-to-lightest CP-even and charged BSM Higgs bosons found
in our anlysis with masses mH1 = 285 GeV and mH±

1
= 146 GeV;

• BP3 and BP4 correspond to the lithest and next-to-lightest CP-odd Higgs boson
found in our scan with masses mA1 = 161 GeV and 206 GeV respectively;

• BP5 offers an early discovery or early exclusion scenario in the gg → A1 → ττ

channel, mA1 = 338 GeV, where the signal strength was found to be the closest one
to the CMS bound.

• BP6 corresponds to an early discovery/exclusion scenario in the gg → H1bb̄ → ττbb̄

channel, mH1 = 313 GeV, where the signal strength was found to be the closest one
to the CMS bound.

• Last but not least, BP7 represents an early discovery/exclusion scenario in the gg →
H1 → ττ channel, mH1 = 353 GeV, where the signal strength was found to be the
closest one to the CMS bound.

Note that the entire scalar spectrum in BP3, BP4 and BP5 is lighter than 1 TeV and
potentially at the reach of the LHC run-III. Furthermore, it is remarkable to note that
the lightest charged Higgs in BP1 is allowed to be lighter than the SM Higgs boson while
conforming with all experimental constraints. On the other hand, in BP1 and BP2 the
heavy scalar masses mH2 , mA2 and mH±

2
are larger than 4 TeV while in BP6 and BP6

their masses are approximately 1.5 TeV and 1.1 TeV. We also provide in table 3 both the
production cross sections and the branching fractions calculated for each of the studied
channels as well as the 3HDM-to-SM ratio of each of the five QFV observables in table 1.
While the former are relevant for direct searches for new scalars at the LHC, the latter
may be probed in flavour experiments.
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Generalised CP transformation

Requirements on multi-Higgs model-building:

• making as few assumptions on top of the SM as possible; 
• obtaining a model that satisfies all experimental constraints without 

introducing an excessive number of free parameters; 
• providing predictions testable at current/future measurements

Let us take the basic assumption:

CP violation (CPV) [5]; and incapacity to cast any light on the quark and lepton mass

and mixing hierarchies.

Addressing these unsolved questions requires going beyond the Standard Model (BSM),

and many proposed solutions involve expanding the minimal scalar sector of the SM by

adding extra scalar fields; for a recent overview of models with extended Higgs sectors, see

Ref. [6]. A direction, which is particularly attractive due to its conceptual simplicity, is

to stay with Higgs SU(2) doublets and to extend the notion of generations to the scalar

sector. One arrives in this way to N -Higgs-doublet models (NHDM). The Two-Higgs

Doublet Model (2HDM) (see Ref. [7] for a review) is the most popular example but models

with more Higgs doublets are also being actively explored. Such extended scalar sectors

have a rich phenomenology but they come with a price: as the number of extra fields grow,

so does the number of free parameters, and thus the predictive power of the theory is

reduced. When building such models, it would be desirable to achieve a balance between

the following two requirements: making as few extra assumptions as possible, on top of

those in the SM, and obtaining a model which satisfies all experimental constraints, while

also being able to make testable predictions for the ongoing or future measurements. One

would like to avoid describing all available data at the cost of an excessive number of new

fields and parameters, but also to avoid obtaining a neat BSM model, so tightly constrained

by theoretical constraints that it fails a comparison with the experimental bounds.

A successful way of reducing the number of free parameters of BSM models, thus

increasing their predictivity and even resolving some of their theoretical problems, is by

imposing additional global symmetries, either continuous or discrete [4, 8]. For instance, the

most general 2HDM has Higgs-mediated flavour-changing neutral currents (FCNC), but by

enforcing its Lagrangian to be invariant under a discrete Z2 symmetry, those undesirable

interactions are made to vanish [9–11]. Generically, a typical N -Higgs-Doublet Model

(NHDM) will contain hundreds of free parameters in its scalar and Yukawa sectors. By

imposing large non-Abelian discrete symmetry groups this number of parameters may be

reduced to about a dozen, making such a model rather predictive. However, even though it

is reasonably easy to fashion models with an acceptable scalar sector — i.e., models which

include a scalar state of mass 125 GeV with a SM-like behaviour and extra scalars that

are not yet excluded by the LHC searches — such models usually render fermionic sectors

which are unphysical [12]. Indeed, for su�ciently large discrete symmetry groups, there is

always some residual symmetry preserved by the vacuum, which will imply either massless

or mass-degenerate fermions, or alternatively, lead to an inadequate quark mixing, or an

insu�cient CPV. Smaller symmetry groups may lead to good experimental fits, but they

usually leave the model with an excess of free parameters, making such theories cumbersome

to analyse and less attractive as an alternative to the SM.

Recently, in Refs. [13, 14] a new type of a multi-Higgs model was proposed — based

on a single symmetry requirement which, rather surprisingly, leads to well-shaped scalar

and fermion sectors. The symmetry assumption behind this model is very simple:

The minimal multi-Higgs-doublet model implementing a CP -symmetry

of higher order without producing any accidental symmetry.
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CP is not uniquely defined in QFT  
[Feinberg, Weinberg 1959]

[Grimus, Rebelo 1997; Branco, Lavoura, Silva 1999]

Multi-Higgs-doublet models A hidden beauty: CP4-3HDM Conclusions

Freedom of defining CP

In QFT, the discrete transformations such as CP are not uniquely defined a priori
[e.g. Feinberg, Weinberg, 1959].
For example, in NHDM with doublets �i , i = 1, . . . ,N, the transformation

�i
CP��! Xij�

⇤
j , X 2 U(N) ,

with any X can play the role of “the CP transformation” [e.g. Branco, Lavoura,

Silva, 1999]. The “standard” convention �i
CP��! �⇤

i is basis-dependent.

I will show that in models with several gauge-blind scalars the freedom of defining
CP is even larger. In particular, it can lead to scalars which are CP-half-odd:

J : �(x, t)
CP��! i �(�x, t) .

Notice: (1) no conjugation, (2) CP4: order-4 transformation, J2 6= I, J4 = I.
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In a NHDM,                            the transformation

can play a role of the “CP-transformation”

2 The scalar sector of CP4 3HDM

We will be working with three SU(2) doublets (i.e. 3HDM), each with hypercharge Y = 1

and denoted as �1, �2 and �3. A priori, the scalar potential of such a model may have

(before one uses the liberty to redefine the fields of the model) 54 independent real param-

eters, as opposed to the two parameters of the SM scalar potential or 14 free parameters

of the general 2HDM scalar sector. The imposition of global—discrete or continuous—

symmetries on this model is therefore a good idea. The proposal by Weinberg of a 3HDM

equipped with natural flavor conservation in the Yukawa sector [16], for instance, included

two discrete symmetries generated by �2 ! ��2 and, separately, �3 ! ��3, making the

symmetry group of the model Z2⇥Z2. This symmetry is then spontaneously broken by the

vacuum expectation values (vevs) in the Higgs doublets. That model had a total of 18 real

parameters. Our approach is based not on family symmetries like the Z2 ones described in

the above example, but rather on generalized CP symmetries (or GCP), which relate the

fields with their complex conjugates. For the reader’s convenience and also to set up the

notation, we begin with a general reminder on the freedom in choosing CP transformations

one has when building a model.

2.1 The freedom of defining CP -symmetries

A self-consistent local quantum field theory does not uniquely specify how discrete sym-

metries, such as C and P , act on field operators [5, 17–19]. There is a great amount of

freedom in defining these transformations, which becomes especially large in the case of

several fields with equal quantum numbers. This is due to the fact that such fields are not

physical by themselves; only the mass eigenstates obtained after spontaneous symmetry

breaking will correspond to physical particles. Any linear combination of those fields which

preserves the kinetic terms of the model will be equally acceptable as a basis choice for

the theory. Therefore, any symmetry of the Lagrangian which is supposed to incorporate

a physically measurable property, is defined up to an unconstrained basis choice shift.

Focusing now on a CP transformation acting on several scalar fields �i, i = 1, . . . , N ,

one often considers the following GCP transformations [20, 21]:

JX : �i(x, t)
CP
��! CP �i(x, t) CP

�1 = Xij�
⇤
j (�x, t), Xij 2 U(N) . (2.1)

If there exists a unitary matrix X such that the Lagrangian of a model is invariant under

this GCP transformation, then the model is explicitly CP -conserving and JX can play the

role of “the CP -symmetry” of the model [5]. Notice that the “conventional” definition of

CP with Xij = �ij , so that �i(x, t)
CP
��! �

⇤
i
(�x, t), is only one of many possible definitions

and is, in fact, a basis-dependent choice.

We find this terminological issue so important that, in abuse of the reader’s patience,

we spell it out once again. When we say that the model is CP -conserving, we may refer

to any form of GCP symmetry (2.1), with whatever fancy X. In particular, of the “con-

ventional” definition of CP transformations fails to leave the lagrangian invariant, but a

more complicated GCP transformation does, then the model is still CP -conserving in the
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CP transformations of order-k

When one says “the model is CP-conserving”, one may refer to any form of GCP
symmetry (when all CP-odd observables are zero)

Applying GCP twice: family transformation

very traditional sense that all CP -odd observables are zero. It is only when none of the

transformations (2.1) is a symmetry of the model that we say that CP violation takes place

[5].

The shape of the X matrix may have important consequences for the phenomenological

behaviour of the models. In the 2HDM, for instance, three di↵erent (and relevant) choices

for X are possible, each leading to di↵erent accidental symmetries, and three di↵erent CP -

invariant models with vastly di↵erent phenomenologies emerge from those choices [22, 23].

Notice now that applying JX twice generates a pure family transformation:

�i(x, t) ! (CP)2�i(x, t)(CP)�2 = (XX
⇤)ij�j(x, t) . (2.2)

Using the redefinition freedom one has in the choice of the basis of scalar fields, it is possible

to bring the matrix X to a block-diagonal form [19, 20], with the blocks being either 1⇥ 1

phases or 2⇥ 2 matrices of the following type:

 
c↵ s↵

�s↵ c↵

!
as in Ref. [20], or

 
0 e

i↵

e
�i↵ 0

!
as in Ref. [19]. (2.3)

This is the simplest form of X one can achieve with basis transformations in the scalar

space CN . If X contains at least one 2⇥ 2 block with ↵ 6= 0 or ⇡, then (JX)2 = XX
⇤
6= I.

This then means that the CP transformation (2.1) is not an order-2 transformation. If k

is the smallest integer such (JX)k = I, the GCP transformation JX is said to be of order

k.

One immediately sees that k is necessarily an even number: one needs to perform

conjugation an even number of times to obtain the identity transformation. However,

imposing the GCP of a generic even order k immediately leads to accidental symmetries,

including the GCP of a smaller order. Indeed, if k has prime factors other than two, one can

factor them out and obtain a smaller-order GCP. The only way to prevent this possibility

is to take k = 2p, with p � 1 an integer number. Which means that the usual CP is of

order two (CP2), the first non-trivial higher-order CP symmetry is CP4, the next one is

CP8, and so on.

Here we would like to reiterate again the point made three paragraphs earlier. When

we label a model as CP -conserving or CP -violating, we do not need to specify whether

it conserves or violates CP2, CP4, or a higher-order GCP. CP -odd observables do not

distinguish them. If there exists at least one GCP transformation that leaves the model

invariant, then it is CP -conserving. Conversely, when we speak of CP -violation, we mean

that all possible GCP transformations fail to leave the model invariant.

Although the CP -odd observables do not distinguish di↵erent classes of GCP transfor-

mations (CP2, CP4, etc), the parameters of the lagrangian definitely do. Since higher-order

GCPs involve transformation between a pair of fields, imposing it will certainly constrain

the parameters stronger than the conventional CP or, in general, any expression for CP2.

As a result, it may happen that the model itself does not o↵er enough freedom to imple-

ment a higher-order CP symmetry. For example, imposing a higher-order CP symmetry

on the scalar potential of the 2HDM produces accidental symmetries, which include the
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usual CP [23]. Thus, imposing higher-order CP symmetry has always been viewed as a

compact way of defining a model, but not as a path towards new models that could not

be achieved through the usual “order-2 CP + family symmetry” combination. A rare

exception is discussed in Ref. [24], where the higher-order CP symmetries were classified

as distinct opportunities for model building. Further, extending these GCP symmetries to

the Yukawa sector within 2HDM was problematic [25–27], as they ran into trouble when

confronted with the experimental data (predicting some massless fermions and an insuf-

ficient CPV, for instance). In a sense, 2HDM does not o↵er the model builder enough

room to fully incorporate such a strongly constraining symmetry as CP4, and one needs

to extend the number of doublets to at least three.

2.2 The scalar potential

How many di↵erent global symmetries can one impose upon a given BSM model? Given the

basis redefinition freedom present in many such models, apparently di↵erent symmetries

may, in fact, be related by basis choices. For instance, in the 2HDM a symmetry of the

form �1 $ �2 is equivalent, in a di↵erent basis, to the usual Z2 symmetry, �1 ! �1 and

�2 ! ��2. In each basis, however, the Lagrangian of the model looks completely di↵erent,

with seemingly diverse relations between parameters. In the 2HDM, the work of Ref. [22]

proved that there are only six di↵erent symmetry classes, which are not related among

themselves by basis choices.

In the 3HDM the situation is more complicated. In Ref. [28] a first attempt at find-

ing di↵erent classes of the 3HDM symmetries was undertaken, but that study has been

restricted to simple Abelian groups. A systematic and constructive search for all discrete

symmetry groups in the scalar sector of the 3HDM was performed in Ref. [15] for Abelian

and in Ref. [29, 30] for discrete non-Abelian groups. In each case, it was checked whether

the family symmetry group can be further enlarged to include a general CP symmetry

without producing any further accidental group.

This construction showed that, up to a basis choice, there exists only one 3HDM with

a CP symmetry of higher order, to be specific, CP4, which does not lead to accidental

symmetries. In the suitable basis, CP4 acts on the three Higgs doublets in the following

way:
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Scalar dark matter

More Higgses — more fun!

some Higgs fields participate in EWSB ! massive W and Z , massive
fermions,

other can be inert: no coupling to fermions, and no role in W and Z
masses. If inert scalars are protected by a new “parity” (do not get
vev) ! the lightest parity-odd scalar is stable ! scalar DM. This
does not require any fine-tuning!

Example: Inert doublet model = 2HDM with exact Z2-symmetry
[Deshpande, Ma, 1978; Barbieri et al, 2006, Lopez Honorez et al, 2006].

Two Higgs doublets � and �D , with h�Di = 0. Extra Higgses from �D :
H±, H, A, with the lightest one being the DM + interesting collider
phenomenology.
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usual CP [23]. Thus, imposing higher-order CP symmetry has always been viewed as a

compact way of defining a model, but not as a path towards new models that could not

be achieved through the usual “order-2 CP + family symmetry” combination. A rare

exception is discussed in Ref. [24], where the higher-order CP symmetries were classified

as distinct opportunities for model building. Further, extending these GCP symmetries to

the Yukawa sector within 2HDM was problematic [25–27], as they ran into trouble when

confronted with the experimental data (predicting some massless fermions and an insuf-

ficient CPV, for instance). In a sense, 2HDM does not o↵er the model builder enough

room to fully incorporate such a strongly constraining symmetry as CP4, and one needs

to extend the number of doublets to at least three.

2.2 The scalar potential

How many di↵erent global symmetries can one impose upon a given BSM model? Given the

basis redefinition freedom present in many such models, apparently di↵erent symmetries

may, in fact, be related by basis choices. For instance, in the 2HDM a symmetry of the

form �1 $ �2 is equivalent, in a di↵erent basis, to the usual Z2 symmetry, �1 ! �1 and

�2 ! ��2. In each basis, however, the Lagrangian of the model looks completely di↵erent,

with seemingly diverse relations between parameters. In the 2HDM, the work of Ref. [22]

proved that there are only six di↵erent symmetry classes, which are not related among

themselves by basis choices.

In the 3HDM the situation is more complicated. In Ref. [28] a first attempt at find-

ing di↵erent classes of the 3HDM symmetries was undertaken, but that study has been

restricted to simple Abelian groups. A systematic and constructive search for all discrete

symmetry groups in the scalar sector of the 3HDM was performed in Ref. [15] for Abelian

and in Ref. [29, 30] for discrete non-Abelian groups. In each case, it was checked whether

the family symmetry group can be further enlarged to include a general CP symmetry

without producing any further accidental group.

This construction showed that, up to a basis choice, there exists only one 3HDM with

a CP symmetry of higher order, to be specific, CP4, which does not lead to accidental

symmetries. In the suitable basis, CP4 acts on the three Higgs doublets in the following
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In 2HDM, three different choices for X are possible leading to usual CP2 x accidental 
symmetries — what is the minimal set up (with CP4) that does not lead to those?

with real �5 and complex �8, �9
1.

Applying the transformation (2.4) twice leads to J
2 = XX

⇤ = diag(1, �1, �1) 6= I.
It is trivial to see that one recovers the identity transformation only after applying J four

times: J4 = I. Thus, the transformation J is indeed a GCP of order 4. For generic values

of the coe�cients, this potential has no other Higgs-family or GCP symmetries, apart from

powers of J [15]. In particular, this potential is not invariant under the “conventional”

CP -symmetry or, in general, under any other CP2. Nevertheless, the model is still CP -

conserving because there exists at least one GCP (namely, CP4) which is a symmetry of

the model. The fact that the potential has no CP2 symmetry is just irrelevant.

At this point, notice that there is no basis transformation that would make all the

coe�cients of the scalar potential V real [13]. Indeed, if it were possible to find such a real

basis, then the potential would have an order-2 GCP. But such a symmetry is absent in the

CP4 3HDM; therefore, the real basis does not exist. The absence of the real basis does not

contradict explicit CP -conservation (and therefore, explicit T -conservation), because all

basis-invariant combinations of the scalar couplings are CP -even. This model completely

settles the issue of whether explicit CP conservation is equivalent to the existence of a real

basis [31]: they are equivalent only for CP symmetries of order 2 and not for higher-order

GCP.

As is conventional practice in building the models with extended Higgs sectors, it is

necessary to require that the quartic parameters �i are such that the potential is bounded

from below (BFB). In other words, for quasiclassically large values of the Higgs fields along

any direction in the scalar space, the potential must rise to plus infinity. One usually

assumes the strong version of the BFB condition, which requires the quartic potential to

strictly grow in any direction2. Necessary and su�cient conditions for BFB were obtained

for the 2HDM earlier in Ref. [32], but no such deduction has hitherto been possible for

the general 3HDM, or even for the CP4 3HDM we are dealing with. Nonetheless, we

established in Appendix B a set of su�cient BFB conditions, which, although somewhat

overly restrictive, will guarantee that the potential is indeed bounded from below. We

will apply these conditions in our numerical analysis later on, which will therefore be a

conservative one.

2.3 Extrema: generic solutions

When a scalar potential is explicitly CP -conserving, the vacuum of the theory can preserve

CP , or spontaneously break it. The 2HDM, for instance, was first conceived as a model

wherein spontaneous CPV has occurred [33]. The CP4 3HDM potential introduced in the

previous section is explicitly CP conserving. Since we aim at extending the CP4 symmetry

1
In fact, in V1 one can write additional terms invariant under the same GCP transformation (2.4), which

was indeed done in the previous publications on this model [13, 14]. However, using the residual freedom

of basis transformations which leave J invariant, one can simplify V1 to the form of Eq. (2.6). We provide

an explanation of this procedure in Appendix A.
2
In principle, potentials stable in a weak sense, in which flat directions of their quartic potential are

protected by the growing quadratic terms, are also acceptable. However, they correspond to measure zero

regions in the parameter space, and we can avoid them in the phenomenological analysis.
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usual CP [23]. Thus, imposing higher-order CP symmetry has always been viewed as a

compact way of defining a model, but not as a path towards new models that could not

be achieved through the usual “order-2 CP + family symmetry” combination. A rare

exception is discussed in Ref. [24], where the higher-order CP symmetries were classified

as distinct opportunities for model building. Further, extending these GCP symmetries to

the Yukawa sector within 2HDM was problematic [25–27], as they ran into trouble when

confronted with the experimental data (predicting some massless fermions and an insuf-

ficient CPV, for instance). In a sense, 2HDM does not o↵er the model builder enough

room to fully incorporate such a strongly constraining symmetry as CP4, and one needs

to extend the number of doublets to at least three.

2.2 The scalar potential

How many di↵erent global symmetries can one impose upon a given BSM model? Given the

basis redefinition freedom present in many such models, apparently di↵erent symmetries

may, in fact, be related by basis choices. For instance, in the 2HDM a symmetry of the

form �1 $ �2 is equivalent, in a di↵erent basis, to the usual Z2 symmetry, �1 ! �1 and

�2 ! ��2. In each basis, however, the Lagrangian of the model looks completely di↵erent,

with seemingly diverse relations between parameters. In the 2HDM, the work of Ref. [22]

proved that there are only six di↵erent symmetry classes, which are not related among

themselves by basis choices.

In the 3HDM the situation is more complicated. In Ref. [28] a first attempt at find-

ing di↵erent classes of the 3HDM symmetries was undertaken, but that study has been

restricted to simple Abelian groups. A systematic and constructive search for all discrete

symmetry groups in the scalar sector of the 3HDM was performed in Ref. [15] for Abelian

and in Ref. [29, 30] for discrete non-Abelian groups. In each case, it was checked whether

the family symmetry group can be further enlarged to include a general CP symmetry

without producing any further accidental group.

This construction showed that, up to a basis choice, there exists only one 3HDM with

a CP symmetry of higher order, to be specific, CP4, which does not lead to accidental

symmetries. In the suitable basis, CP4 acts on the three Higgs doublets in the following

way:
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conserving because there exists at least one GCP (namely, CP4) which is a symmetry of

the model. The fact that the potential has no CP2 symmetry is just irrelevant.
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assumes the strong version of the BFB condition, which requires the quartic potential to

strictly grow in any direction2. Necessary and su�cient conditions for BFB were obtained

for the 2HDM earlier in Ref. [32], but no such deduction has hitherto been possible for

the general 3HDM, or even for the CP4 3HDM we are dealing with. Nonetheless, we

established in Appendix B a set of su�cient BFB conditions, which, although somewhat

overly restrictive, will guarantee that the potential is indeed bounded from below. We

will apply these conditions in our numerical analysis later on, which will therefore be a

conservative one.
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CP , or spontaneously break it. The 2HDM, for instance, was first conceived as a model

wherein spontaneous CPV has occurred [33]. The CP4 3HDM potential introduced in the
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In fact, in V1 one can write additional terms invariant under the same GCP transformation (2.4), which

was indeed done in the previous publications on this model [13, 14]. However, using the residual freedom
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In principle, potentials stable in a weak sense, in which flat directions of their quartic potential are

protected by the growing quadratic terms, are also acceptable. However, they correspond to measure zero

regions in the parameter space, and we can avoid them in the phenomenological analysis.
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Most general charge-preserving VEVs:

to the Yukawa sector, it must be spontaneously broken; otherwise, the model would feature

mass-degenerate fermions [14]. Without lack of generality, one can write the most generic

charge-preserving vevs as

p
2h�0i i = (v1, v2e

i�2 , v3e
i�3) ⌘ (v1, uc e

i�2 , us e
i�3) , (2.7)

where v1 > 0, u ⌘
p
v
2

2
+ v

2

3
and we used the standard notation c ⌘ cos , s ⌘ sin .

Later on, we will also use t ⌘ tan . We then expand the doublets around the extremum

using the following conventions:

�1 =
1
p
2

 p
2h+

1

v1 + h1 + ia1

!
, �2 =

e
i�2

p
2

 p
2h+

2

v2 + h2 + ia2

!
, �3 =

e
i�3

p
2

 p
2h+

3

v3 + h3 + ia3

!
.

(2.8)

By substituting this expansion in the Higgs potential V and setting the coe�cients of

the linear terms to zero we obtain the minimisation equations, also known as the tadpole

conditions. The coe�cient of the linear term in a1 gives us the following relation:

�5

2
v1u

2
s2 sin(�2 + �3) = 0 . (2.9)

Let us for the moment consider the generic situation with sin(2 ) 6= 0. It leads to �3 =

��2 ⌘ ��. The tadpole conditions for a2 and a3 then produce an additional relation,

u
2 (|�8|s2 sin [arg(�8)� 4�] + |�9|c2 sin [arg(�9)� 2�]) = 0 . (2.10)

For given �8 and �9, this equation relates the phase � with the angle  . In order to simplify

the analysis, we find it convenient to switch now to the real vev basis by rephasing �2 !

�2e
�i� and �3 ! �3e

i� . With this basis transformation, all real parameters in the potential

stay the same, while �8 and �9 are rephased so that the quantity 2 arg(�9)�arg(�8) remains

unchanged. In the real vev basis, the tadpole condition above is written as

s2 Im (�8) + c2 Im (�9) = 0 , tan 2 =
2v2v3
v
2

2
� v

2

3

= �
Im (�9)

Im (�8)
. (2.11)

Note that the latter can not be considered as an expression for  in terms of the parameters

of the original potential since the phases of �8 and �9 depend now on �. However, if Im (�8)

is a free parameter and if  is known, one can deduce Im (�9).

The tadpoles for hi lead to the following three relations:

m
2

11 = �1v
2

1 +
1

2
u
2
�34 +

1

2
u
2
�5 s2 , (2.12)

m
2

22 = �2u
2 +

1

2
v
2

1�34 +
1

2
u
2Re (�9) t2 , (2.13)

0 = �5v
2

1c2 + ⇤u2s2 c2 +Re (�9)u
2
c4 , (2.14)

where we used the following shorthand notations:

⇤ ⌘
�
0
34

2
+ Re (�8)� �2 , �34 ⌘ �3 + �4 , �

0
34 ⌘ �

0
3 + �

0
4 . (2.15)
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In total, therefore, we have five minimisation conditions to solve. One of them produces a

relationship between the phases of the vevs of �2 and �3, the remaining four must still be

solved. As is usually the case in multi-Higgs models, obtaining the analytical expressions

for the vevs (and their phases) in terms of the potential’s parameters is exceedingly di�cult.

It is much simpler, in a numerical study, to take the values of the vevs and their phases as

inputs. Therefore, we consider  as a free parameter and use Eq. (2.14) and
p
v
2

1
+ u2 ⌘ v =

246 GeV to determine v
2

1
and u

2 in terms of  and the scalar quartic couplings. Then,

Eqs. (2.12) and (2.13) may be used to extract m
2

11
and m

2

22
. We will follow a similar

procedure bearing also in mind our desire to find an acceptable scalar (and fermionic)

mass spectrum.

If  is considered as input in a numerical scan over parameter space of the model,

one needs to specify its range. Here, we argue that 0    ⇡/2, which corresponds

to positive v2 and v3, faithfully covers the entire set of relevant cases. The arguments

go as follows. When the discrete symmetry CP4 is spontaneously broken, the potential

has four degenerate minima, all related by the broken symmetry transformations but all

corresponding to the same physics. These four minima are obtained by consecutively

applying the transformation v2 $ v3, � ! � + ⇡/2, while the real v1 stays unchanged.

Now, suppose we allow the free parameter  to take any value, thus allowing v2 and v3

to be either positive or negative. By the previous argument, we immediately see that

the point (v1,�|v2|,�|v3|) is two transformations away from (v1, |v2|, |v3|), leading to the

same model. The point (v1, |v2|,�|v3|) represents a real-vev basis transformation of the

point (v1, i|v2|,�i|v3|), which, in turn, corresponds to the same model as (v1, |v3|, |v2|).

Therefore, whatever value  takes, the model it leads to can also be found in the first

quadrant of  .

2.4 Extrema: special points

Let us now consider two special values of  . The first case is when s2 = 0, and without

loss of generality, we can set  = 0 meaning v3 = 0. In this case, the tadpole condition

(2.9) is also satisfied. The other tadpole conditions get simplified, and after some algebra

we arrive at the following relations:

Im (�9) = 0 , |�5|v
2

1 = |�9|u
2
, m

2

11 = �1v
2

1 +
1

2
�34u

2
, m

2

22 = �2u
2 +

1

2
�34v

2

1 . (2.16)

These relations are exactly those which we would get from the previous subsection in the

limit s2 ! 0. Thus, we do not need to include this point as a separate case; we simply

allow  to start from zero.

The second singular point is c2 = 0, implying v2 = v3. Then, the tadpole condition

(2.10) can be satisfied, in the real vev basis, either when u = 0 or when �8 is real, while

�9 is purely imaginary. The former option would lead to an unphysical fermion spectrum,

as we have already mentioned, while in the latter case the symmetry content of the model

increases and involves now several accidental symmetries including the CP symmetry of

order 2. This model, not being CP4-driven, falls beyond the scope of the present study.

However the points in the vicinity of this limit, c2 ⌧ 1, are acceptable and, when accom-

panied with correspondingly small Re (�9), can potentially lead to realistic models.
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2
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1

2
�34v

2

1 . (2.16)

These relations are exactly those which we would get from the previous subsection in the

limit s2 ! 0. Thus, we do not need to include this point as a separate case; we simply

allow  to start from zero.

The second singular point is c2 = 0, implying v2 = v3. Then, the tadpole condition

(2.10) can be satisfied, in the real vev basis, either when u = 0 or when �8 is real, while

�9 is purely imaginary. The former option would lead to an unphysical fermion spectrum,

as we have already mentioned, while in the latter case the symmetry content of the model

increases and involves now several accidental symmetries including the CP symmetry of

order 2. This model, not being CP4-driven, falls beyond the scope of the present study.

However the points in the vicinity of this limit, c2 ⌧ 1, are acceptable and, when accom-

panied with correspondingly small Re (�9), can potentially lead to realistic models.
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Higgs alignment limit

Traditional choice for the Higgs basis (only first doublet gets a VEV):

The Higgs basis is defined as a basis in which only the first doublet gets a vev. In that

basis, we write the neutral complex fields (lower components of the Higgs doublets) as
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In general, the fields ⇢i and ⌘i are not mass eigenstates, and the neutral mass matrix

includes mixing terms between them. The exact scalar alignment refers to the situation

where one of the states, e.g. ⇢1, is a mass eigenstate, identified with the 125 GeV Higgs

boson H125. If this is the case, then its tree-level couplings to the W and Z bosons and to

fermions are exactly the same as in the SM. Therefore, in such alignment limit the SM-like

state will not mediate any tree-level FCNCs. The other (heavier) neutral scalars can, and

generally do, have tree-level FCNCs, as will be discussed in Section 3.

To find the condition for scalar alignment, it is necessary to study the neutral scalar

mass matrix in the Higgs basis. To do so, we first remark that the Higgs basis is not uniquely

defined. In the 3HDM, any unitary transformation between �2 and �3 in Eq. (2.28) pre-

serves the definition of the Higgs basis3. We make the following traditional (and convenient)

choice for the Higgs basis:
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If one starts in the real vev basis, one should just set the phase � to zero. For completeness,

we give in Appendix C all expressions in the original basis with a non-zero �.

To proceed to the physical scalars, we switch to the 6-dimensional real scalar field

space and consider the 6 ⇥ 6 neutral mass matrix M, see Eq. (2.21). We order the fields

in the real vev basis as 'a = (h1, h2, h3, a1, a2, a3) and in the chosen Higgs basis as �a =

(G0
, ⇢1, ⇢2, ⇢3, ⌘2, ⌘3). The rotation to the Higgs basis is done by �a = Pab'b, where the

6 ⇥ 6 matrix Pab is given by Eq. (C.6). To obtain the form of the neutral mass matrix in

the Higgs basis, we start from M from Eq. (2.21) and use the rotation matrix P so that

M
H = PMP

T . With this rotation, one immediately finds that the first column and the

first row of MH only contain zeros, by virtue of the neutral Goldstone decoupling.

The exact Higgs alignment happens when the second row and column also decouple

from the rest, i.e.

M
H =

0

B@
0 0 04
0 m

2

H125
04

04 04 M
H

4⇥4

1

CA . (2.30)

Therefore, in order to establish the scalar alignment conditions, one needs to calculate the

second row of MH and to set its o↵-diagonal elements to zero. We did that and observed

that MH

23
= M

H

25
= M

H

26
= 0 are automatically fulfilled for generic vevs v1, u and angle  .

3
A similar �2 rephasing freedom has already been noticed in the 2HDM.
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Then, the mixing terms can be grouped as ��89u
2(s h2�c h3)(s a2�c a3), which implies

that the o↵-diagonal block in Eq. (2.21) is given by

Mha = ��89u
2

0

B@
0 0 0

0 s
2

 
�s c 

0 �s c c
2

 

1

CA . (2.25)

One can again explicitly check that the neutral Goldstone boson, given by the following

combination of fields

G
0 = (v1a1 + uc a2 + us a3)/v , (2.26)

is an eigenvector of the neutral mass matrix M with a zero eigenvalue. The resulting five

neutral physical Higgs bosons mix and do not possess definite CP -properties, as should

be expected considering that the CP symmetry has been broken. In particular, none of

the neutral scalar states possess the parities or CP -charges defined in Refs. [13, 14] for the

CP4 unbroken case.

As shown in Refs. [13, 14], in the case of a vacuum with unbroken CP4, i.e. with u = 0,

the physical Higgs spectrum organizes itself in mass-degenerate pairs, thus resembling that

of the 2HDM. In such a vacuum, the model has a pair of mass-degenerate charged scalars,

one SM-like neutral Higgs and two pairs of mass-degenerate neutral scalars, with masses

m and M (one is an analogue of the heavier CP -even scalar in the 2HDM, H, the other is

an analogue of the 2HDM pseudoscalar state, A). The spontaneous breaking of CP4 will

induce a splitting in the mass spectrum, which vanishes in the u ! 0 limit, assuming that

the quartic couplings remain fixed.

2.6 Scalar alignment limit

An important property of viable multi-Higgs models in the post LHC era is that they should

have regions in their parameter space for which one of their neutral scalars possesses a mass

of about 125 GeV and closely resembles the SM Higgs boson. By this statement we mean

that the couplings of this scalar to the SM gauge bosons and fermions must be very similar

in magnitude to the corresponding SM values for those couplings. This may be achieved

either in a “natural” way via symmetries (like in the case of the inert 2HDM [34, 35]), or

by a fine-tuning of the multi-Higgs model considered. In many scenarios, the desired region

of parameter space can arise more or less “naturally” in a decoupling regime, wherein the

extra scalar states are much heavier than the lightest SM-like one (see Ref. [36] for its

introduction to the 2HDM). An intermediate case is the alignment limit, where some extra

scalar masses may be low if certain relations by the couplings are satisfied. Again, within

the 2HDM, the alignment without decoupling, and possible symmetry-based pathways to

it, were considered in [37–40] and for maximally symmetric models beyond two doublets

[41].

Let us examine how exact scalar alignment may arise in our model. In the original

basis, the vevs of the doublets are given by Eq. (2.7), which we now rewrite as follows

p
2h�0

i i = (v1, v2e
i�
, v3e

�i�) ⌘ v (c� , s�c e
i�
, s�s e

�i�) . (2.27)
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If one starts in the real vev basis, one should just set the phase � to zero. For completeness,

we give in Appendix C all expressions in the original basis with a non-zero �.

To proceed to the physical scalars, we switch to the 6-dimensional real scalar field

space and consider the 6 ⇥ 6 neutral mass matrix M, see Eq. (2.21). We order the fields

in the real vev basis as 'a = (h1, h2, h3, a1, a2, a3) and in the chosen Higgs basis as �a =

(G0
, ⇢1, ⇢2, ⇢3, ⌘2, ⌘3). The rotation to the Higgs basis is done by �a = Pab'b, where the

6 ⇥ 6 matrix Pab is given by Eq. (C.6). To obtain the form of the neutral mass matrix in

the Higgs basis, we start from M from Eq. (2.21) and use the rotation matrix P so that

M
H = PMP

T . With this rotation, one immediately finds that the first column and the

first row of MH only contain zeros, by virtue of the neutral Goldstone decoupling.

The exact Higgs alignment happens when the second row and column also decouple

from the rest, i.e.

M
H =

0
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0 m
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Therefore, in order to establish the scalar alignment conditions, one needs to calculate the

second row of MH and to set its o↵-diagonal elements to zero. We did that and observed

that MH

23
= M

H

25
= M

H

26
= 0 are automatically fulfilled for generic vevs v1, u and angle  .

3
A similar �2 rephasing freedom has already been noticed in the 2HDM.
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Therefore, in order to establish the scalar alignment conditions, one needs to calculate the

second row of MH and to set its o↵-diagonal elements to zero. We did that and observed

that MH

23
= M

H

25
= M

H

26
= 0 are automatically fulfilled for generic vevs v1, u and angle  .

3
A similar �2 rephasing freedom has already been noticed in the 2HDM.
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fermions are exactly the same as in the SM. Therefore, in such alignment limit the SM-like

state will not mediate any tree-level FCNCs. The other (heavier) neutral scalars can, and

generally do, have tree-level FCNCs, as will be discussed in Section 3.

To find the condition for scalar alignment, it is necessary to study the neutral scalar

mass matrix in the Higgs basis. To do so, we first remark that the Higgs basis is not uniquely

defined. In the 3HDM, any unitary transformation between �2 and �3 in Eq. (2.28) pre-

serves the definition of the Higgs basis3. We make the following traditional (and convenient)

choice for the Higgs basis:

0

B@
�1

�2

�3

1

CA =

0

B@
c� s�c s�s 

0 �s c 

s� �c�c �c�s 

1

CA

0

B@
�1

�2e
�i�

�3e
i�

1

CA . (2.29)

If one starts in the real vev basis, one should just set the phase � to zero. For completeness,

we give in Appendix C all expressions in the original basis with a non-zero �.

To proceed to the physical scalars, we switch to the 6-dimensional real scalar field

space and consider the 6 ⇥ 6 neutral mass matrix M, see Eq. (2.21). We order the fields

in the real vev basis as 'a = (h1, h2, h3, a1, a2, a3) and in the chosen Higgs basis as �a =

(G0
, ⇢1, ⇢2, ⇢3, ⌘2, ⌘3). The rotation to the Higgs basis is done by �a = Pab'b, where the

6 ⇥ 6 matrix Pab is given by Eq. (C.6). To obtain the form of the neutral mass matrix in

the Higgs basis, we start from M from Eq. (2.21) and use the rotation matrix P so that

M
H = PMP

T . With this rotation, one immediately finds that the first column and the

first row of MH only contain zeros, by virtue of the neutral Goldstone decoupling.

The exact Higgs alignment happens when the second row and column also decouple

from the rest, i.e.

M
H =

0

B@
0 0 04
0 m

2

H125
04

04 04 M
H

4⇥4

1

CA . (2.30)

Therefore, in order to establish the scalar alignment conditions, one needs to calculate the

second row of MH and to set its o↵-diagonal elements to zero. We did that and observed

that MH

23
= M

H

25
= M

H

26
= 0 are automatically fulfilled for generic vevs v1, u and angle  .

3
A similar �2 rephasing freedom has already been noticed in the 2HDM.
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The only non-zero entries of the second row can be written, after some algebra, in a very

compact form:

M
H

22 = 2c2
�
m

2

11 + 2s2
�
m

2

22 , M
H

24 = sin 2� (m2

11 �m
2

22) . (2.31)

Exact scalar alignment is achieved when M
H

24
= 0, which implies

m
2

11 = m
2

22 , (2.32)

irrespectively of all other parameters of the model. Then the SM-like Higgs mass becomes

simply

m
2

H125
= 2m2

11 . (2.33)

In this limit, no tree-level FCNCs occur in the H125 interactions with fermions, and the

couplings of this scalar state to the gauge bosons are identical to those of the SM Higgs

boson. This is an alignment without decoupling: the remaining scalars can have any values

of masses.

The simplicity of the scalar alignment condition (2.32) is not surprising. Indeed, take

any multi-Higgs-doublet potential with universal quadratic term and rewrite it in terms of

real fields 'a,

V = �m
2
X

a

'
2

a + ⇤abcd'a'b'c'd , (2.34)

with arbitrary ⇤abcd constrained only by BFB conditions. Then this potential automatically

incorporates the exact scalar alignment, which can be verified by direct di↵erentiation. One

scalar mass eigenstate is always aligned with the direction of vevs, and its mass squared

is 2m2. The non-trivial result of the above exercise is that, within CP4 3HDM with fully

spontaneously broken CP4 symmetry, setting m
2

11
= m

2

22
is the only way to impose scalar

alignment.

3 CP4 symmetric Yukawa sector

3.1 Yukawa models with CP4

The CP4 symmetry can be extended to the Yukawa sector, provided the CP4 transforma-

tion also mixes the fermion generations, as follows

 i

CP
��! Yij 

CP

j , where  
CP = �

0
C ̄

T
. (3.1)

Such an extension has been performed in the framework of 2HDM in Refs. [25–27] and ran

into di�culties with excessive accidental symmetries. In this work, we implement such an

extension for the CP4 3HDM.

The CP4 symmetry strongly constrains the Yukawa interaction matrices. In Ref. [14],

some examples of such interactions were given under the simplifying assumption that the

right-handed up and down fermions, as well as the left-handed doublets, transform in the

same way, i.e. Y
L = Y

d = Y
u. In this work, we lift this assumption and derive all

possible forms of the Yukawa interaction matrices compatible with CP4 and not running
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CP4 can be extended to the Yukawa sector and must be spontaneously 
broken leading to particular patterns in the flavour sector

Model-building with multiple Higgses CP4 3HDM Conclusions

Flavored CP4 3HDM

Extending CP4 to the Yukawa sector: must mix fermion families  i ! Yij CP

j
,

where  CP
= �0C  ̄T

.

�LY = q̄L�adR�a + q̄L�auR�
⇤
a
+ h.c .

is invariant under CP4 with known Xab if

(Y
L
)
†
�aY

d
Xab = �

⇤
b
, (Y

L
)
†
�aY

u
X

⇤
ab

= �
⇤
b
.

We solved these equations = found Yukawa matrices �’s and �’s and mixing

matrices Y
L
, Y

d
, Y

u
, which satisfy all these conditions and do not lead to

immediate problems with masses and mixing.

Very few possibilities arise: cases A, B1, B2, B3.

Igor Ivanov (CFTP, IST) Towards phenomenology of CP4 3HDM Planck 2017, Warsaw 10/17
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CP4-symmetric Yukawa sector

Explicitly:

into immediate conflict with experiment, that is, not leading to massless fermions or an

insu�cient mixing.

In this work, we focus on the quark sector only while the lepton sector can be incor-

porated in a similar way. The quark Yukawa Lagrangian

� LY = q̄L�adR�a + q̄L�auR�
⇤
a + h.c., (3.2)

in which we explicitly indicated the Higgs family index and omitted for clarity the quark

flavor indices, is invariant under CP4 if and only if

(Y L)†�aY
d
Xab = �⇤

b
, (Y L)†�aY

u
X

⇤
ab

= �⇤
b
. (3.3)

With the explicit expression for X given by Eq. (2.4), we get

(Y L)†�1Y
d = �⇤

1 , i(Y L)†�2Y
d = �⇤

3 , �i(Y L)†�3Y
d = �⇤

2 ,

(Y L)†�1Y
u = �⇤

1 , �i(Y L)†�2Y
u = �⇤

3 , i(Y L)†�3Y
u = �⇤

2 . (3.4)

As usual, an appropriate change of the basis in the qL, uR, dR spaces can bring all the

matrices Y to the block-diagonal form

Y =

0

B@
0 e

i↵ 0

e
�i↵ 0 0

0 0 1

1

CA . (3.5)

and we allow the parameters ↵L, ↵d, and ↵u to be all di↵erent. Here, we selected the third

fermion to be a CP4 singlet but any other choice would be equivalent.

As we have seen above, in order to properly define inequivalent generalized CP trans-

formations on the fermion sector, the possible values of the phases in Eq. (3.5) must be such

that the matrices Y
⇤
Y are of finite order 2p�1 with a distinct p defining an inequivalent

CP2p symmetry. When solving Eqns. (3.4), we do not assume that ↵ corresponds to the

CP4 case. In fact, those equations only imply that the fermion bilinears coupled to �2 and

�3 must faithfully transform under CP4, but the transformation law of the fermion fields

individually may be of even higher order. We leave open this possibility and just solve the

coupled equations.

We found that there are only four classes of Yukawa matrices �a and �a satisfying

Eq. (3.3) for some ↵’s and not running into an immediate conflict with the data. We label

them as cases A,B1, B2, B3. We describe them below for �’s in terms of their independent

complex parameters gij , and then briefly comment on matrices �a. Note that although

for notational simplicity we use the same names for the parameters gij for the scenarios

A,B1, B2, B3, they should be regarded as di↵erent ones.

Before listing these results, one comment is in order. When solving all equations for

↵’s and �’s, we often obtain seemingly di↵erent solutions with extra minus factors in some

rows or columns. We checked that in all cases they represent the same model and di↵er

just by a sign flip in one or several fermion fields. The four cases shown below are the ones

which cannot be reduced to one another.
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With an appropriate change of the basis,
all matrices can be brought to the form:
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CP4-symmetric Yukawa textures

• Case A. e
i↵L = 1 and e

i↵d = 1, giving

�1 =

0

B@
g11 g12 g13

g
⇤
12

g
⇤
11

g
⇤
13

g31 g
⇤
31

g33

1

CA , �2,3 = 0 , (3.6)

It may seem that �1 is not as generic as it would be in the CP -conserving version

of the SM because the o↵-diagonal elements are related to each other. However,

when ↵ = 0, the CP-symmetry within the Yukawa sector is e↵ectively of order 2.

As a consequence, there exists a fermion basis in which the CP-transformation is the

canonical one in the fermion sector and, in this basis, �1 is simply an arbitrary real

matrix.

• Case B1. e
i↵L = i and e

i↵d = 1, giving

�1 =

0
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0 0 0

g31 g
⇤
31

g33

1

CA , �2 =
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0 0 0

1
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1

CA . (3.7)

• Case B2. e
i↵L = 1 and e
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• Case B3. e
i↵L = i and e

i↵d = i, giving
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1
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⇤
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1

CA . (3.9)
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�’s are the same as for �’s with the exchange 2 $ 3. However, when constructing a viable

model, we are not forced to select the same case for �’s and �’s. We only must ensure

that the transformation properties of the left-handed doublets (i.e. the values of ↵L) are

the same in both sectors. Therefore, we have two series of four di↵erent combinations each

for the down and up quark sectors:

↵L = 0 : (A,A), (A,B2), (B2, A), (B2, B2), (3.10)

↵L = ⇡/2 : (B1, B1), (B1, B3), (B3, B1), (B3, B3). (3.11)

Note, in the present analysis, we do not consider the case (A,A) which corresponds to

a situation when the CP4 symmetry does not a↵ect the fermion sector. The CKM matrix
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In order to reproduce correct mass/mixing patterns and correct CPV,  
CP4 symmetry must be spontaneously broken

Tree-level Higgs-mediated FCNCs are unavoidable in CP4-3HDM, if not from
the SM-like Higgs in the alignment limit, but definitely from other scalars

FCNCs
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In this Higgs basis, the vev is located only in H1:

〈H0
1 〉 = v√

2
, 〈H0

2 〉 = 〈H0
3 〉 = 0 , (2.6)

The would-be Goldstone modes populate H1, while all fields in the doublets H2, H3 are
physical scalars degrees of freedom. Expanding the potential near the minimum, we obtain
five neutral scalar bosons and two pairs of charged Higgses h±1,2. In general, all neutral
Higgs bosons can couple to WW and ZZ pairs. However, if one fixes m2

11 = m2
22, the

model exhibit scalar alignment: one of the neutral Higgses hSM couples to the WW and
ZZ exactly as in the SM, while the other four neutral bosons h2 through h5 decouple from
these channels.

Scalar alignment is not a necessary assumption. Run 2 LHC results on the 125GeV
Higgs boson properties leave room for ∼ 10% deviations in the hWW/hZZ and hff̄

couplings [56, 57]. However if unsuppressed FCNC couplings leak into the SM-like Higgs
interactions, they may immediately run in conflict with the meson oscillation constraints
and with the Higgs-top FCNC measurements. What amount of scalar misalignment is still
tolerable is a compex issue as it depends on the interplay between the FCNC matrices, the
exact neutral scalars mixing matrix, and the SM-like Higgs interactions. We definitely plan
to investigate these issues in future. What we do in the present work — exploring generic
FCNC couplings allowed within the CP4 3HDM — can be seen as the starting point to
this study. Thus, for now, we adopt scalar alignment, and this is all the information from
the scalar sector we need in this work.

2.2 General FCNC matrices in 3HDM

To set up the notation, let us begin with the general expressions for the quark Yukawa
sector in the 3HDM:

− LY = Q̄0
L(Γ1φ1 + Γ2φ2 + Γ3φ3)d0R + Q̄0

L(∆1φ̃1 + ∆2φ̃2 + ∆3φ̃3)u0R + h.c. (2.7)

Here, we use the notation of [58] extended to the 3HDM. The three generations of quarks
are implicitly assumed everywhere, their indices suppressed for brevity. The superscript
0 for the quark fields indicates that these are the starting quark fields; when we pass to
the physical quark fields by diagonalizing the quark mass matrices, we will remove this
superscript. Using the real vev basis (2.4), we write the quark mass matrices as

M0
d = v√

2
(Γ1cβ + Γ2sβcψ + Γ3sβsψ) , M0

u = v√
2
(∆1cβ + ∆2sβcψ + ∆3sβsψ) . (2.8)

They are, in general, non-diagonal and complex. The interaction of the neutral (complex)
scalars with the quarks can be described both in the initial basis and in the Higgs basis we
chose; the relation between the two bases is given by

Γ1φ
0
1 + Γ2φ

0
2 + Γ3φ

0
3 =

√
2
v

(H0
1M

0
d +H0

2N
0
d2 +H0

3N
0
d3) , (2.9)
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where

N0
d2 = M0

d cotβ − v√
2sβ

Γ1 = −M0
d tan β + v√

2cβ
(Γ2cψ + Γ3sψ) ,

N0
d3 = v√

2
(−Γ2sψ + Γ3cψ) . (2.10)

For the up-quark sector, we obtain

∆1(φ01)∗ + Γ2(φ02)∗ + ∆3(φ03)∗ =
√
2
v

[(H0
1 )∗M0

u + (H0
2 )∗N0

u2 + (H0
3 )∗N0

u3] , (2.11)

where

N0
u2 = M0

u cotβ − v√
2sβ

∆1 = −M0
u tan β + v√

2cβ
(∆2cψ + ∆3sψ) ,

N0
u3 = v√

2
(−∆2sψ + ∆3cψ) . (2.12)

As usual, these mass matrices are diagonalized by unitary transformations of the quark
fields,

d0L = VdLdL , d0R = VdRdR , u0L = VuLuL , u0R = VuRuR . (2.13)

which lead to the CKM matrix VCKM = V †
uLVdL and

Dd = V †
dLM

0
dVdR = diag(md,ms,mb) , Du = V †

uLM
0
uVuR = diag(mu,mc,mt) . (2.14)

The same quark rotation matrices also act on the matrices N :

Nd2 = V †
dLN

0
d2VdR , Nu2 = V †

uLN
0
u2VuR (2.15)

and, similarly, for Nd3, Nu3.
The four Yukawa matricesNd2, Nd3, Nu2, Nu3 are the key objects we study in this work.

They describe the coupling patterns of the neutral complex fields H0
2 and H0

3 with the three
generations of physical quarks. Their off-diagonal elements indicate the strength of FCNC.
Within the 2HDM, we would only get Nd2 and Nu2, see e.g. [58]. The additional matrices
Nd3 and Nu3 arise in the 3HDM, and their patterns can be very different from Nd2 and Nu2.

Notice that the complex fields H0
2 and H0

3 contain four real neutral degrees of freedom.
All these components mix, and to get the physical Higgses, we would need to diagonalize the
neutral scalar mass matrix. In the present work, we do not aim at a full phenomenological
scan of the model; we only want understand how FCNCs can in principle be limited within
the CP4 3HDM. For that purpose, it is sufficient and more transparent to work directly
with Nd2, Nd3 and Nu2, Nu3 without invoking mixing among neutral bosons.

2.3 The Yukawa sector of the CP4 3HDM

CP4 symmetry can be extended to the Yukawa sector of 3HDM. This extension is not
unique, but there is a limited number of structurally different options. This problem was
solved in [54] and yielded four distinct cases, labeled A, B1, B2, and B3, separately in the
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Γi, ∆i M0
d , M0

u mq, VCKM

N0
d , N0

u Nd, Nu

vi diag

inversion

VdL, VdR, VuL, VuR

Figure 1. In a generic multi-Higgs model, one begins with Γi, ∆i, computes the mass matrices
and diagonalizes them. This procedure, indicated by thin arrows, is usually irreversible. In certain
models, one can perform inversion (thick light blue arrows), which allows one to pass directly from
the quark properties to the FCNC matrices.

with several Yukawa matrices Γi and ∆i, which usually have many free parameters, multiply
them by vevs vi and sum them to produce the mass matrices M0

d and M0
u , see eqs. (2.8).

After the bidiagonalization procedure (2.13), we obtain physical parameters mq, VCKM, as
well as the quark coupling matrices Nd and Nu, see figure 1.

In general, the passage from Γi, ∆i to M0
d , M0

u is irreversible: if one only knows M0
d

and vevs, one cannot recover individual Γi. Technically, it comes from the fact that Γi are
not linearly independent. Indeed, in the general case, for each set of vi, it is possible to
modify Γi by some matrices δΓi which sum up to the zero 3 × 3 matrix: ∑i vi δΓi = 03.
Thus, the Yukawa sectors based on Γi and on Γi + δΓi lead to the same mass matrix M0

d .
Another problem is that, if matrices Γi, ∆i are not generic, it is not guaranteed that

they can reproduce the known quark masses and mixing parameters at all, especially when
the vev alignment is also constrained by the scalar sector. A nice illustration of this
situation for the A4 and S4 symmetric 3HDMs can be found in [59, 60].

In the light of these difficulties, one is often forced to scan the multi-dimensional
parameter space of the model in a way which is intrinsically inefficient. If one knows vevs
and randomly selects Γi, ∆i, one obtains M0

d and M0
u , which lead to quark masses and

mixing very different from their experimental values. One needs to repeat the scan many
times, trying to iteratively approach the measured values.

However, in certain classes of models one can invert the above procedure: that is,
knowing M0

d and vevs, one can uniquely reconstruct individual Γi. This situation takes
place, for example, if each Γi lives in a different subspace of the general 3 × 3 complex
matrix space. In particular, in models with abelian symmetry groups with different scalars
transforming with different charges, the non-zero entries of the Yukawa matrices Γi or ∆i

are non-overlapping and thus satisfy the above conditions.
The possibility of inversion significantly facilitates the phenomenological study of the

model. Instead of a random scan over Γi, ∆i, one takes the physical quark masses and
mixing parameters as input, parametrizes VdL, VdR, and VuR in a suitable way, and directly
obtains a parameter space point which automatically agrees with the experimental quark
properties. No parameter sets are wasted anymore. Moreover, one can express the physical
quark coupling matrices Nd and Nu via quark masses and mixing as well as VdL, VdR, and
VuR. In this way, one may derive certain predictions for FCNC or use some of their entries
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One can show that in the CP4-3HDM the procedure is invertible:
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as additional input parameters instead of VdL, VdR, VuR. Such a procedure will bring more
control over FCNC within a given class of models.

The inversion procedure is available not only in models with natural flavor conserva-
tion, such as the Type-I or Type-II 2HDMs, but also in the Branco-Grimus-Lavoura (BGL)
two-Higgs-doublet model [12], which allows for small FCNCs controlled by the third row of
VCKM. A similar inversion procedure was recently constructed in the U(1)×Z2-symmetric
3HDM [39], where the quark sector closely resembled the BGL model.

3.2 The inversion procedure in CP4 3HDM

The first scan of the CP4 3HDM parameter space reported in [54] was done in the tradi-
tional way, by randomly choosing Γi, ∆i and iteratively approaching the physical quark
sector parameters. In the CP4 3HDM, the matrices Γ2 and Γ3 (or ∆2 and ∆3) live in
the same subspace, so that, at the first glance, the inversion procedure is not expected to
work. However the entries of the two matrices are related by the CP symmetry of order 4.
Thus, as already mentioned in [54], the inversion procedure does apply to the CP4 3HDM,
although it was not used in that scan.

In the present work, we develop this procedure for each case of the Yukawa sec-
tor (2.17)–(2.19). Starting from the physical quark parameters mq, VCKM and parametriz-
ing the quark rotation matrices, we are able to calculate Nd2, Nd3, Nu2, Nu3 for the physical
quark couplings with the second and third Higgs doublets H0

2 and H0
3 in the Higgs basis.

Although these scalars are not yet the mass eigenstates, the matrices provide a clear picture
of the FCNC magnitude and patterns to be expected in the model.

As we will show below, certain features of the matrices Nd2 and Nu2 are universal
for B1, B2, B3 and closely resemble the BGL-like models or the U(1) × Z2-symmetric
3HDM [39]. In particular, we will see that their FCNC couplings are controlled by the
third row of the VCKM, which makes them naturally small. However there are also im-
portant differences with respect to the original BGL models and the U(1) × Z2-symmetric
3HDM. One is that the symmetry transformation of our model is unavoidably mixes quark
generations, leading to FCNC patterns which do not always follow the familiar behavior.

Another difference with respect to the BGL-type models is that the Yukawa matrices
of CP4 3HDM are less constrained. As a result, the quark rotation matrices VdL, VdR, VuL,
VuR, do not, in general, exhibit the block-diagonal structure characteristic of the BGL
models.

However, since the CP4 transformation acts on three generations by the irreducible
representation decomposition 2+1, it automatically singles out one quark generation, which
we assume to be the heaviest one. As a result, we find it natural to explore matrices VdL,
VdR, VuL, VuR in the vicinity of the block-diagonal form. With the inversion procedure
implemented, we will study the generic magnitude and the patterns of the FCNC matrices
in the CP4 3HDM and check what is the smallest FCNC one can achieve for the physical
values of mq and VCKM.
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3.3 Target values for the FCNC magnitude
How small do the off-diagonal elements of Nd and Nu need to be in order to have a chance
to satisfy the meson oscillation constraints? The exact bounds depend not only on the
masses of the new bosons but also on other details of the scalar sector, such as their mixing
angles, partial cancellations among different scalars, as well as self-cancellation between
the scalar and pseudoscalar Yukawa couplings for each neutral Higgs boson [13, 16]. For
example, a scalar S and a pseudoscalar A of close masses originating from the same neutral
complex field (S+ iA)/

√
2 coupled to quarks tend to compensate each other’s contribution

to meson oscillation amplitude due to the relative i2 = −1 factor [13]. In this work, we are
not going to invoke these delicate mechanisms. Instead, we address the question:

is it possible to achieve, within CP4 3HDM, sufficiently small FCNC couplings
which would satisfy all the neutral meson oscillation constraints for a 1TeV
Higgs boson without relying on additional cancellation?

If we answer it in the affirmative, then there are good chances that a full phenomenological
scan of the scalar and Yukawa sectors of the CP4 3HDM, with all the cancellations included,
will identify viable points with reasonably heavy Higgs bosons. Conversely, if finding such
examples turns out impossible, it means that the future phenomenological scan must either
heavily rely of strong cancellations or push all new Higgs bosons to multi-TeV range. In
this case, the chances to find a phenomenologically acceptable version of the explicitly
CP4-invariant 3HDM will be bleak.

Let us now define the target parameters. Following [16], we first rewrite the coupling
matrix of a generic real scalar S of unspecified CP properties with down quarks as

1
v
d̄Li (Nd)ijdRj + h.c = d̄i

(
Aij + iBijγ

5
)
dj , (3.1)

where
A = Nd +N †

d

2v , iB = Nd − N †
d

2v . (3.2)

Both A and B are hermitean matrices. For example, K0–K0 oscillations place constraints
on |ads| = |A12| and |bds| = |B12|, and so on. Notice that, for a very asymmetric matrix
Nd exhibiting |(Nd)12| # |(Nd)21|, we obtain |ads| ≈ |bds|. A similar construction for the
up-quark sector allows us to constrain the (uc) elements with the aid of D0–D0 oscillations.

We consider the off-diagonal FCNC elements acceptable for a 1TeV scalar if they
satisfy the following upper limits borrowed from [16]:

K0 − K0 : |ads| < 3.7 × 10−4 , |bds| < 1.1 × 10−4 , (3.3a)
B0 − B0 : |adb| < 9.0 × 10−4 , |bdb| < 3.4 × 10−4 , (3.3b)
B0

s − B0
s : |asb| < 45 × 10−4 , |bsb| < 17 × 10−4 , (3.3c)

D0 − D0 : |auc| < 5.0 × 10−4 , |buc| < 1.8 × 10−4 . (3.3d)

Notice that in all cases, the upper bounds on |b| are comparable with the Cheng-Sher Ansatz
√
mimj/v, which would give 0.9 × 10−4, 6 × 10−4, 25 × 10−4, 2 × 10−4, respectively. For a

lower mass of the scalar S, the upper limits on these couplings will decrease proportionally.
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heavily rely of strong cancellations or push all new Higgs bosons to multi-TeV range. In
this case, the chances to find a phenomenologically acceptable version of the explicitly
CP4-invariant 3HDM will be bleak.

Let us now define the target parameters. Following [16], we first rewrite the coupling
matrix of a generic real scalar S of unspecified CP properties with down quarks as

1
v
d̄Li (Nd)ijdRj + h.c = d̄i

(
Aij + iBijγ

5
)
dj , (3.1)

where
A = Nd +N †

d

2v , iB = Nd − N †
d

2v . (3.2)

Both A and B are hermitean matrices. For example, K0–K0 oscillations place constraints
on |ads| = |A12| and |bds| = |B12|, and so on. Notice that, for a very asymmetric matrix
Nd exhibiting |(Nd)12| # |(Nd)21|, we obtain |ads| ≈ |bds|. A similar construction for the
up-quark sector allows us to constrain the (uc) elements with the aid of D0–D0 oscillations.

We consider the off-diagonal FCNC elements acceptable for a 1TeV scalar if they
satisfy the following upper limits borrowed from [16]:

K0 − K0 : |ads| < 3.7 × 10−4 , |bds| < 1.1 × 10−4 , (3.3a)
B0 − B0 : |adb| < 9.0 × 10−4 , |bdb| < 3.4 × 10−4 , (3.3b)
B0

s − B0
s : |asb| < 45 × 10−4 , |bsb| < 17 × 10−4 , (3.3c)

D0 − D0 : |auc| < 5.0 × 10−4 , |buc| < 1.8 × 10−4 . (3.3d)

Notice that in all cases, the upper bounds on |b| are comparable with the Cheng-Sher Ansatz
√
mimj/v, which would give 0.9 × 10−4, 6 × 10−4, 25 × 10−4, 2 × 10−4, respectively. For a

lower mass of the scalar S, the upper limits on these couplings will decrease proportionally.
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(in the Higgs basis we use) couple to the down and up-quarks. The off-diagonal entries of
these matrices are the FCNC contributions which we want to suppress. These matrices are
written in terms of physical quark parameters and quark rotation matrix elements, which
offers clear insights which parameters control which FCNC elements.

Third, we numerically studied whether the FCNC couplings can simultaneously pass
the constraints imposed by oscillations in the four neutral meson systems: kaons, D-mesons,
B-mesons, and Bs-mesons. Since the contributions depend on the new scalars masses, we
computed the effects for the reference mass of 1TeV.

In our study, we did not rely on any possible cancellation among several Higgs contri-
butions to meson oscillations. We did this on purpose: we wanted to check whether the
FCNC couplings of all neutral scalars can be simultaneously suppressed within any CP4
3HDM scenario without any help of an additional cancellation mechanism. Examples of
such mechanisms do exist [13, 16] but their effect is not robust as it depends on the details
of the scalar sector. If a particular benchmark model leads to destructive interference of
Higgs constributions, then the FCNC constraints could be satisfied with scalars masses
below 1TeV. Whether this indeed happens in specific models will become clear after the
full phenomenological scan of the model is done, which is delegated to a future work.

In total, there are eight possible CP4-invariant Yukawa sectors. It turns out that most
of them lead to FCNC contributions to meson oscillations which cannot be simultaneously
kept small in the four neutral meson systems. Often, this comes from structural features
of the Yukawa matrices, so that no choice of the free parameters could bring all FCNCs
under control.

We find that, out of the eight CP4 3HDM Yukawa sectors, only two benchmark sce-
narios are capable of producing viable parameter space points passing all four meson con-
straints.

• Benchmark scenario (A,B2), in which the down-quark sector is completely free from
FCNC. The only constraints arise from the D-meson oscillations and can be easily
satisfied as the magnitude of FCNCs can be parametrically suppressed.

• Benchmark scenario (B1, B1), in which both up and down-quark sectors exhibit FC-
NCs but their magnitudes are small if the quark rotation matrices are close to the
block-diagonal form.

In both cases, we generated large samples of viable points. All other scenarios fail at least
one of the meson constraint by a large margin; we found that they could become viable
only for new Higgses as heavy as several TeV.

We also noticed the very important role of the D-meson oscillation constraints, which
are sufficient to rule out entire scenarios of the CP4 3HDM Yukawa sectors irrespective
of their free parameters. Notice that the previous scan [54] did not include the D-meson
check. We suspect that all the parameter space points found there would be ruled out by
D-mesons.

Our results naturally lead to several follow-up studies. Focusing on either of the two
benchmark scenarios, one can now perform a full phenomenological scan of the parameter
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case (B1, B1), tan β = 1, full scan
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case (B1, B1), tan β = 1, restricted scan

Figure 2. The impact of kaon oscillations. Shown are the values of |ads|, |bds| obtained in a
full scan (left) and a restricted scan with θmax = π/100 (right). The dashed box shows the limits
eq. (3.3a).

...

case (B1, B1), tan β = 1, full scan

...

case (B1, B1), tan β = 1, restricted scan

Figure 3. The impact of D-meson oscillations. Shown are the values of |auc|, |buc| in a full scan
(left) and a restricted scan with θmax = π/100 (right). The dashed box shows the limits eq. (3.3d).

model expectations, where Nd2 becomes a diagonal matrix, eq. (5.2), while Nd3 approaches
the block-diagonal form (5.4). Due to (Nd3)21 ! (Nd3)12, we obtain |ads| ≈ |bds|, which
explains the straight line segment shape of the plot. The upper limit of the last plot (Nd3
for small θmax) is explained by the estimate (5.6), taking into account that sin β = 1/

√
2.

In short, the kaon oscillations constraints can be easily satisfied within case (B1, B1).
In figure 3, we explore the FCNC effects in the up-quark matrices and compare them

with the D-meson oscillation constraints eq. (3.3d). The overall picture here is the same as
for kaons, with the exception that only a few points fall inside the box of the allowed |auc|,
|buc| values. This is not surprising: the estimate (5.7) shows that we need a rather small
θuR to pass the D-meson oscillation constraints. Unfortunately, with the procedure we use
for building case B1, we cannot fully control the value of this angle. However we checked
that the points inside the box indeed correspond to |θuR| < 0.025. Thus, the D-meson
oscillations constraints can also be satisfied.

In figure 4 we show that the kaon and D-meson constraints can also be satisfied
simultaneously. Here, we only show the most challenging case: |buc| coming from Nu3 and
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In short, the kaon oscillations constraints can be easily satisfied within case (B1, B1).
In figure 3, we explore the FCNC effects in the up-quark matrices and compare them

with the D-meson oscillation constraints eq. (3.3d). The overall picture here is the same as
for kaons, with the exception that only a few points fall inside the box of the allowed |auc|,
|buc| values. This is not surprising: the estimate (5.7) shows that we need a rather small
θuR to pass the D-meson oscillation constraints. Unfortunately, with the procedure we use
for building case B1, we cannot fully control the value of this angle. However we checked
that the points inside the box indeed correspond to |θuR| < 0.025. Thus, the D-meson
oscillations constraints can also be satisfied.

In figure 4 we show that the kaon and D-meson constraints can also be satisfied
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case (B1, B1), tan β = 1, restricted scan

Figure 4. The values of |buc|, |bds| obtained from Nu3, Nd3 in a restricted scan with θmax = π/100.

...

case (B1, B1), tan β = 1, full scan

...

case (B1, B1), tan β = 1, restricted scan

Figure 5. The impact of B-meson oscillations. Shown are the values of |adb|, |bdb| in a full scan
(left) and a restricted scan with θmax = π/100 (right). The dashed box shows the limits eq. (3.3b).

|bds| coming from Nd3. To increase the density of points, we run the scan with 105 points
instead of 5000 points used in the previous plots. We see that such points do exist and
correspond to small θuR and θdR. We also checked that increasing tan β allows for a mild
additional suppression of the FCNC couplings and further increases the number of points
simultaneously passing the two sets of constraints.

6.1.2 B/Bs-meson constraints
Next, we look into the B-meson oscillation constraints. Figure 5 shows the same sequence of
plots for values |adb|, |bdb| together with the B-meson constraints (3.3b). We also observed
a similar picture (not shown) for the Bs mesons, constraints being less tight. As expected,
small θmax brings the matrices close to the block-diagonal form and, as a result, suppresses
the b-quark FCNCs. Thus, B-mesons do not represent an obstacle once we keep the quark
rotation matrices close to the block-diagonal form. In fact, we could find points which
satisfy the B-meson oscillation constraints for scalar masses as low as 200GeV.

6.1.3 Case (B1, B1): the overall picture
The above numerical results lead to the following overall situation for case (B1, B1).
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Figure 4. The values of |buc|, |bds| obtained from Nu3, Nd3 in a restricted scan with θmax = π/100.
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Figure 5. The impact of B-meson oscillations. Shown are the values of |adb|, |bdb| in a full scan
(left) and a restricted scan with θmax = π/100 (right). The dashed box shows the limits eq. (3.3b).

|bds| coming from Nd3. To increase the density of points, we run the scan with 105 points
instead of 5000 points used in the previous plots. We see that such points do exist and
correspond to small θuR and θdR. We also checked that increasing tan β allows for a mild
additional suppression of the FCNC couplings and further increases the number of points
simultaneously passing the two sets of constraints.

6.1.2 B/Bs-meson constraints
Next, we look into the B-meson oscillation constraints. Figure 5 shows the same sequence of
plots for values |adb|, |bdb| together with the B-meson constraints (3.3b). We also observed
a similar picture (not shown) for the Bs mesons, constraints being less tight. As expected,
small θmax brings the matrices close to the block-diagonal form and, as a result, suppresses
the b-quark FCNCs. Thus, B-mesons do not represent an obstacle once we keep the quark
rotation matrices close to the block-diagonal form. In fact, we could find points which
satisfy the B-meson oscillation constraints for scalar masses as low as 200GeV.

6.1.3 Case (B1, B1): the overall picture
The above numerical results lead to the following overall situation for case (B1, B1).
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D-meson oscillations place the strongest constraints in the generic scan
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Summary

• additional scalars offers way to resolve some of the long-standing 
issues of the SM framework 

• multi-scalar models offer rich phenomenology at colliders,  
in neutrino physics and in cosmology 

• flavour and high-CP symmetries enable to generate very specific  
patterns in mass, mixing and FCNC hierarchies 

• search for suitable UV complete theories giving rise to such models 
is under way


