#### Gravitational Positivity Bounds on Dark Sector

#### Satoshi Shirai (Kavli IPMU)

Based on arXiv:2305.10058 in collaboration with Katsuki Aoki, Toshifumi Noumi, Ryo Saito, Sota Sato, Junsei Tokuda and Masahito Yamazaki

#### Contents

- 1. Effective Field Theory and Quantum Gravity.
  Swampland and gravitational positivity bounds
- 2. Positivity Bounds without Gravity.

  Necessary conditions of low-energy amplitude consistent with UV.
- 3. Positivity Bounds with Gravity. t-channel graviton pole and its subtraction.
- 4. Application for Hidden Massive Photons.

### Model for New Physics



### QFT and Quantum Gravity



#### Examples of Swampland

- No global symmetry Banks & Dixon 88
- - Gravity should be weakest force.
- Distance conjecture Ooguri & Vafa 2006
  - Derivation of filed VEV is less than M<sub>pl</sub>.
- de Sitter conjecture Obied et.al, 2018
  - Forbidding flat potential with V>0.

### **Gravitational Positivity**

Swampland from comparison of gravitational and non-gravitational interaction.



The gravitational process is weaker than non-gravitational process.

Amplitude of forward scattering with s-u symmetry in IR theory:

$$i\mathcal{M}(s,t\to 0) = \begin{bmatrix} A & A \\ B & B \end{bmatrix}$$

The IR behavior is given by

$$\mathcal{M}(s,t=0) = \sum_{n=1}^{\infty} \frac{a_{2n}}{(2n)!} s^{2n}$$

Positivity condition

$$a_{2n} > 0$$

#### Assumptions

- Analyticity of the amplitude on complex s plane except for cut and pole
- Unitarity:  $\mathrm{Im}\mathcal{M}(s,t=0)>0$   $\sigma_{\mathrm{tot}}(s)\propto \mathrm{Im}\mathcal{M}(s,t=0)$
- High-energy behavior  $\lim_{|s| \to \infty} \frac{\mathcal{M}(s,0)}{s^2} \to 0$  , c.f., Froissart bound.





$$\mathcal{M} = \frac{1}{2}a_2s^2 + \cdots$$

$$a_2 = \frac{1}{i\pi} \oint_{C_{IR}} \frac{\mathcal{M}(s, t=0)}{s^3}$$



$$\mathcal{M} = \frac{1}{2}a_2s^2 + \cdots$$

$$a_2 = \frac{1}{i\pi} \oint_{C_{IR}} \frac{\mathcal{M}(s, t = 0)}{s^3} = \frac{1}{i\pi} \oint_{C_{full}} \frac{\mathcal{M}(s, t = 0)}{s^3}$$

$$a_2 = \frac{4}{\pi} \int_{m_{*+}^2}^{\infty} \frac{\text{Im}\mathcal{M}(s,0)}{s^3} + \frac{1}{i\pi} \oint_{C_{\infty}} \frac{\mathcal{M}(s,0)}{s^3}$$

- Analyticity of the amplitude on complex s plane except for cut and pole
- Unitarity:  $\operatorname{Im} \mathcal{M}(s, t = 0) > 0$
- High-energy behavior  $\lim_{|s|\to\infty} \frac{\mathcal{M}(s,0)}{s^2} \to 0$ , c.f., Froissart bound.

$$a_2 = \frac{4}{\pi} \int_{m_{+b}^2}^{\infty} \frac{\text{Im}\mathcal{M}(s,0)}{s^3} + \frac{1}{i\pi} \oint_{C_{\infty}} \frac{\mathcal{M}(s,0)}{s^3}$$

- Analyticity of the amplitude on complex s plane except for cut and pole
- Unitarity:  $\operatorname{Im} \mathcal{M}(s, t = 0) > 0$
- High-energy behavior  $\lim_{|s|\to\infty} \frac{\mathcal{M}(s,0)}{s^2} \to 0$ , c.f., Froissart bound.

$$a_2 = \frac{4}{\pi} \int_{m_{\rm th}^2}^{\infty} \frac{\text{Im}\mathcal{M}(s,0)}{s^3} + \frac{1}{i\pi} \oint_{C_{\infty}} \frac{\mathcal{M}(s,0)}{s^3}$$

$$> 0 \qquad \to 0$$



# Improving Bounds



IR behavior of amplitude

$$\mathcal{M} = a_2 s^2 + \dots \qquad a_2 > 0$$

Introduce the cutoff scale of IR EFT  $\Lambda$ 

$$B(\Lambda) = a_2 - \frac{4}{\pi} \int_{m_{th}^2}^{\Lambda^2} \frac{\text{Im}\mathcal{M}(s,0)}{s^3} = \frac{4}{\pi} \int_{\Lambda^2}^{\infty} \frac{\text{Im}\mathcal{M}(s,0)}{s^3} > 0$$

 $B(\Lambda) \sim 0$  indicates the valid cutoff scale of EFT.



$$\mathcal{M}(s,t o 0) = -rac{s^2}{M_{\mathrm{Pl}}t} + \sum_{n=1}^{\infty} a_{2n} s^{2n}$$
 Graviton pole





$$\mathcal{M}(s, t \to 0) = -\frac{s^2}{M_{\rm Pl}t} + \sum_{n=1}^{\infty} a_{2n} s^{2n}$$

Graviton pole



Apparently singular, undetermined sign?



$$\mathcal{M}(s, t \to 0) = -\frac{s^2}{M_{\rm Pl}t} + \sum_{n=1}^{\infty} a_{2n} s^{2n}$$

Graviton pole



$$B(\Lambda) = \lim_{t \to -0} \left[ \frac{2}{M_{\text{Pl}}^2 t} + \frac{4}{\pi} \int_{\Lambda^2}^{\infty} ds \, \frac{\text{Im} \, \mathcal{M}(s, t)}{\left(s + \frac{t}{2}\right)^3} \right]$$

Apparently singular, undetermined sign?

Split into two parts

$$B(\Lambda) = \frac{4}{\pi} \int_{\Lambda^2}^{\Lambda_{\text{QG}}^2} ds \, \frac{\text{Im} \, \mathcal{M}(s,0)}{s^3} + \lim_{t \to -0} \left[ \frac{2}{M_{\text{Pl}}^2 t} + \frac{4}{\pi} \int_{\Lambda_{\text{QG}}}^{\infty} ds \, \frac{\text{Im} \, \mathcal{M}(s,t)}{\left(s + \frac{t}{2}\right)^3} \right]$$



**Quantum Gravity** 



IR part

**Assumption:** 

Regge behavior resolves the singularity.

$$=: \frac{\sigma}{M_{\rm Pl}^2 M_{\rm QG}^2} \quad (\sigma = \pm 1)$$

$$B(\Lambda) = \frac{4}{\pi} \int_{\Lambda^2}^{\Lambda_{\text{QG}}^2} ds \, \frac{\text{Im} \, \mathcal{M}(s,0)}{s^3} + \lim_{t \to -0} \left[ \frac{2}{M_{\text{Pl}}^2 t} + \frac{4}{\pi} \int_{\Lambda_{\text{QG}}}^{\infty} ds \, \frac{\text{Im} \, \mathcal{M}(s,t)}{\left(s + \frac{t}{2}\right)^3} \right]$$

IR part

$$O(M_{\rm Pl}^0) + O(M_{\rm Pl}^{-2}) + \cdots$$

$$=: \frac{\sigma}{M_{\rm Pl}^2 M_{\rm QG}^2} \quad (\sigma = \pm 1)$$

$$B_{\rm IR}(\Lambda) \ge \frac{\sigma}{M_{\rm Pl}^2 M_{\rm QG}^2}$$

We do know the exact size of  $M_{QG}$ , but it will be around  $M_{pl}$ . In this case, B is dominated by IR part.

#### How to: Gravitational Positivity

- 0. Write down the (renormalizable) Lagrangian of your model, couple the model to gravity, and consider a  $2 \to 2$  scattering process  $AB \to AB$ .
- 1. Compute the amplitude  $\mathcal{M}_{\text{non-grav}}$  of diagrams without gravity:

$$i\mathcal{M}_{\text{non-grav}}(s,t) = \sum_{B}^{A} + \cdots,$$

and  $\mathcal{M}_{\text{grav},t\text{-channel}}$  of graviton t-channel diagrams:

$$i\mathcal{M}_{\text{grav},t\text{-channel}}(s,t) = \underbrace{A - - - A}_{B - - - B} + \cdots$$

2. Compute  $B_{\text{non-grav}}$ :

$$B_{\text{non-grav}}(\Lambda) = \frac{4}{\pi} \int_{\Lambda^2}^{\infty} ds \, \frac{\text{Im} \, \mathcal{M}_{\text{non-grav}}(s, t = 0)}{\left(s - m_A^2 - m_B^2\right)^3} \,.$$

- 3. Compute series expansion of  $\mathcal{M}_{\text{grav},t\text{-channel}}$  around t=0 and  $s=m_A^2+m_B^2$ , and extract  $B_{\text{grav}}$  from the coefficient of  $t^0(s-m_A^2-m_B^2)^2$ .
- 4. Compute  $B(\Lambda) = B_{\text{non-grav}}(\Lambda) + B_{\text{grav}}(\Lambda)$  and check its positivity.

#### How to: Gravitational Positivity

- 0. Write down the (renormalizable) Lagrangian of your model, couple the model to gravity, and consider a  $2 \to 2$  scattering process  $AB \to AB$ .
- 1. Compute the amplitude  $\mathcal{M}_{\text{non-grav}}$  of diagrams without gravity:

$$i\mathcal{M}_{\text{non-grav}}(s,t) = \sum_{B}^{A} + \cdots,$$

and  $\mathcal{M}_{\text{grav},t\text{-channel}}$  of graviton t-channel diagrams:

$$i\mathcal{M}_{\text{grav},t\text{-channel}}(s,t) = A - A + \cdots$$

$$B - B + \cdots$$

2. Compute  $B_{\text{non-grav}}$ :

$$B_{\text{non-grav}}(\Lambda) = \frac{4}{\pi} \int_{\Lambda^2}^{\infty} ds \, \frac{\text{Im} \, \mathcal{M}_{\text{non-grav}}(s, t = 0)}{\left(s - m_A^2 - m_B^2\right)^3} \,.$$

- 3. Compute series expansion of  $\mathcal{M}_{\text{grav},t\text{-channel}}$  around t=0 and  $s=m_A^2+m_B^2$ , and extract  $B_{\text{grav}}$  from the coefficient of  $t^0(s-m_A^2-m_B^2)^2$ .
- 4. Compute  $B(\Lambda) = B_{\text{non-grav}}(\Lambda) + B_{\text{grav}}(\Lambda)$  and check its positivity.

20

#### Abelian Higgs Model

Simple massive gauge boson model

$$\mathcal{L} = |D_{\mu}\Phi|^2 - \frac{\lambda}{4}(|\Phi|^2 - v^2)^2$$

Massive gauge boson V

$$m_V = \sqrt{2}g_{\Phi}v$$

Higgs boson  $\phi$ 

$$m_{\phi} = \sqrt{\lambda}v$$

Let's consider 2-to-2 scattering and get the positivity bound.

$$V_T V_T \to V_T V_T$$

#### Non-Gravitational Part

Tree-level does not contribute to B.

Let's compute one-loop diagrams by usual Feynman diagrams.



$$B_{\text{non-grav}}^{TT} = \frac{g_{\Phi}^4}{4\pi^2 \Lambda^4} + O(\Lambda^{-6})$$

#### **Gravitational Part**

Obtain graviton contribution with subtraction of t-pole.



$$B_{\text{grav}}^{TT} = -\frac{g_{\Phi}^2}{72\pi^2 m_{\phi}^2 M_{\text{Pl}}^2} \quad (m_V/m_{\phi} \to 0)$$

#### **Gravitational Positivity**

$$B_{\text{non-grav}}^{TT} = \frac{g_{\Phi}^4}{4\pi^2\Lambda^4} + O(\Lambda^{-6})$$
  $B_{\text{grav}}^{TT} = -\frac{g_{\Phi}^2}{72\pi^2 m_{\phi}^2 M_{\text{Pl}}^2} \quad (m_V/m_{\phi} \to 0)$ 

#### Gravitational Positivity implies:

$$B_{\text{non-grav}}^{TT} + B_{\text{grav}}^{TT} > 0 \longrightarrow m_{\phi} > \frac{\Lambda^2}{3\sqrt{2}g_{\Phi}M_{\text{Pl}}}$$

#### Other Helicity Cases

$$B_{
m non-grav}^{TT} + B_{
m grav}^{TT} > 0 \longrightarrow m_{\phi} > rac{\Lambda^2}{3\sqrt{2}g_{\Phi}M_{
m Pl}}$$
 $B_{
m non-grav}^{TL} + B_{
m grav}^{TL} > 0 \longrightarrow m_{V} > rac{\Lambda^2}{6\sqrt{2}g_{\Phi}M_{
m Pl}}$ 
 $B_{
m non-grav}^{LL} + B_{
m grav}^{LL} > 0 \longrightarrow g_{\Phi} > rac{\Lambda}{6\sqrt{2}M_{
m Pl}}$ 

### **Gravitational Positivity**



Larger mass and larger gauge couplings are preferred.

#### Stuckelberg Case



#### Subtleties for Practical Application

- The Regge scale is still uncertain.  $B(\Lambda) \geq \frac{\sigma}{M_{\rm Pl}^2 M_{\rm QG}^2}$ 
  - If this scale is much lower than the Planck scale, EFT constraint is weak.
  - Constraint of EFT or Quantum gravity itself?
- S-matrix needs stable asymptotic states
  - In the toy model case, the gauge boson can be stable.
  - Massive gauge boson coupling to SM sector decays into fermions/photons.
  - If the decay rate is super tiny, compared to e.g., age of Universe, can we use the positivity bound?

# B-L gauge boson





#### Summary and Discussion

- Gravitational positivity can provide strong constraint on EFT.
  - However, it depends how QG resolve the t-singularity.
- Issues of unstable particles.
  - No asymptotic states in scattering.
  - 3 → 3 scattering?
  - · Other kinematical choices?
- Various developments in this area of research are ongoing.