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How does one  
measure with clocks?

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.075029
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Need reference with distinct sensitivity  
 is dimensionless observable 

  
r = ν1/ν2
δropt /ropt ∝ δα/α

Measurements involve comparisons!
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Data characteristic of Gaussian white noise 
(stat uncertainties dominant) 

Operating on atomic transition!⇒
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γ |σϕn(τ) ≲ 2.3 × 10−16/ τ/s

κn |d(n)
Sr/Cs |σϕn(τ) ≲ 1.6 × 10−13/ τ/s

E.g. for two times separated by 1000 seconds 

κn |d(n)
γ | [ϕn(t + τ) − ϕn(t)] ≲ 7 × 10−18

No functional form of  assumedϕ(t)

≈



n ⋅ λ3
DB ≫ 1ΔxΔp ∼ 1

Δx ∼ 2 × RdSph halo ≈ 2 × (1kpc)
Δp ∼ mvdSph halo ≈ m × (10 km/s)

Ultralight bosonic DM

Astrophysical 
constraints

Particle-like 
behaviour

∼ 10−22 eV ∼ 1 eV

Ultralight DM
dark-matter dark-matter halo

galactic diskSun-Earth system

R0
DM wind

ϕ0 =
2ρDM

mϕ

ULDM  macroscopic coherently oscillating field=

ϕ(t) ≈ ϕ0 cos(mϕt) ρDM = ρDM(R0) ≈ 0.3 GeV/cm3
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1
ΔKα

δr
r Yb+/Sr

= d(2)
γ (κϕ)2

For n = 2
δr
r osc.

∝
1

M2
P

cos(2mϕt) → f = 2fϕ

n = 2 ( f = 2fϕ)

Dark matter constraints

*Constraints on electron/gluon and quark/gluon parameters also studied (see paper)
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Recap and conclusions

Ultralight bosons cover a wide range of well-motivated new physics

Lots of recent theory activity (ULDM, ALPs, …) 
Experimental capabilities rapidly increasing (c.f. “quantum sensors”)

New constraints from NPL data

Model-independent constraints from instabilities of , Sr, and Cs clocks 
New constraints on scalar and axion-like ULDM 

Yb+

Excellent outlook

Longer datasets give access to lighter masses ( ) 
New clocks with larger  factors  drive exclusion regions downward

T ∼ 1/f ∼ 1/m
K ⇒


