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NO or IO?
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Flavor puzzle 1: why mass hierarchies?

Charged leptons: from MeV to GeV 

Quarks: from MeV to 100 GeV

Neutrinos:                                  from cosmology
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Flavor puzzle 2: why different quark and lepton mixing?

 Quark mixings are small

 Lepton mixings are large

[Particle Data Group 2022]

[NuFIT 5.2 (2022)]



4

Isidor Issac Rabi

“Who orderd that ?”

Where do fermion mass 
hierarchy, flavor mixing, 
and CP violation come 
from?
Is there a simple 
organization principle?



Symmetry as a guiding principle to flavor puzzle
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Distinguish three generations by a flavor symmetry Gf , lepton mixing 
arises from mismatch of the different residual subgroups Gl and Gν

[Altarelli, Feruglio,1002.0211;Tanimoto et al., 1003.3552; King and Luhn, 1301.1340; 
Xing,1909.09610; Feruglio,Romanino, arXiv:1912.06028]
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Credit: Mu-Chun Chen, Bonn2022 
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Modular invariance as flavor symmetry
Modular invariance is motivated by more fundamental theory such as string 
theory at high energy scale 

torus compactification 

4D effective Lagrangian :

2 1/ , Im 0    The shape of a torus T 2 is characterized by a modulus 

The torus (lattice) is left invariant by modular transformations 
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(2, ) : 1, , , , integersSL Z ad bc a b c d 

 Finite modular groups as 𝐺𝑓: the 
quotient over the principal 
congruence subgroups Γ(𝑁)

(2, ) / ( ), (2, ) / ( )N NSL Z N SL Z N     

[Ferrara et al, 1989; Feruglio, 1706.08749]
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Modular invariant theory

SL(2,Z) on torus T2

( )N
congruence subgroups

(2, ) / ( )N SL Z N  

finite modular groups

or (2, ) / ( )N SL Z N  

( )NT N

For N=1 global SUSY, the modular invariant action
4 2 2 4 2( , , , ) ( , ) h.c.I I IS d xd d K d xd W           

Minimal Kahler potential (less constrained) 
2 2ln( ) ( ) | |Ik

I

I

K h i i i i    
        

Modular invariant superpotential

Modular invariance requires

1 2 1 2
( )

n nI I I I I I

n

W Y    
Modular transformation: weight 𝑘, reps 𝜌 𝛾 of  Γ𝑁/Γ𝑁

′
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  

[Ferrara et al, 1989; Feruglio, 
1706.08749]

[Chen, Sanchez, 
Ratz 1909.06910]

modular weights balance:

containts singlet:
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general finite modular groups: SL(2,Z)/normal subgroups

[Liu,Ding, 2112.14761]
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modular invariant flavor models
 Finite modular groups: known flavor symmetry 𝑆3, 𝐴4, 𝑆4, 𝐴5

 Bottom-up models for lepton and quark [see talks by Ivo Varzielas, Levy Miguel, Xin Wang]

Modular flavor symmetry: significant reduction of the number of parameters



Charged leptons

minimal modular lepton model

Neutrino mass : seesaw mechanism 

CP symmetry constrains all 
coupling constants to be real

[Ding, Liu, Yao, 2211.04546]

Modular symmetry allows to construct quite predictive lepton models. The 
modular flavor symmetry 𝑺𝟒

′ which is the double cover of 𝑆4

Minimal #p: α, β, γ, g2/Λ
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Light neutrino mass

only depends on modulus τ up to overall scale  

2 2

21 31/m m 

13 , / , /em m m m  

Neutrino mass spectrum is normal ordering



Minimal: only 4 real couplings plus modulus τ can explain 12 observables

2 2

0.1938+1.0832 1.7305 .2703

.621 MeV, .0744 m

, / , / 0 ,

244 eV/ 29d u

i

gv v

    



   



 



τ is the unique source breaking both modular and CP symmetries. All 

observables are within the 3σ regions
2 2
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1.3287 , 05444 , / .00473, 0.0588,

meV .7803

/
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14.4007 , V16 5 me,
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The effective neutrino masses:

16 ,.891 meV .2539 meVm m  
below the sensitivity of future
experiments
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 lepton flavor violation μ→eγ

current sensitivity

future sensitivity

[Ding, Liu, Yao, 2211.04546]
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Texture-zero from modular symmetry
 Texture-zero: some matrix elements are assumed to be vanishing toreduce

the number of free parameters [S. Weinberg; H. Fritzsch; F. Wilczek & A. Zee, 1977]
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Abelian flavor symmetry is usually used to enforce texture-zero, and non-zero 
entries are uncorrelated.

Modular symmetry origin of texture-zero  

 Odd weight modular forms are in the ``spinor” irreps ρr(S
2)=-1, even 

weight modular forms are in the ``vector’’ irreps ρr(S
2)=+1

 At lower weight, modular forms in certain representations are absent→ 
texture-zero pattern

Note: texture-zero can also arise from fixed points 𝜏𝑓 = 𝑖∞, 𝑖, 𝜔 [Kikuchi et 

al,2207.04609] 
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Assignment under Γ3
′ ≅ 𝑇′:

Mass matrix with texture zero 

Taking level N=3 as an example

[Lu, Liu, Ding, 1912.07573]
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2

1

3

2

~ 2 (or 2 ,2 ), ~ 1 (or 1 ,1 )

~ 2 (or 2 ,2 ), ~ 1 (or 1 ,1 )
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Left-handed doublets

Right-handed singlets
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x x x

x x x

qM
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3
vanishing for even c

D
Qq

k kvanishing for oddc
DD

Qq
k k

3

vanishing for even c
DQq

k k
33

vanishing for oddc Qq
k k



17

 Five texture zeros of quark mass matrices up to row and column 
permutations can be achieved from the Γ3

′ ≅ 𝑇′ modular symmetry

[Lu, Liu, Ding, 1912.07573]

 Texture-zero patterns of lepton mass matrices for #p≤9

[Ding, Joaquim, Lu, 2211.0813 ]

 Texture-zeros is enforced by 
the structure of modular forms

 Non-zero entries are correlated
by modular symmetry, the 
predictive power of texture-
zero is improved greatly.
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Mass hierarchies in modular symmetry 

Weighton mechanism: modular weight plays the role of Froggatt-Nielsen 
charge, the couplings are suppressed by power of “weighton” 𝜙 which is a 
scalar invariant under modular symmetry

[Criado, Feruglio, King, 1908.11867; King, King, 2002.00969]

 Fermion mass hierarchies arise from proximity of 𝜏 to the fixed points 𝜏𝑓
[Okada and Tanimoto, 2009.14242;Feruglio, Gherardi, 
Romanino,Titov, 2101.08718; Novichkov,Penedo, 
Petcov,2102.07488]

Some modular forms vanish at fixed 
point 𝝉 = 𝝉𝒇

1 2 3( ( ), ( ), ( ) 1,0( ,0) )iY Y Y     e.g. at 𝑁 = 3, 𝑘 = 2
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 Some entries of fermion mass matrix are vanishing at fixed points, and they 
are power of deviation O (𝜖𝑝) in the vicinity of fixed points

𝜏 = 𝜏𝑓 𝜖 = 𝜏 − 𝜏𝑓 ≪ 1

hierarchical fermion masses in powers of  𝜖

 Promising hierarchical patterns for leptons

[Novichkov, Penedo, Petcov, 2102.07488 ]
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Kähler problem in modular symmetry

Kähler potential potential not fixed by modular flavor symmetry 

minimal Kähler potential non-canonical terms

Modifying Kähler metric and kinetic terms

Many non-canonical terms on the same footing as the minimal Kähler potential 
are allowed by modular symmetry

 Back to canonical Basis ➜ sizable 
corrections to mixing parameters

[Chen, Ramon-Sanchez, Ratz 1909.06910]
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Solution to Kähler problem:  eclectic flavor groups

 Modular flavor symmetries from top-down approach (orbifold string 
compactification) gives 

 Normal symmetries of extra dimensions ➜traditional flavor symmetries

 String duality transformations ➜modular flavor symmetries

 the multiplicative closure of these groups is defined as the eclectic 
flavor group

[Nilles et al, 2001.01736; 2004.05200]

Traditional flavor symmetry vs. modular symmetry transformations 

eclectic traditional modularG G G 

flavor symmetry transformations leave 𝜏 invariant 

modular:

flavor:

The interplay of traditional flavor symmetry an modular symmetry can
restrict the allowed Kähler potential

[see talk by Hans Nilles]
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 Consistency condition

1( ) ( ) ( ) ( ( ))g u g      

Each modular transformation 𝜌 𝛾 corresponds an automorphism 𝑢𝛾 of  flavor 

symmetry group  𝐺𝑓. Finite modular group Γ𝑁
′ (Γ𝑁) must be a subgroup of the 

outer automorphism group of 𝐺𝑓

 Modular transformation 𝜌 𝛾 is fixed by flavor symmetry transformation 

𝜌(𝑔) , they cannot be freely assigned as with modular symmetry alone 

[Nilles et al, 2001.01736]

 Not any flavor symmetry 𝐺𝑓 have eclectic extension!
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Possible eclectic flavor groups: few 𝐺𝑓 suitable to eclectic extension

 Eclectic flavor group can combine with CP: unification of flavor, CP and 
modular symmetries

fG

fG fG
class-inverting
automorphism

CP as outer automorphism of both 
traditional flavor group 𝐺𝑓 and 

modular group Γ′𝑁 (Γ𝑁) 

[Nilles,Ramos-Sanchez, 
Vaudrevange, et al, 2001.01736]

first eclectic model with 
𝐺𝑒𝑐𝑙𝑒𝑐𝑡𝑖𝑐 = Δ 54 ∪ 𝑇′ , 
Baur, Nilles et al,2207.10677
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Eclectic lepton model with 𝛀 𝟏 ≅ 𝚫 𝟐𝟕 ⋊ 𝑻′

 Field content: flavon fields are necessary to break Δ 27 flavor symmetry   

 Superpotential for charged lepton and neutrino masses: only 4 terms

The Kähler corrections are suppressed by  Φ 2/Λ2 and negligible
[Ding, King, Li, Liu, Lu, 2303.02071]

Matter fields can only be triplet or trivial singlet of Δ(27)
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 Symmetry breaking: vacuum alignment enforced by residual symmetry 

(1) (27) T   

Ø

neutrinocharged lepton

2 2

3

A BAZ

 Lepton mass matrices
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 Including CP symmetry with Re〈𝜏〉 = 0, the neutrino mass matrix has μτ 
reflection symmetry

1 0 0

0 0 1

0 1 0

c c

e e e

c c

c c

  

  

  

  

  

      
      

       
      
      

23 ,
4 2

CP

 
   

[Harrison, Scott, hep-ph/0210197; Grimus, Lavoura,hep-ph/0305309]

 5 real parameters explain all lepton masses and mixing parameters

2 2 2

13 12 23

21 31 1 2

3

sin 0.02238, sin 0.3266, sin 0.5, 1.5 ,

, , 15.18meV, 17.44meV,

52.43meV, 85.05meV, 5.595meV,

0.511MeV, 106.5MeV, 1.807GeV.

CP

i

i

e

m m

m m m

m m m



 

    

   

   

   

  

  



[Ding, King, Li, Liu, Lu, 2303.02071]

In agreement with the experimental data from neutrino oscillation, 0𝜈𝛽𝛽
decay and Planck
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close correlations between mixing parameters

[Ding, King, Li, Liu, Lu, 2303.02071]
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Summary

 Flavor symmetry is a useful tool to understand the flavor structure of SM, 
but no compelling and unique picture have emerged so far.

• Bottom-up: enhanced predictability of flavor models 

• Top-down: eclectic flavor group 𝐺𝑒𝑐𝑙𝑒𝑐𝑡𝑖𝑐 = 𝐺𝑓𝑙𝑎𝑣𝑜𝑟 ∪ 𝐺𝑚𝑜𝑑𝑢𝑙𝑎𝑟

 Modular flavor symmetry is a new elegant and very promising approach to 
the flavor puzzle. 

• Open questions:  moduli stabilization?...

 Future experimental data on neutrino mixing angles, 𝛿𝐶𝑃 and 0𝜈𝛽𝛽
decay can exclude many models,  will provide important hints for the 
underlying principle. 

Thank you for your attention!
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Backup
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Tests of modulus couplings 

Non-standard neutrino interactions [Ding,Feruglio, 2003.13448]

in medium with non-zero 
electron number density 

In the sun 2

u vi 
 


  
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Eclectic flavor group 𝛀 𝟏 ≅ 𝚫 𝟐𝟕 ⋊ 𝑻′

flavor symmetry group (27):  smallest group with triplet and anti-triplet reps 

Δ(27) has 9 singlet representations and 2 triplet reps 3/ഥ3

 modular symmetry and CP as automorphisms of Δ 27

Multiplication rules: 

Modular symmetry

CP symmetry

Γ3
′ ≅ 𝑇′

[Nilles et al, 2001.01736]
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All the 8 nontrivial singlets are related by 𝑇′ modular symmetry, they form a 

Δ(27) octet  right-handed leptons can not be Δ 27 nontrivial singlets .

blue: 𝑢𝑆
red: 𝑢𝑇
green: 𝑢𝐾∗

Modular transformations fixed by Δ(27) flavor symmetry, they cannot be 
freely assigned as with modular symmetry alone 
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Quark-lepton unification based on double cover of S4

Lepton sector: [Liu, Yao, Ding, 2006.10722]
We include the gCP symmetry such that all coupling constants are real

Charged lepton masses:

2 2

1 2 1/ , / ,ug v g g Light neutrino mass matrix :

, ,  
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Quark sector:

8 real coupling constants: 
, , , ,, , ,u d u d u d u d   

The complex modulus τ is common in both quark and lepton sectors, and 
it is the unique source breaking modular symmetry and CP

0.2123 1.5201i    

Best fit values of input parameters:
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Predictions: almost all observables are within the 1σ regions

 The predictions for neutrino masses, mixing angles and CP violation 
phases are compatible with the experimental data of neutrino 
oscillation and cosmology. Precise measurements of θ23 , δCP and 
the effective mass mββ in 0ν2β decay can exclude this model.

 The model uses 15 parameters including to describe the masses 
and mixing of both quark and lepton sectors: 12 masses+6 mixing 
angles+3 CP phases. 


