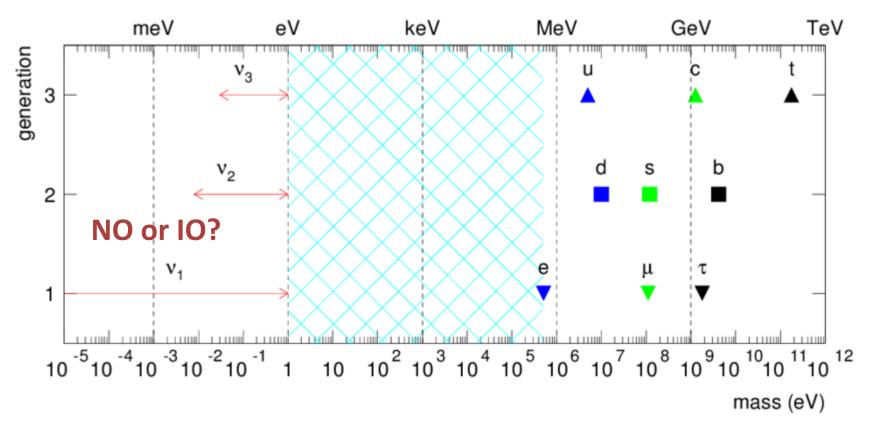
Modular flavor symmetry to the flavor structure of SM

Gui-Jun Ding

University of Science and Technology of China

The XXX International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY2023), Southampton, July 17-21, 2023

Flavor puzzle 1: why mass hierarchies?



Quarks: from MeV to 100 GeV

Charged leptons: from MeV to GeV

Neutrinos:
$$\sum_{i=1}^{3} m_i \le 0.12 \text{ eV}$$
 from cosmology

Flavor puzzle 2: why different quark and lepton mixing?

Quark mixings are small

[Particle Data Group 2022]

$$V_{\text{CKM}} = \begin{pmatrix} 0.97401 \pm 0.00011 & 0.22650 \pm 0.00048 & 0.00361^{+0.00011}_{-0.00009} \\ 0.22636 \pm 0.00048 & 0.97320 \pm 0.00011 & 0.04053^{+0.00083}_{-0.00061} \\ 0.00854^{+0.00023}_{-0.00016} & 0.03978^{+0.00082}_{-0.00060} & 0.999172^{+0.000024}_{-0.000035} \end{pmatrix}$$

Lepton mixings are large

$$|U|_{3\sigma}^{\text{w/o SK-atm}} = egin{pmatrix} 0.801 & \rightarrow 0.845 & 0.513 & \rightarrow 0.579 \\ 0.232 & \rightarrow 0.507 & 0.459 & \rightarrow 0.694 \\ 0.260 & \rightarrow 0.526 & 0.470 & \rightarrow 0.702 \end{pmatrix}$$

$$0.260 \rightarrow 0.526$$

$$0.513 \to 0.579$$

$$0.459 \to 0.694$$

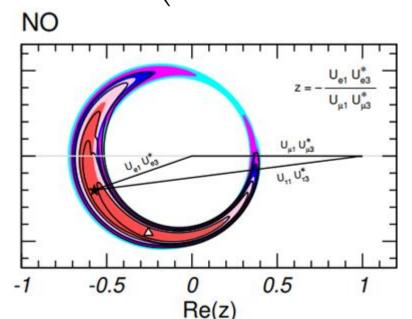
$$0.470 \rightarrow 0.702$$

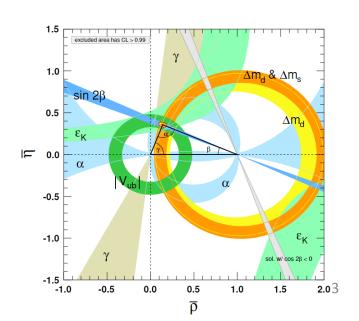
[NuFIT 5.2 (2022)]

$$0.143 \to 0.156$$

$$0.629 \to 0.779$$

$$0.609 \to 0.763$$





"Who orderd that?"

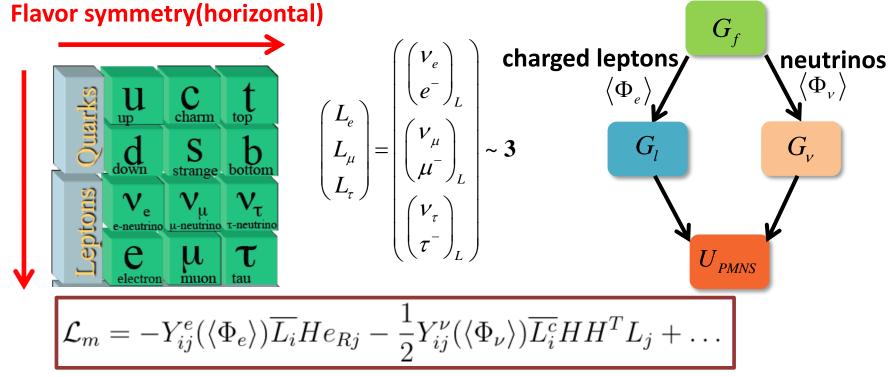
Where do fermion mass hierarchy, flavor mixing, and CP violation come from?
Is there a simple organization principle?

Isidor Issac Rabi

Symmetry as a guiding principle to flavor puzzle

Distinguish three generations by a flavor symmetry G_f , lepton mixing arises from mismatch of the different residual subgroups G_I and G_v

Gauge symmetry(vertical)



G_f	Continuous	Discrete
Abelian	U(1)	Z _n _
Non-Abelian	U(2), SU(3),SO(3)	$(A_4, S_4, A_5, \Delta(6n^2),)$

[Altarelli, Feruglio, 1002.0211; Tanimoto et al., 1003.3552; King and Luhn, 1301.1340; Xing, 1909.09610; Feruglio, Romanino, arXiv:1912.06028]

Modular Symmetries

Number Theory

Conference Board of the Mathematical Sciences

CBMS

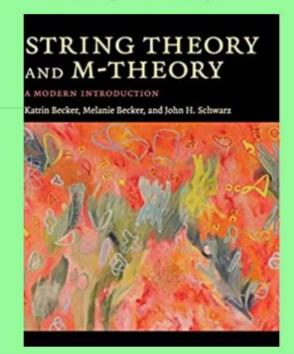
Regional Conference Series in Mathematics

Modular forms appear in many ways in number theory. They play a central role in the theory of quadratic forms; in particular, they are generating functions for the number of representations of integers by positive definite quadratic forms (for example, see [Gro]). They are also key players in the recent spectacular proof of Fermat's Last Theorem (see for example, [Bos, CSS]). Modular forms are presently at the center of an immense amount of research activity. ber 102

The Web of Modularity:
Arithmetic of the
Coefficients of Modular
Forms and q-series

Ken Ono

String Theory



Credit: Mu-Chun Chen, Bonn2022

Condensed Matter Physics

Nuclear Physics B

Volume 474, Issue 3, 2 September 1996, Pages 543-574

Modular invariance, self-duality and the phase transition between quantum Hall plateaus

Eduardo Fradkin *, Steven Kivelson b

Neutrino Physics

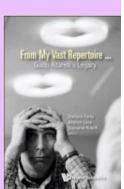
arXiv.org > hep-ph > arXiv:1706.08749

High Energy Physics - Phenomenology

[Submitted on 27 Jun 2017 (v1), last revised 29 Sep 2017 (this version, v2)]

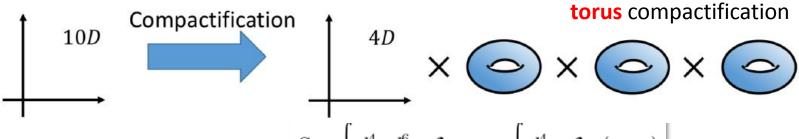
Are neutrino masses modular forms?

Ferruccio Feruglio



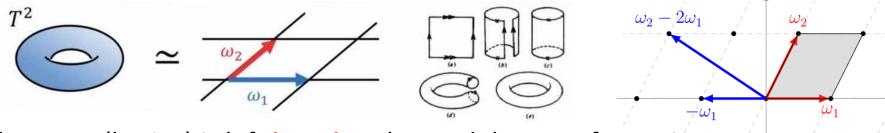
Modular invariance as flavor symmetry

Modular invariance is motivated by more fundamental theory such as string theory at high energy scale [Ferrara et al, 1989; Feruglio, 1706.08749]



4D effective Lagrangian :
$$S = \int d^4x d^6y \ \mathcal{L}_{10D} \Rightarrow \int d^4x \ \mathcal{L}_{\text{eff}}(\varphi, \tau_i)$$

The shape of a torus T^2 is characterized by a modulus $\tau = \omega_2 / \omega_1$, Im $\tau > 0$



The torus (lattice) is left invariant by modular transformations

$$\begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} \longrightarrow \tau \rightarrow \gamma \tau = \frac{a\tau + b}{c\tau + d}$$
 Finite modular groups as G_f : the quotient over the principal

SL(2,Z): ad-bc=1, a,b,c,d integers

$$\mathcal{L}_{ ext{eff}}(au,\Phi)$$
 \longrightarrow $\mathcal{L}_{ ext{eff}}$ modular invariant

congruence subgroups $\Gamma(N)$

$$\Gamma_N \equiv SL(2,Z)/\pm\Gamma(N), \quad \Gamma_N' \equiv SL(2,Z)/\Gamma(N)$$

Modular invariant theory

For N=1 global SUSY, the modular invariant action

$$S = \int d^4x d^2\theta d^2\overline{\theta} \ K(\Phi_I, \overline{\Phi}_I, \tau, \overline{\tau}) + \int d^4x d^2\theta \ W(\Phi_I, \tau) + \text{h.c.}$$

➤ Minimal Kahler potential (less constrained)

$$K = -h\Lambda^2 \ln(-i\tau + i\overline{\tau}) + \sum_{I} (-i\tau + i\overline{\tau})^{-k_I} |\Phi_I|^2$$
 [Chen, Sanchez, Ratz 1909.06910]

Modular invariant superpotential

$$W = \sum Y_{I_1 I_2 ... I_n}(\tau) \Phi_{I_1} \Phi_{I_2} ... \Phi_{I_n}$$

Modular transformation: weight k, reps $\rho(\gamma)$ of Γ_N/Γ_N'

$$\tau \to \gamma \tau = \frac{a\tau + b}{c\tau + d}, \quad \Phi_I \to (c\tau + d)^{-k_I} \rho_I(\gamma) \Phi_I,$$

$$Y_{I_1 I_2 \dots I_n}(\tau) \to Y_{I_1 I_2 \dots I_n}(\gamma \tau) = (c\tau + d)^{k_Y} \rho_Y(\gamma) Y_{I_1 I_2 \dots I_n}(\tau)$$

Modular invariance requires

modular weights balance:
$$k_Y = k_{I_1} + k_{I_2} + \ldots + k_{I_n}$$
 containts singlet: $\rho_Y \otimes \rho_{I_1} \otimes \ldots \otimes \rho_{I_n} \supset \mathbf{1}$

Yukawa couplings are modular forms $Y_{\scriptscriptstyle I_1 I_2 \cdots I_n}(au)$

[Ferrara et al, 1989; Feruglio, 1706.08749]

SL(2,Z) on torus T^2

 $\Gamma(N)$ congruence subgroups

$$\Gamma'_{N} \equiv SL(2, Z) / \Gamma(N)$$

or $\Gamma_{N} \equiv SL(2, Z) / \pm \Gamma(N)$

finite modular groups

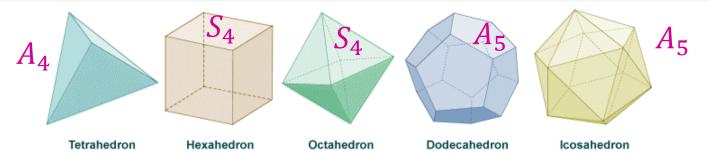
general finite modular groups: SL(2,Z)/normal subgroups

	Norm	al subgroups $\ker(\rho)$	Finite modular groups	$\Gamma/\ker(\rho) \cong \operatorname{Im}(\rho)$	
Index	Label	Additional relators	Group structure	GAP Id	
6	$\Gamma(2)$	T^2	S_3	[6, 1]	
12	-	S^2T^2	$Z_3 \rtimes Z_4 \cong 2D_3$	[12, 1]	
12	$\pm\Gamma(3)$	S^2, T^3	A_4	[12, 3]	
18	_	$ST^{-2}ST^2$	$S_3 \times Z_3$	[18, 3]	
	$\Gamma(3)$	T^3	T'	[24, 3]	
24	_	S^2T^3	1	[24, 0]	
24	$\pm\Gamma(4)$	S^2, T^4	S_4	[24, 12]	
	_	$S^2, (ST^{-1}ST)^2$	$A_4 \times Z_2$	[24, 13]	
36	_	$S^3T^{-2}ST^2$	$(Z_3 \rtimes Z_4) \times Z_3$	[36, 6]	
49	-	$T^6, (ST^{-1}S)^2TST^{-1}ST^2$	$Z_7 \rtimes Z_6$	[42, 1]	
42	_	$T^6, ST^{-1}ST(ST^{-1}S)^2T^2$	27 × 26	[42, 1]	
	-	S^2T^4	2 <i>O</i>	[48, 28]	
	_	T^8 , ST^4ST^{-4}	GL(2,3)	[48, 29]	
48	$\Gamma(4)$	T^4	$A_4 \rtimes Z_4 \cong S_4'$	[48, 30]	
40	_	$(ST^{-1}ST)^2$	$A_4 \times Z_4$	[48, 31]	
	_	$S^2(ST^{-1}ST)^2$	$T' \times Z_2$	[48, 32]	
	_	T^{12}, ST^3ST^{-3}	$((Z_4 \times Z_2) \rtimes Z_2) \rtimes Z_3$	[48, 33]	
54	_	$T^6, (ST^{-1}ST)^3$	$(Z_3 \times Z_3) \rtimes Z_6$	[54, 5]	
60	$\pm\Gamma(5)$	S^2, T^5	A_5	[60, 5]	
72	_	T^{12}, ST^4ST^{-4}	$S_4 \times Z_3$	[72, 42]	
12	$\pm\Gamma(6)$	$S^2, T^6, (ST^{-1}STST^{-1}S)^2T^2$	$A_4 \times S_3$	[72, 44]	

modular invariant flavor models

 \triangleright Finite modular groups: known flavor symmetry S_3 , A_4 , S_4 , A_5

N	2	3	4	5	6	7
Γ_N	S_3	A_4	S_4	A_5	$\Gamma_6 \cong S_3 \times A_4$	$\Gamma_7 \cong \Sigma(168)$
Γ'_N	S_3	$A_4' = T'$	$S_4' \cong SL(2, \mathbb{Z}_4)$			$\Gamma_7' \cong SL(2, \mathbb{Z}_7)$



> Bottom-up models for lepton and quark [see talks by Ivo Varzielas, Levy Miguel, Xin Wang]

	Γ_N/Γ_N'	leptons alone	leptons & quarks	SU(5)	SO(10)
N=2	S_3	Kobayashi et al, 1803.10391	_	Kobayashi et al, 1906.10341	_
N = 3	A_4	Feruglio, 1706.08749,1807.01125	Okada, Tanimoto, 1905.13421; King, King, 2002.00969; Yao, Lu, Ding, 2012.13390	Anda, King, Perdomo, 1812.05620; Chen, Ding, King, 2101.12724	Ding, King,Lu,2108.09655
	T'	Liu, Ding,1907.01488	Lu, Liu, Ding,1912.07573	_	_
N = 4	S_4	Penedo,Petcov,1806.11040; Novichkov, Penedo et al,1811.04933	Qu, Liu et al,2106.11659	Zhao, Zhang,2101.02266; Ding, King, Yao,2103.16311	_
	S_4'	Novichkov,Penedo,Petcov,2006.03058	Liu, Yao, Ding, 2006.10722	—	_
N = 5	A_5	Novichkov, Penedo et al,1812.02158; Ding, King, Liu, 1903.12588	_	_	_
	A_5'	Wang, Yu, Zhou, 2010.10159	Yao, Liu, Ding, 2011.03501	—	_
N = 6	Γ_6	_	_	Abe, Higaki et al, 2307.01419	_
1v = 0	Γ_6'	Li,Liu,Ding,2108.02181	_	_	_
N = 7	Γ_7	Ding, King et al, 2004.12662	_		_
IV = I	Γ_7'	_	_	_	_

Modular flavor symmetry: significant reduction of the number of parameters

minimal modular lepton model

Modular symmetry allows to construct quite predictive lepton models. The modular flavor symmetry S'_4 which is the double cover of S_4

		L	$E_D^c = (e^c, \mu^c)$	$ au^c$	N^c	$H_{u,d}$
Å	S_4'	3	$\hat{f 2}$	$\hat{1}'$	3	1
	k_I	-1/2	9/2	9/2	3/2	0

CP symmetry constrains all coupling constants to be real [Ding, Liu, Yao, 2211.04546]

Charged leptons

$$W_e = \alpha \left(E_D^c L Y_{\mathbf{\hat{3}}'}^{(3)} \right)_{\mathbf{1}} H_d + \beta \left(E_D^c L Y_{\mathbf{\hat{3}}}^{(3)} \right)_{\mathbf{1}} H_d + \gamma \left(E_3^c L Y_{\mathbf{\hat{3}}}^{(3)} \right)_{\mathbf{1}} H_d$$

$$M_{e} = \begin{pmatrix} 2\alpha Y_{\mathbf{\hat{3}'},1}^{(3)} & -\alpha Y_{\mathbf{\hat{3}'},3}^{(3)} + \sqrt{3}\beta Y_{\mathbf{\hat{3}},2}^{(3)} & -\alpha Y_{\mathbf{\hat{3}'},2}^{(3)} + \sqrt{3}\beta Y_{\mathbf{\hat{3}},3}^{(3)} \\ -2\beta Y_{\mathbf{\hat{3}},1}^{(3)} & \sqrt{3}\alpha Y_{\mathbf{\hat{3}'},2}^{(3)} + \beta Y_{\mathbf{\hat{3}},3}^{(3)} & \sqrt{3}\alpha Y_{\mathbf{\hat{3}'},3}^{(3)} + \beta Y_{\mathbf{\hat{3}},2}^{(3)} \\ \gamma Y_{\mathbf{\hat{3}},1}^{(3)} & \gamma Y_{\mathbf{\hat{3}},3}^{(3)} & \gamma Y_{\mathbf{\hat{3}},2}^{(3)} \end{pmatrix} v_{d}$$

Neutrino mass : seesaw mechanism

$$W_{\nu} = g_1 (N^c L)_{\mathbf{1}} H_u + \Lambda \left((N^c N^c)_{\mathbf{2}, s} Y_{\mathbf{2}}^{(2)} \right)_{\mathbf{1}}$$

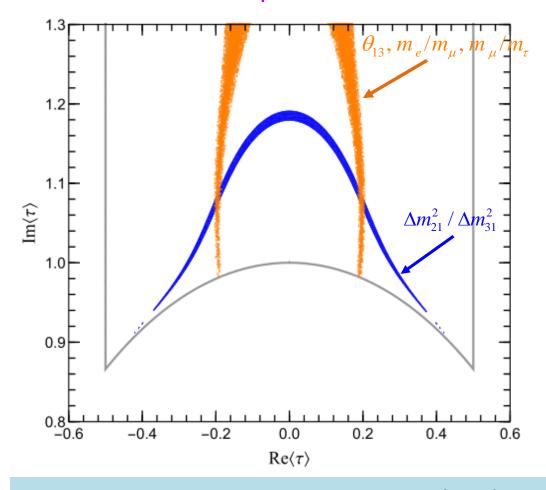
Minimal #p: α , β , γ , g^2/Λ

$$M_D = g \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} v_u, \quad M_N = \Lambda \begin{pmatrix} 2Y_{\mathbf{2},1}^{(2)} & 0 & 0 \\ 0 & \sqrt{3}Y_{\mathbf{2},2}^{(2)} & -Y_{\mathbf{2},1}^{(2)} \\ 0 & -Y_{\mathbf{2},1}^{(2)} & \sqrt{3}Y_{\mathbf{2},2}^{(2)} \end{pmatrix}$$

Light neutrino mass

$$m_1 = \frac{1}{|2Y_{\mathbf{2},1}^{(2)}|} \frac{g^2 v_u^2}{\Lambda}, \quad m_2 = \frac{1}{|Y_{\mathbf{2},1}^{(2)} - \sqrt{3}Y_{\mathbf{2},2}^{(2)}|} \frac{g^2 v_u^2}{\Lambda}, \quad m_3 = \frac{1}{|Y_{\mathbf{2},1}^{(2)} + \sqrt{3}Y_{\mathbf{2},2}^{(2)}|} \frac{g^2 v_u^2}{\Lambda}$$

only depends on modulus τ up to overall scale



Neutrino mass spectrum is normal ordering

Minimal: only 4 real couplings plus modulus τ can explain 12 observables

$$\langle \tau \rangle = -0.1938 + 1.0832i$$
, $\beta / \alpha = 1.7305$, $\gamma / \alpha = 0.2703$, $\alpha v_d = 244.621 \text{ MeV}$, $g^2 v_u^2 / \Lambda = 29.0744 \text{ meV}$

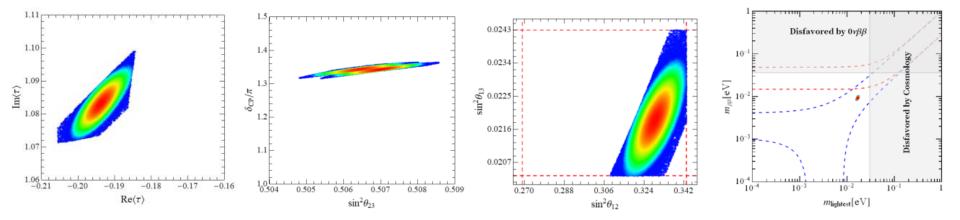
 τ is the unique source breaking both modular and CP symmetries. All observables are within the 3σ regions

$$\sin^2 \theta_{12} = 0.3289$$
, $\sin^2 \theta_{13} = 0.02185$, $\sin^2 \theta_{23} = 0.5070$, $\delta_{CP} = 1.3426\pi$, $\alpha_{21} = 1.3287\pi$, $\alpha_{31} = 0.5444\pi$, $m_e / m_\mu = 0.00473$, $m_\mu / m_\tau = 0.0588$, $m_1 = 14.4007$ meV, $m_2 = 16.7803$ meV, $m_3 = 51.7755$ meV

The effective neutrino masses:

$$m_{\beta} = 16.891 \,\text{meV}, \ m_{\beta\beta} = 9.253 \,\text{meV}$$

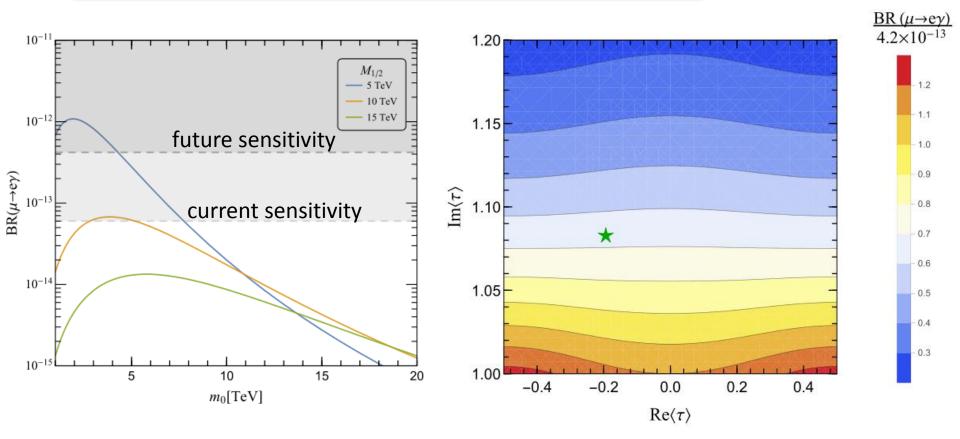
below the sensitivity of future experiments



\triangleright lepton flavor violation $\mu \rightarrow e\gamma$

$$\mathcal{M}(\ell_i \to \ell_j \gamma) = m_{\ell_i} \epsilon^{\lambda} \bar{u}_j(p - q) \left[i q^{\nu} \sigma_{\lambda \nu} \left(A_L P_L + A_R P_R \right) \right] u_i(p)$$

$$\frac{\text{BR} \left(\ell_i \to \ell_j \gamma \right)}{\text{BR} \left(\ell_i \to \ell_j \nu_i \overline{\nu_j} \right)} = \frac{48 \pi^3 \alpha_e}{G_F^2} \left(\left| A_L^{ij} \right|^2 + \left| A_R^{ij} \right|^2 \right)$$



[Ding, Liu, Yao, 2211.04546]

Texture-zero from modular symmetry

Texture-zero: some matrix elements are assumed to be vanishing toreduce the number of free parameters [S. Weinberg; H. Fritzsch; F. Wilczek & A. Zee, 1977]

$$M_{u} = \begin{pmatrix} 0 & A_{U} & 0 \\ A_{U}^{*} & 0 & B_{U} \\ 0 & B_{U}^{*} & C_{U} \end{pmatrix}, M_{d} = \begin{pmatrix} 0 & A_{D} & 0 \\ A_{D}^{*} & 0 & B_{D} \\ 0 & B_{D}^{*} & C_{D} \end{pmatrix} \Rightarrow \tan \theta_{C} \simeq \sqrt{\frac{m_{d}}{m_{s}}}$$

Abelian flavor symmetry is usually used to enforce texture-zero, and non-zero entries are uncorrelated.

- Modular symmetry origin of texture-zero
 - ✓ At lower weight, modular forms in certain representations are absent → texture-zero pattern

$$\sum_{\mathbf{r}} \left(\psi^c \psi Y_{\mathbf{r}}^{(k)} H_{u,d} \right)_{\mathbf{1}} \stackrel{\text{missed } \mathbf{r}}{\Longrightarrow} m_{\psi} = \begin{pmatrix} \times \times & 0 \\ \times \times & 0 \\ 0 & 0 \times \end{pmatrix}, \dots$$

✓ Odd weight modular forms are in the "spinor" irreps $\rho_r(S^2)$ =-1, even weight modular forms are in the "vector" irreps $\rho_r(S^2)$ =+1

Note: texture-zero can also arise from fixed points $\tau_f = i \infty$, i, ω [Kikuchi et al,2207.04609]

Taking level N=3 as an example

Assignment under $\Gamma_3' \cong T'$:

$$Q_D \equiv \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} \sim 2 \text{ (or 2', 2'')}, \qquad Q_3 \sim 1 \text{ (or 1', 1'')}$$
 Left-handed doublets
$$q_D^c \equiv \begin{pmatrix} q_1^c \\ q_2^c \end{pmatrix} \sim 2 \text{ (or 2', 2'')}, \qquad q_3^c \sim 1 \text{ (or 1', 1'')}$$
 Right-handed singlets

Mass matrix with texture zero



Five texture zeros of quark mass matrices up to row and column permutations can be achieved from the $\Gamma_3' \cong T'$ modular symmetry

Case
$$\mathcal{A}$$
: $M_q = \begin{pmatrix} \times \times & 0 \\ \times \times & 0 \\ 0 & 0 \times \end{pmatrix}$, Case \mathcal{B} : $M_q = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ 0 & 0 \times \end{pmatrix}$

Case
$$\mathcal{C}: M_q = \begin{pmatrix} \times \times & 0 \\ \times \times & 0 \\ \times \times & \times \end{pmatrix}$$
, Case $\mathcal{D}: M_q = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & 0 \end{pmatrix}$

Case
$$\mathcal{E}: M_q = \begin{pmatrix} \times \times & 0 \\ \times & \times \times \\ 0 & 0 & \times \end{pmatrix}$$
 [Lu, Liu, Ding, 1912.07573]

➤ Texture-zero patterns of lepton mass matrices for #p≤9

Neutrino nature	gCP	Number of textures	Viable
/	no	136	23 (NO) 27 (IO)
Dirac	yes	174	97 (NO) 57 (IO)
Majorana	no	29	5 (NO) 7 (IO)
(Weinberg operator)	yes	31	11 (NO)
7	no	35	6 (NO)
Majorana (Seesaw mechanism)	Trog	36	10 (IO) 13 (NO)
	yes	- JO	14 (IO)

[Ding, Joaquim, Lu, 2211.0813]

- ✓ Texture-zeros is enforced by the structure of modular forms
- ✓ Non-zero entries are correlated by modular symmetry, the predictive power of texturezero is improved greatly.

Mass hierarchies in modular symmetry

Weighton mechanism: modular weight plays the role of Froggatt-Nielsen charge, the couplings are suppressed by power of "weighton" ϕ which is a scalar invariant under modular symmetry

$$\mathcal{W}_e = \alpha e^c \widetilde{\tilde{\phi}^4} (LY_{\mathbf{3}}^{(2)})_{\mathbf{1}} H_d + \beta \mu^c \widetilde{\tilde{\phi}^2} (LY_{\mathbf{3}}^{(2)})_{\mathbf{1}'} H_d + \gamma \tau^c \widetilde{\tilde{\phi}} LY_{\mathbf{3}}^{(2)})_{\mathbf{1}''} H_d, \quad \tilde{\phi} = \frac{\phi}{\Lambda}$$

[Criado, Feruglio, King, 1908.11867; King, King, 2002.00969]

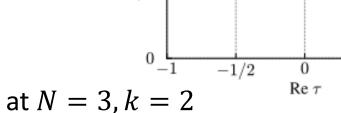
 \blacktriangleright Fermion mass hierarchies arise from proximity of τ to the fixed points τ_f

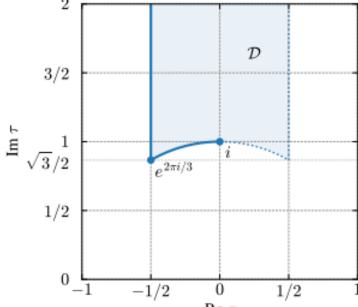
[Okada and Tanimoto, 2009.14242; Feruglio, Gherardi, Romanino, Titov, 2101.08718; Novichkov, Penedo, Petcov,2102.07488]

$ au_f$	Inv. under	Residual sym.
$i\infty$	$\tau \to \tau + 1$	\mathbb{Z}_N
i	$ au ightarrow -rac{1}{ au}$	\mathbb{Z}_2
$\omega = e^{2\pi i/3}$	$ au ightarrow -rac{1}{ au+1}$	\mathbb{Z}_3

Some modular forms vanish at fixed point $au = au_f$

e.g.
$$(Y_1(\tau), Y_2(\tau), Y_3(\tau)) \xrightarrow{\tau = i \infty} (1, 0, 0)$$
 at $N = 3, k = 2$





 $\bullet i \infty$

18

✓ Some entries of fermion mass matrix are vanishing at fixed points, and they are power of deviation $O(\epsilon^p)$ in the vicinity of fixed points

$$\begin{aligned}
\tau &= \tau_f \\
M \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} &\longrightarrow M \sim \begin{pmatrix} 1 & \epsilon^{\cdots} & \epsilon^{\cdots} \\ \epsilon^{\cdots} & \epsilon^{\cdots} & \epsilon^{\cdots} \\ \epsilon^{\cdots} & \epsilon^{\cdots} & \epsilon^{\cdots} \end{pmatrix}
\end{aligned}$$

hierarchical fermion masses in powers of ϵ

✓ Promising hierarchical patterns for leptons

N	Γ_N'	Pattern	Sym. point	Viable $\mathbf{r} \otimes \mathbf{r}^c$
2	S_3	$(1,\epsilon,\epsilon^2)$	$ au \simeq \omega$	$[2\oplus1^{(\prime)}]\otimes[1\oplus1^{(\prime)}\oplus1^{\prime}]$
3	A_4'	$(1,\epsilon,\epsilon^2)$	$\tau \simeq \omega$ $\tau \simeq i \infty$	$\begin{aligned} [1_a \oplus 1_a \oplus 1'_a] \otimes [1_b \oplus 1_b \oplus 1''_b] \\ [1_a \oplus 1_a \oplus 1'_a] \otimes [1_b \oplus 1_b \oplus 1''_b] \text{ with } 1_a \neq (1_b)^* \end{aligned}$
4	S_4'	$(1, \epsilon, \epsilon^2)$ $(1, \epsilon, \epsilon^3)$	$\tau \simeq \omega$ $\tau \simeq i \infty$	$\begin{aligned} &[3_a,\text{or}2\oplus1^{(\prime)},\text{or}\mathbf{\hat{2}}\oplus\mathbf{\hat{1}}^{(\prime)}]\otimes[1_b\oplus1_b\oplus1_b']\\ &3\otimes[2\oplus1,\text{or}1\oplus1\oplus1'],3'\otimes[2\oplus1',\text{or}1\oplus1'\oplus1'],\\ &\mathbf{\hat{3}}'\otimes[\mathbf{\hat{2}}\oplus\mathbf{\hat{1}},\text{or}\mathbf{\hat{1}}\oplus\mathbf{\hat{1}}\oplus\mathbf{\hat{1}}'],\mathbf{\hat{3}}\otimes[\mathbf{\hat{2}}\oplus\mathbf{\hat{1}}',\text{or}\mathbf{\hat{1}}\oplus\mathbf{\hat{1}}'\oplus\mathbf{\hat{1}}'] \end{aligned}$
5	A_5'	$(1,\epsilon,\epsilon^4)$	$\tau \simeq i\infty$	$3\otimes3'$

Kähler problem in modular symmetry

Kähler potential potential not fixed by modular flavor symmetry

$$\mathcal{K} = \left[(-i\tau + i\bar{\tau})^{-k_{\psi}} \left(\psi^{\dagger} \psi \right)_{\mathbf{1}} + \sum_{n, \mathbf{r_1}, \mathbf{r_2}} c^{(n, \mathbf{r_1}, \mathbf{r_2})} (-i\tau + i\bar{\tau})^{-k_{\psi} + n} \left(\psi^{\dagger} Y_{\mathbf{r_1}}^{(n)\dagger} Y_{\mathbf{r_2}}^{(n)} \psi \right)_{\mathbf{1}} \right]$$

minimal Kähler potential

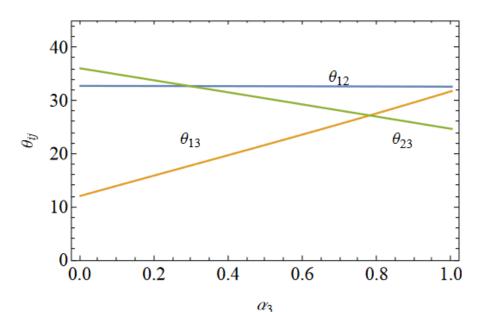
non-canonical terms

Many non-canonical terms on the same footing as the minimal Kähler potential are allowed by modular symmetry

➤ Modifying Kähler metric and kinetic terms [Chen, Ramon-Sanchez, Ratz 1909.06910]

$$\mathcal{K}_{\psi}^{ij} = \frac{\partial^{2} \mathcal{K}}{\partial \psi_{i}^{\dagger} \partial \psi_{j}}
= \langle -i\tau + i\bar{\tau} \rangle^{-k_{\psi}} \delta^{ij} + \Delta \mathcal{K}_{\psi}^{ij}$$

▶ Back to canonical Basis → sizable corrections to mixing parameters



Solution to Kähler problem: eclectic flavor groups

- Modular flavor symmetries from top-down approach (orbifold string) compactification) gives [Nilles et al, 2001.01736; 2004.05200]
 - Normal symmetries of extra dimensions → traditional flavor symmetries
 - String duality transformations → modular flavor symmetries
 - the multiplicative closure of these groups is defined as the eclectic flavor group

$$G_{ ext{eclectic}} = G_{ ext{traditional}} \cup G_{ ext{modular}}$$

[see talk by Hans Nilles]

> Traditional flavor symmetry vs. modular symmetry transformations

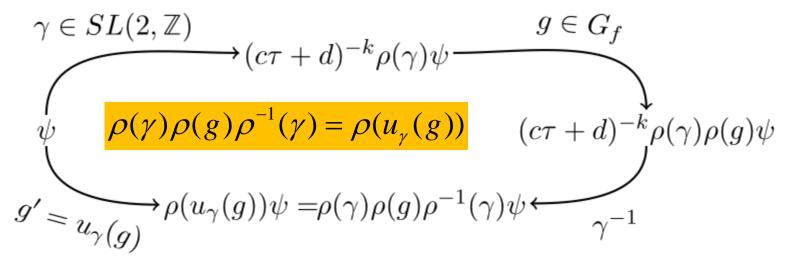
modular:
$$\tau \xrightarrow{\gamma} \gamma \tau \equiv \frac{a\tau + b}{c\tau + d}$$
, $\psi \xrightarrow{\gamma} (c\tau + d)^{-k_{\psi}} \rho(\gamma) \psi$,

flavor:
$$\tau \xrightarrow{g} \tau$$
, $\psi \xrightarrow{g} \rho(g)\psi$, $g \in G_f$

flavor symmetry transformations leave au invariant

The interplay of traditional flavor symmetry an modular symmetry can restrict the allowed Kähler potential

➤ Consistency condition [Nilles et al, 2001.01736]

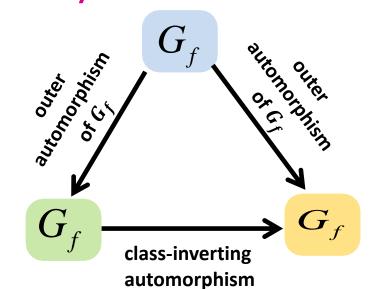


Each modular transformation $\rho(\gamma)$ corresponds an automorphism u_{γ} of flavor symmetry group G_f . Finite modular group Γ'_N (Γ_N) must be a subgroup of the outer automorphism group of G_f

$$G_{\text{eclectic}} \cong G_f \rtimes \Gamma'_N \ (G_f \rtimes \Gamma_N)$$

- ✓ Modular transformation ρ(γ) is fixed by flavor symmetry transformation ρ(g), they cannot be freely assigned as with modular symmetry alone
- \checkmark Not any flavor symmetry G_f have eclectic extension!

➤ Eclectic flavor group can combine with CP: unification of flavor, CP and modular symmetries



CP as outer automorphism of both traditional flavor group G_f and modular group Γ'_N (Γ_N)

 \triangleright Possible eclectic flavor groups: few G_f suitable to eclectic extension

flavor group	GAP	$\operatorname{Aut}(\mathcal{G}_{\mathrm{fl}})$	finite mo	dular	eclectic flavor
$\mathcal{G}_{\mathrm{fl}}$	ID		groups		group
Q_8	[8, 4]	S_4	without CP	S_3	GL(2,3)
			with CP	-	-
$\mathbb{Z}_3 \times \mathbb{Z}_3$	[9, 2]	GL(2, 3)	without CP	S_3	$\Delta(54)$
			with CP	$S_3 \times \mathbb{Z}_2$	[108, 17]
A_4	[12, 3]	S_4	without CP	S_3	S_4
				S_4	S_4
			with CP	_	-
T'	[24, 3]	S_4	without CP	S_3	GL(2,3)
			with CP	-	_
$\Delta(27)$	[27, 3]	[432, 734]	without CP	S_3	$\Delta(54)$
				T'	$\Omega(1)$
			with CP	$S_3 \times \mathbb{Z}_2$	[108, 17]
				GL(2,3)	[1296, 2891]
$\Delta(54)$	[54, 8]	[432, 734]	without CP	T'	$\Omega(1)$
			with CP	GL(2,3)	[1296, 2891]

first eclectic model with

 $G_{eclectic} = \Delta(54) \cup T'$, Baur, Nilles et al,2207.10677

[Nilles,Ramos-Sanchez, Vaudrevange, et al, 2001.01736]

Eclectic lepton model with $\Omega(1) \cong \Delta(27) \rtimes T'$

Field content: flavon fields are necessary to break $\Delta(27)$ flavor symmetry Matter fields can only be triplet or trivial singlet of $\Delta(27)$

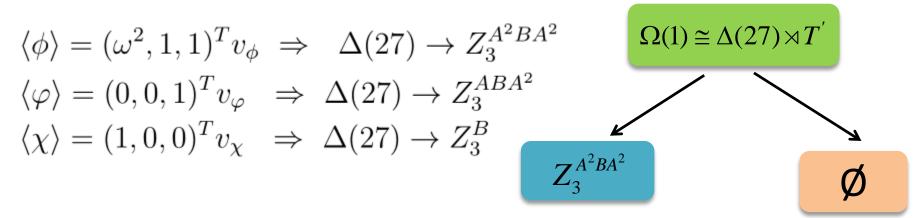
Fields	L	E^c	H_u	H_d	φ	φ	χ	ξ	$Y_{m{r}}^{(k_Y)}$
$\mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$	$(2,- frac{1}{2})$	(1,1)	$(2,rac{1}{2})$	$(2,- frac{1}{2})$	(1,0)	(1,0)	(1,0)	$({f 1},0)$	(1,0)
$\Delta(27)$	3	3	10,0	$1_{0,0}$	3	3	3	$1_{0,0}$	10,0
$\Gamma_3' \cong T'$	3_0	3_0	1	1	3_1	3_0	3_1	1	r
modular weight	0	0	0	0	5	5	7	-1	k_Y
Z_2	1	-1	1	1	-1	1	1	1	1
Z_3	ω	ω^2	1	1	1	ω	ω	1	1

> Superpotential for charged lepton and neutrino masses: only 4 terms

$$\mathcal{W} = \frac{\alpha}{\Lambda} \left(E^{c} L \phi Y_{\mathbf{2'}}^{(5)} \right)_{(\mathbf{1_{0,0},1})} H_{d} + \frac{\beta}{\Lambda^{2}} \left(E^{c} L \xi \phi Y_{\mathbf{1}}^{(4)} \right)_{(\mathbf{1_{0,0},1})} H_{d}
+ \frac{g_{1}}{2\Lambda^{2}} \left(L L \varphi Y_{\mathbf{2''}}^{(5)} \right)_{(\mathbf{1_{0,0},1})} H_{u} H_{u} + \frac{g_{2}}{2\Lambda^{2}} \left(L L \chi Y_{\mathbf{2'}}^{(7)} \right)_{(\mathbf{1_{0,0},1})} H_{u} H_{u}$$

The Kähler corrections are suppressed by $\langle \Phi \rangle^2 / \Lambda^2$ and negligible

> Symmetry breaking: vacuum alignment enforced by residual symmetry



Lepton mass matrices

charged lepton

neutrino

$$m_{l} = \frac{\alpha v_{\phi} v_{d}}{\Lambda} \begin{pmatrix} \sqrt{2} \omega^{2} Y_{\mathbf{2'},1}^{(5)} & \omega Y_{\mathbf{2'},2}^{(5)} & \omega Y_{\mathbf{2'},2}^{(5)} \\ \omega Y_{\mathbf{2'},2}^{(5)} & \sqrt{2} Y_{\mathbf{2'},1}^{(5)} & Y_{\mathbf{2'},2}^{(5)} \\ \omega Y_{\mathbf{2'},2}^{(5)} & Y_{\mathbf{2'},2}^{(5)} & \sqrt{2} Y_{\mathbf{2'},1}^{(5)} \end{pmatrix} + \frac{i \beta Y_{\mathbf{1}}^{(4)} v_{\xi} v_{\phi} v_{d}}{\Lambda^{2}} \begin{pmatrix} 0 & \omega & -\omega \\ -\omega & 0 & 1 \\ \omega & -1 & 0 \end{pmatrix},$$

$$m_{\nu} = \frac{g_{1} v_{\varphi} v_{u}^{2}}{\Lambda^{2}} \begin{pmatrix} 0 & \omega Y_{\mathbf{2''},2}^{(5)} & 0 \\ \omega Y_{\mathbf{2''},2}^{(5)} & 0 & 0 \\ \omega Y_{\mathbf{2''},2}^{(5)} & 0 & 0 \\ 0 & 0 & \sqrt{2} Y_{\mathbf{2''},1}^{(5)} \end{pmatrix} + \frac{g_{2} v_{\chi} v_{u}^{2}}{\Lambda^{2}} \begin{pmatrix} \sqrt{2} Y_{\mathbf{2'},1}^{(7)} & 0 & 0 \\ 0 & 0 & \omega Y_{\mathbf{2'},2}^{(7)} \\ 0 & \omega Y_{\mathbf{2'},2}^{(7)} & 0 \end{pmatrix}$$

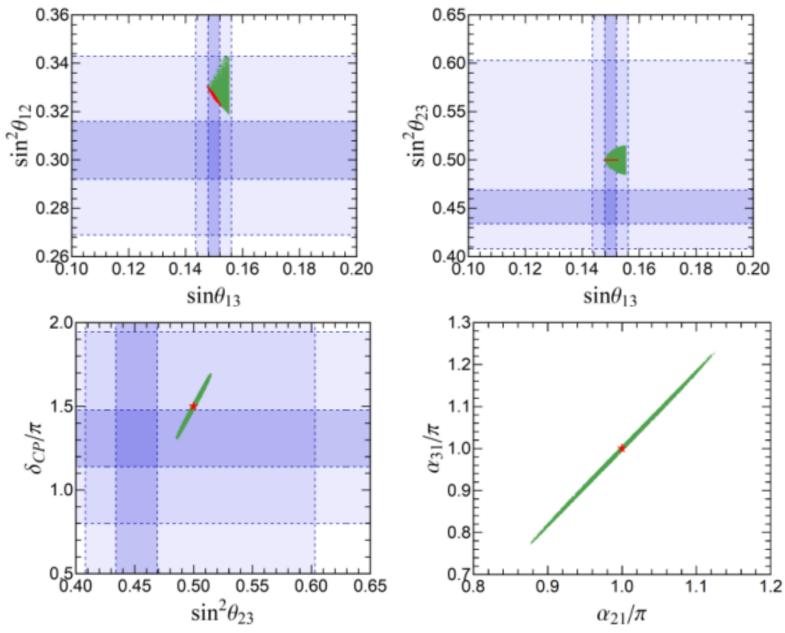
ightharpoonup Including CP symmetry with Re $\langle \tau \rangle = 0$, the neutrino mass matrix has μτ reflection symmetry [Harrison, Scott, hep-ph/0210197; Grimus, Lavoura,hep-ph/0305309]

> 5 real parameters explain all lepton masses and mixing parameters

$$\sin^2 \theta_{13} = 0.02238$$
, $\sin^2 \theta_{12} = 0.3266$, $\sin^2 \theta_{23} = 0.5$, $\delta_{CP} = 1.5\pi$, $\alpha_{21} = \pi$, $\alpha_{31} = \pi$, $m_1 = 15.18$ meV, $m_2 = 17.44$ meV, $m_3 = 52.43$ meV, $m_i = 85.05$ meV, $m_{\beta\beta} = 5.595$ meV, $m_e = 0.511$ MeV, $m_{\mu} = 106.5$ MeV, $m_{\tau} = 1.807$ GeV.

In agreement with the experimental data from neutrino oscillation, $0\nu\beta\beta$ decay and Planck

close correlations between mixing parameters



[Ding, King, Li, Liu, Lu, 2303.02071]

Summary

- Flavor symmetry is a useful tool to understand the flavor structure of SM, but no compelling and unique picture have emerged so far.
- Modular flavor symmetry is a new elegant and very promising approach to the flavor puzzle.
 - Bottom-up: enhanced predictability of flavor models
 - Top-down: eclectic flavor group $G_{eclectic} = G_{flavor} \cup G_{modular}$
 - Open questions: moduli stabilization?...
- Future experimental data on neutrino mixing angles, δ_{CP} and $0\nu\beta\beta$ decay can exclude many models, will provide important hints for the underlying principle.

Thank you for your attention!

Backup

Tests of modulus couplings

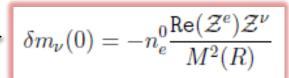
Non-standard neutrino interactions

$$\mathcal{L} = i \sum_{f=e,e^c,\nu} \overline{f} \,\overline{\sigma}^{\mu} \partial_{\mu} f + \frac{1}{2} \partial_{\mu} \varphi_{\alpha} \partial^{\mu} \varphi_{\alpha} - \frac{1}{2} M_{\alpha}^2 \varphi_{\alpha}^2$$

$$- (m_e + \mathcal{Z}_{\alpha}^e \varphi_{\alpha}) e^c e - \frac{1}{2} \nu (m_{\nu} + \mathcal{Z}_{\alpha}^{\nu} \varphi_{\alpha}) \nu + h.c. + \dots$$

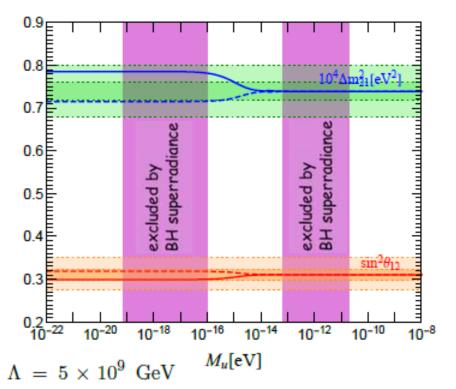
$$\tau = <\tau> + \frac{\varphi_u + i\varphi_v}{\sqrt{2}}$$

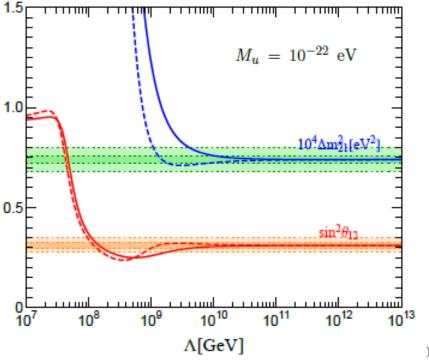
[Ding, Feruglio, 2003.13448]



in medium with non-zero electron number density

In the sun





Eclectic flavor group $\Omega(1) \cong \Delta(27) \rtimes T'$

Flavor symmetry group $\Delta(27)$: smallest group with triplet and anti-triplet reps

Multiplication rules:
$$A^3 = B^3 = (AB)^3 = (AB^2)^3 = 1$$
.

 $\Delta(27)$ has 9 singlet representations and 2 triplet reps 3/3

$$\mathbf{1}_{r,s}$$
: $\rho_{\mathbf{1}_{r,s}}(A) = \omega^r$, $\rho_{\mathbf{1}_{r,s}}(B) = \omega^s$, with $r, s = 0, 1, 2$,

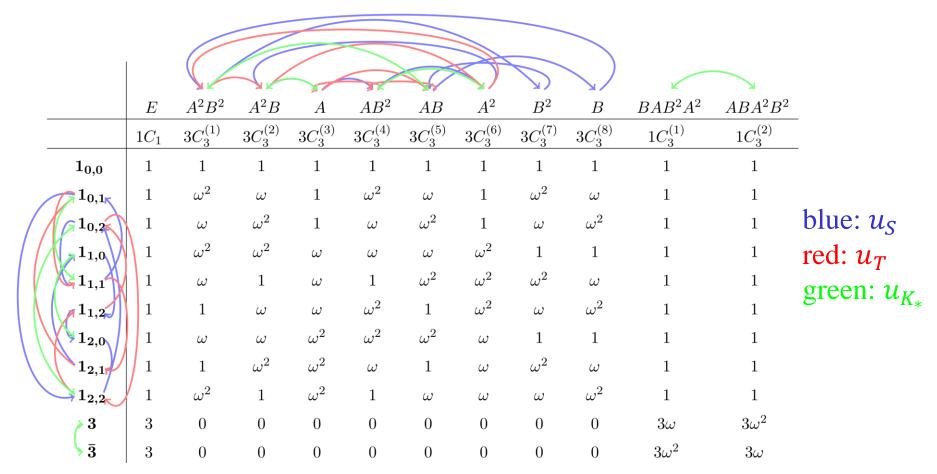
$$\mathbf{3} : \rho_{\mathbf{3}}(A) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \rho_{\mathbf{3}}(B) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix},$$

$$\bar{\bf 3} : \rho_{\bar{\bf 3}}(A) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad \rho_{\bar{\bf 3}}(B) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}.$$
 [Nilles et al, 2001.01736]

 \triangleright modular symmetry and CP as automorphisms of $\Delta(27)$

Modular symmetry
$$\begin{cases} u_S(A) = B^2 A, & u_S(B) = B^2 A^2 \\ u_T(A) = BA, & u_T(B) = B \end{cases} \qquad \qquad \Gamma_3' \cong T'$$

CP symmetry $u_{K_*}(A) = A^2 B$, $u_{K_*}(B) = A^2 B A$



All the 8 nontrivial singlets are related by T' modular symmetry, they form a $\Delta(27)$ octet \rightarrow right-handed leptons can not be $\Delta(27)$ nontrivial singlets.

Modular transformations fixed by $\Delta(27)$ flavor symmetry, they cannot be freely assigned as with modular symmetry alone

$$\rho_{\mathbf{3}}(S) = \frac{i}{\sqrt{3}} \begin{pmatrix} \omega^2 & \omega & \omega \\ \omega & \omega^2 & \omega \\ \omega^2 & \omega^2 & 1 \end{pmatrix} , \quad \rho_{\mathbf{3}}(T) = \omega^k \begin{pmatrix} \omega & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad k = 0, 1, 2$$

Quark-lepton unification based on double cover of S₄

	L	(e^c, μ^c, τ^c)	N^c	Q	(u^c, c^c, t^c)	(d^c, s^c, b^c)	$H_{u,d}$
$\Gamma_4' \equiv S_4'$	3	$({f 1},{f 1},{f \hat 1}')$	3	3	$(1,1,\mathbf{\hat{1}}')$	$(1',\hat{1},\hat{1}')$	1
k_I	2	(2,0,1)	0	k_Q	$(4 - k_Q, 6 - k_Q, 3 - k_Q)$	$(4 - k_Q, 5 - k_Q, 5 - k_Q)$	0

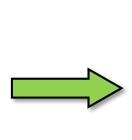
We include the gCP symmetry such that all coupling constants are real

Lepton sector:

[Liu, Yao, Ding, 2006.10722]

$$W_e = \alpha_e (E_1^c L Y_3^{(4)})_1 H_d + \beta_e (E_2^c L Y_3^{(2)})_1 H_d + \gamma_e (E_3^c L Y_3^{(3)})_1 H_d,$$

$$W_\nu = g_1 (N^c L Y_2^{(2)})_1 H_u + g_2 (N^c L Y_3^{(2)})_1 H_u + \Lambda (N^c N^c)_1,$$



$$M_e = \begin{pmatrix} \alpha_e Y_4^{(4)} & \alpha_e Y_6^{(4)} & \alpha_e Y_5^{(4)} \\ \beta_e Y_3^{(2)} & \beta_e Y_5^{(2)} & \beta_e Y_4^{(2)} \\ \gamma_e Y_2^{(3)} & \gamma_e Y_4^{(3)} & \gamma_e Y_3^{(3)} \end{pmatrix} v_d, \qquad M_N = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \Lambda,$$

$$M_D = \begin{pmatrix} 0 & g_1 Y_1^{(2)} - g_2 Y_5^{(2)} & g_1 Y_2^{(2)} + g_2 Y_4^{(2)} \\ g_1 Y_1^{(2)} + g_2 Y_5^{(2)} & g_1 Y_2^{(2)} & -g_2 Y_3^{(2)} \\ g_1 Y_2^{(2)} - g_2 Y_4^{(2)} & g_2 Y_3^{(2)} & g_1 Y_1^{(2)} \end{pmatrix} v_u.$$

Charged lepton masses: α , β , γ

Light neutrino mass matrix : $g_1^2 v_1^2 / \Lambda$, g_2 / g_1 , τ

Quark sector:

$$\mathcal{W}_{u} = \alpha_{u} (u^{c}QY_{\mathbf{3}}^{(4)})_{\mathbf{1}} H_{u} + \beta_{u} (c^{c}QY_{\mathbf{3},I}^{(6)})_{\mathbf{1}} H_{u} + \gamma_{u} (c^{c}QY_{\mathbf{3},II}^{(6)})_{\mathbf{1}} H_{u} + \delta_{u} (t^{c}QY_{\mathbf{\hat{3}}}^{(3)})_{\mathbf{1}} H_{u}$$

$$\mathcal{W}_{d} = \alpha_{d} (d^{c}QY_{\mathbf{3}'}^{(4)})_{\mathbf{1}} H_{d} + \beta_{d} (s^{c}QY_{\mathbf{\hat{3}'},I}^{(5)})_{\mathbf{1}} H_{d} + \gamma_{d} (s^{c}QY_{\mathbf{\hat{3}'},II}^{(5)})_{\mathbf{1}} H_{d} + \delta_{d} (b^{c}QY_{\mathbf{\hat{3}}}^{(5)})_{\mathbf{1}} H_{d}$$

$$M_{u} = \begin{pmatrix} \alpha_{u}Y_{4}^{(4)} & \alpha_{u}Y_{6}^{(4)} & \alpha_{u}Y_{5}^{(4)} \\ \beta_{u}Y_{5}^{(6)} + \gamma_{u}Y_{8}^{(6)} & \beta_{u}Y_{7}^{(6)} + \gamma_{u}Y_{10}^{(6)} & \beta_{u}Y_{6}^{(6)} + \gamma_{u}Y_{9}^{(6)} \\ \delta_{u}Y_{2}^{(3)} & \delta_{u}Y_{4}^{(3)} & \delta_{u}Y_{3}^{(3)} \end{pmatrix} v_{u}$$

$$M_{d} = \begin{pmatrix} \alpha_{d}Y_{7}^{(4)} & \alpha_{d}Y_{9}^{(4)} & \alpha_{d}Y_{8}^{(4)} \\ \beta_{d}Y_{6}^{(5)} + \gamma_{d}Y_{9}^{(5)} & \beta_{d}Y_{8}^{(5)} + \gamma_{d}Y_{11}^{(5)} & \beta_{d}Y_{7}^{(5)} + \gamma_{d}Y_{10}^{(5)} \\ \delta_{d}Y_{3}^{(5)} & \delta_{d}Y_{5}^{(5)} & \delta_{d}Y_{4}^{(5)} \end{pmatrix} v_{d}$$

8 real coupling constants: $\alpha_{u,d}$, $\beta_{u,d}$, $\gamma_{u,d}$, $\delta_{u,d}$

$$\alpha_{u,d},\ \beta_{u,d},\ \gamma_{u,d},\ \delta_{u,d}$$

The complex modulus τ is common in both quark and lepton sectors, and it is the unique source breaking modular symmetry and CP

$$\langle \tau \rangle = -0.2123 + 1.5201i$$

Best fit values of input parameters:

$$\beta_u/\alpha_u = 325.6502$$
, $\gamma_u/\alpha_u = 2427.3101$, $\delta_u/\alpha_u = 219.3019$, $\alpha_u v_u = 2.7758 \times 10^{-5} \text{ GeV}$, $\beta_d/\alpha_d = 466.6990$, $\gamma_d/\alpha_d = -234.0473$, $\delta_d/\alpha_d = 2.3388$, $\alpha_d v_d = 1.72111 \times 10^{-5} \text{ GeV}$, $\beta_e/\alpha_e = 0.0187$, $\gamma_e/\alpha_e = 0.1466$, $g_2/g_1 = 0.6834$, $\alpha_e v_d = 16.8880 \text{MeV}$, $g_1^2 v_u^2/\Lambda = 0.3043 \text{ meV}$.

Predictions: almost all observables are within the 1σ regions

```
\theta_{12}^q = 0.22752 \,, \quad \theta_{13}^q = 0.003379 \,, \quad \theta_{23}^q = 0.038886 \,, \quad \delta_{CP}^q = 75.9958^\circ \,,
m_u/m_c = 0.001929 \,, \quad m_c/m_t = 0.002725 \,, \quad m_d/m_s = 0.050345 \,, \quad m_s/m_b = 0.017726 \,,
\sin^2 \theta_{12}^l = 0.34981 \,, \quad \sin^2 \theta_{13}^l = 0.02193 \,, \quad \sin^2 \theta_{23}^l = 0.56393 \,,
\delta_{CP}^l = 266.1824^\circ \,, \quad \alpha_{21} = 1.1482\pi \,, \quad \alpha_{31} = 0.1522\pi \,,
m_1 = 3.5269 \,\,\text{meV} \,, \quad m_2 = 9.2919 \,\,\text{meV} \,, \quad m_3 = 50.2404 \,\,\text{meV} \,,
\sum m_i = 63.0592 \,\,\text{meV} \,, \quad m_{\beta\beta} = 2.5480 \,\,\text{meV} \,.
```

- ✓ The model uses 15 parameters including to describe the masses and mixing of both quark and lepton sectors: 12 masses+6 mixing angles+3 CP phases.
- ✓ The predictions for neutrino masses, mixing angles and CP violation phases are compatible with the experimental data of neutrino oscillation and cosmology. Precise measurements of θ_{23} , δ_{CP} and the effective mass $m_{ββ}$ in 0v2β decay can exclude this model.