Searches for new physics with leptons using the ATLAS detector On behalf of the ATLAS Collaboration SUSY2023, Southampton ## Beyond the Standard Model Many different theories beyond the Standard Model (SM) predict new physics → XYZ? + leptons Lepton-Flavour Violation New Gauge Bosons Heavy-Neutrinos Present 13 TeV results on the searches using the ATLAS detector ### Beyond the Standard Model Anomalies in the flavour sector recently observed - $ightharpoonup R_0/R_D$, 3.2 sigma anomaly in global average - $ightharpoonup R_K/R_{K*}$, anomalies by LHCb in 2019, gone 2022 - $\triangleright \Delta C_9$ anomaly, 3.4 s deviation measured by LHCb - g-2 anomaly measured at Fermilab ATLAS searching for new physics to explain these in leptonic final state ### ATLAS Data – Run 2 & 3 LHC / HL-LHC Plan updated in February 2022 - > Results presented for Run 2 - @ 13 TeV, 139 fb⁻¹ - Excellent data taking Run 3 ### Leptoquarks - Leptoquarks: possible explanation for many flavour anomalies: flavour-diagonal and cross-generational final states - interact with both leptons and quarks - scalar or vector, fractional electric charge - two coupling scenarios: minimal coupling or Yang-Mills - First introduced in the 70s by Pati & Salam ### Leptoquarks: production modes - Three classes of production processes: - 1) pair-production \Rightarrow 2 ℓ + 2 jet final states - 2) single production \Rightarrow 2 ℓ + 1 jet final states - 3) Drell-Yan with exchange in t-channel \Rightarrow 2 ℓ final states - Production process determines the exclusion area: - pair-production good for low masses at any coupling - > single production and Drell-Yan good for high masses ### Leptoquark Results Summary | Scalar LQ 1st | gen | |---------------------------|-----| | Scalar LQ 2 nd | gen | | Scalar LQ 3 rd | gen | | Scalar LQ 3 rd | gen | | | gen | | | gen | | Vector LQ mix | | | Vector LQ 3 rd | aen | | 2 e | ≥2 j | Yes | 139 | |--------------------------------------|--------------|-----|-----| | 2μ | ≥2 j | Yes | 139 | | 1 $ au$ | 2 b | Yes | 139 | | 0 e, μ | ≥2 j, ≥2 b | Yes | 139 | | ≥2 <i>e</i> , <i>μ</i> , ≥1 <i>τ</i> | · ≥1 j, ≥1 b | - | 139 | | $0 e, \mu, \geq 1 \tau$ | 0 - 2j, $2b$ | Yes | 139 | | multi-channe | ≥1 j, ≥1 b | Yes | 139 | | $2e, \mu, \tau$ | ≥1 b | Yes | 139 | | LQ mass | 1.8 TeV | |-----------------------------------|----------| | LQ mass | 1.7 TeV | | LQ ^u ₃ mass | 1.49 TeV | | LQ ₃ mass | 1.24 TeV | | LQ ³ mass | 1.43 TeV | | LQ ^d mass | 1.26 TeV | | LQ ^V mass | 2.0 TeV | | LQ ^V mass | 1.96 TeV | | J | | $$eta=1$$ $eta=1$ $eta(LQ_3^u o b au)=1$ $eta(LQ_3^u o t au)=1$ $eta(LQ_3^d o t au)=1$ $eta(LQ_3^d o b au)=1$ $eta(LQ_3^d o b au)=1$ $eta(LQ_3^d o b au)=1$, Y-M coupl. $eta(LQ_3^V o b au)=1$, Y-M coupl. 2006.05872 2006.05872 2303.01294 2004.14060 2101.11582 2101.12527 ATLAS-CONF-2022-052 2303.01294 2306.17642 2305.15962 ## Searches for leptoquarks coupling across different & mixed flavour families ## Pair production of leptoquarks \rightarrow t+ light lepton(l) ttbar $\ell^+\ell^-$: in 3l or 4l final states arXiv:2306.17642 - Events selection: ≥ 2 light lep, ≥ 2 jets, ≥ 1 b-jet - Analysis regions: - \triangleright Signal: (3I, 4I), for tete t μ t μ , min(m $_{\parallel}$)>100 GeV - Control Regions, Main backgrounds ttW, ttZ/γ* > 4 Signal Regions LQ_{m}^{d} \overline{LQ}_{mix}^{a} ## Pair production of leptoquarks \rightarrow t+ light lepton(l) ttbar $\ell^+\ell^-$: in 3l or 4l final states • Fit done on effective mass $m_{eff} = \sum_{l,jet} p_T + p_T^{miss}$ arXiv:2306.17642 Limit results, separately in te $(t\mu)$: - > scalar LQ: 1.58 (1.59) TeV - vector LQ minimal coupl: 1.67 (1.67) TeV - vector LQY-M couple. : 1.95 (1.95) TeV ## Pair-produced scalar and vector LQs decaying to 3rd-gen quarks and 1st/2nd-gen leptons – mixed Scalar leptoquarks with charge -(1/3)e as well as scalar and vector leptoquarks with charge +(2/3)e JHEP 06(2023)188 2210.04517 up-type scalar (LQ_{mix}^u) vector (vLQ_{mix}) LQs down-type scalar (LQ_{mix}^d) LQs with I = e, μ Two of these models have the goal of providing an explanation for the recent B-anomalies ## Pair-produced scalar and vector LQs decaying to 3rd-gen quarks and 1st/2nd-gen leptons – mixed 2210.04517 - up-type LQs the range in B is 0--0.95 - down-type it is 0.05--0.95. #### Lower limits - Scalar leptoquark = 1.98 TeV - Vector leptoquark = 1.71 GeV ## Leptoquark pairs with 1st/2nd generation leptons (e/μ) and light, c or b quarks **Event Selection** JHEP 10 (2020) 112 2006.05872 2000 m_{li}^{Av} [GeV] 1500 1000 500 - 2e or $2\mu \& => 2$ jets - including jets from c- or b-quarks 500 1000 2000 m_{li}^{Av} [GeV] 1500 ## Leptoquark pairs with 1st/2nd generation leptons (e/μ) and light, c or b quarks Leptoquarks with masses below - Electron channel = 1.8 TeV - Muon channel = 1.7 TeV ## Searches for leptoquarks coupling across same flavour families ## Pair Production leptoquarks decaying to bbττ #### third-generation - Events selection: - \succ $\tau_{lep} \tau_{had}$, $\tau_{had} \tau_{had}$ (lep=e, μ) channels - \triangleright single-tau triggers and single lepton triggers - Scalar sum variable: $S_T = \sum_{\tau,j} p_T + p_T^{miss} > 600 \text{ GeV}$ - Major backgrounds: top, Z+jets, fake-τ_{had} - Final fit done on **Parametric Neural Network** score input variables in $\tau_{lep}\tau_{had}$ SR: Δ R(ℓ , jet), m(τ_{had} , jet), s_T LQ #### arXiv:2303.01294 PNN score distributions in $\tau_{lep}\tau_{had}$ SR for $m_{l,O} = 500$ GeV ### Pair Production leptoquarks decaying to bbττ #### third-generation $\succ \tau_{lep} \tau_{had}$, $\tau_{had} \tau_{had}$ (lep=e, μ) channels arXiv:2303.01294 - Limit results - scalar LQ: 1.49 TeV 100 % B.R. - vector LQ min.: 1.69TeV - vector LQYM: 1.96 2 TeV ### Leptoquark decaying to $b\tau$ final states arXiv:2305.15962 LQ pair production single LQ production vector leptoquarks: electric charge of 2/3e scalar leptoquarks with an electric charge of 4/3e. - Events selection: - $\succ \tau_{lep} \tau_{had}$, $\tau_{had} \tau_{had}$ (lep=e, μ) channels - single-tau triggers and single lepton triggers - Scalar sum variable: $S_T = \sum_{\tau,j} p_T + p_T^{miss} > 600 \text{ GeV}$ - Major backgrounds: top, Z+jets, fake-τ_{had} ### Leptoquark decaying to bτ final states arXiv:2305.15962 ATLAS (\$\sigma = 13 \text{ TeV}, 139 \text{ fb}^1 \\ 95\% CL \\ U_1^M \text{ model, High b-jet p}_T \text{ only} \\ Interference with SM neglected \\ 2.5 \\ 1.5 \\ 0.5 \ $m_{U_{\cdot}^{YM}}$ [GeV] • Limit results for min/YM & gauge coupling 1.0 2.5 - scalar LQYM.: 1.28 TeV 1.53 TeV - > vector LQ min.: 1.35 TeV 1.99 TeV - vector LQYM: 1.58 TeV 2.05 TeV ## Scalar pair production of 3rd-generation leptoquarks: decaying to t quark & τ $\mathbf{t} \mathbf{t} (\mathbf{Z}/\gamma^*)$ (high) $\mathbf{t} \mathbf{t} \gamma^*$ (low) #### 2101.11582 Other Fake τ_{had} #### **Event Selection** - one light lepton (I) (e or μ) - >= one τ_{had} -lepton, or >= 2 l - >= 2 jets, one or more b-tag Final states, defined by the multiplicity and flavour of lepton candidates - Total predicted background in each of - 15 control region categories - 6 validation region categories ■ QMisID Single top ## Scalar pair production of 3rd-generation leptoquarks: decaying to t quark & τ JHEP 06 (2021) 179 2101.11582 Scalar leptoquarks decaying exclusively to tr are excluded up to - masses of 1.43 TeV - for BF 50% into tτ, lower mass limit is 1.22 TeV. ## Majorana neutrinos in same-sign WW arXiv:2305.14931 Final states include - exactly two same-sign muons - & ≥ hadronic jets well separated in rapidity. #### Main backgrounds: SM same-sign WW scattering and WZ production modelled and constrained with data in dedicated signal-depleted Control Regions Search region: 50 GeV and 20 TeV ## Majorana neutrinos in same-sign WW arXiv:2305.14931 Benchmark: PType-I Seesaw model ## Search for periodic signals in dielectron and diphoton masses 2305.10894 - Novel search techniques based on continuous wavelet transforms - used to infer the frequency of periodic signals from the invariant mass spectra - > neural network classifiers used to enhance sensitivity to periodic resonances Scalogram output of the CWT of dielectron background-only toy exper. $\alpha = CWT$ scale parameter $W(\alpha,\beta) = wavelet$ coefficients, invariant mass $\rightarrow \beta$. ### Summary - > ATLAS have an active search program searching for - New physics to explain anomalies - Leptoquarks cross and same generation - Novel search for gravitons - New gauge bosons, Lepton Flavour Violation - We are looking forward to analysing the Run 3 data! ## Thanks for listening! ## Thanks for listening!