Results from muon reconstruction performance #### with ATLAS at Run-3 # Damiano Vannicola on behalf of the ATLAS Collaboration ### Why muons? Muons — very clean signature ### precision measurements new physics searches ## ATLAS Experiment at LHC Proton-proton collisions at $$\sqrt{s} = 13.6 \ TeV$$ Collision rate 40 MHz Number of collisions ~ 33.7 - Inner Detector (ID) - Electromagnetic and hadronic Calorimeter - Muon Spectrometer (MS) $J/\Psi \rightarrow \mu^{+}\mu^{-}$ Candidate Invariant Mass: 3.08 GeV/c² Run: 427394 Event: 3606971 ### ATLAS muon reconstruction #### MS sub-detector - Trigger chambers - RPC - TGC - sTGC - Precision chambers - MDT - MicroMegas ### ATLAS different muons Muon Reconstruction Inner Detector (ID) Calorimeter (Calo) Muon Spectrometer (MS) #### Different algorithm to reconstruct a muon: - Combined (CB) - Extrapolated (ME) - Calorimeter Tagged (CT) - Segment Tagged (ST) ### ATLAS muon Working Point #### **Inclusive Working Point** #### Loose: - maximize the acceptance (Higgs boson discovery) #### Medium: - very good acceptance - per-mill level fake rate - small systematic uncertainties #### Tight: - maximize the purity #### **Special Working Point** #### Low- p_T : - good muon reconstruction efficiency down to p_T of 3 GeV - keeping the fake rate under control #### $High-p_T$: - optimized to provide good momentum resolution for very high- p_T muons, of O(1) TeV ### Muon Momentum Calibration Procedure used to identify the corrections to the reconstructed muon p_T in simulation to match the measurement of the same quantities in data $$p_T^{Cor} = \frac{p_T^{MC} + \sum_{n=0}^{1} s_n(\eta, \phi)(p_T^{MC})^n}{1 + \sum_{m=0}^{2} \Delta r_m(\eta, \phi)(p_T^{MC})^{m-1} g^m}$$ Corrections are defined in $\eta - \phi$ regions s_n scale corrections $s_0 \longrightarrow$ the effect on the CB and MS momentum from the inaccuracy in the simulation of the energy loss in the calorimeter $s_1 \longrightarrow$ for inaccuracy in the description of the magnetic field integral ### Muon Momentum Resolution # Determination of p_T calibration parameters The CB, ID, and MS correction parameters are extracted from data using a fitting procedure that compares the invariant mass distributions for $J/\Psi \to \mu\mu$, $Z \to \mu\mu$ candidates in data and simulation Δr_2 initial value set from muon alignment studies! All sources of uncertainties are evaluated by varying the parameters of the template fit #### **CB** corrections | Region | $\Delta r_1^{\text{CB}} (\times 10^{-3})$ | $\Delta r_2^{\text{CB}} [\text{TeV}^{-1}]$ | s ₀ ^{CB} [MeV] | $s_1^{\text{CB}} (\times 10^{-3})$ | |---|---|--|------------------------------------|------------------------------------| | $ \eta < 1.05 (large)$ | $6.7^{+1.4}_{-0.9}$ | $0.08^{+0.04}_{-0.05}$ | $-5.0^{+2.9}_{-4.0}$ | $0.35^{+0.24}_{-0.22}$ | | $ \eta < 1.05 \text{ (small)}$ | $6.5^{+1.3}_{-1.0}$ | $0.11^{+0.05}_{-0.05}$ | $-0.9^{+2.5}_{-3.6}$ | $-0.83^{+0.25}_{-0.14}$ | | $1.05 \le \eta < 2.0 \text{ (large)}$ | $10.3^{+2.6}_{-2.7}$ | $0.24^{+0.10}_{-0.07}$ | $-2.0^{+5.7}_{-6.7}$ | $-0.83^{+0.39}_{-0.30}$ | | $1.05 \le \eta < 2.0 \text{ (small)}$ | $8.9^{+1.7}_{-2.7}$ | $0.29^{+0.08}_{-0.03}$ | $-3.0^{+3.3}_{-4.0}$ | $-0.80^{+0.26}_{-0.21}$ | | $ \eta \ge 2.0$ (large) | $10.6^{+2.2}_{-2.7}$ | $0.21^{+0.10}_{-0.07}$ | $2.3^{+13}_{-9.3}$ | $0.80^{+1.09}_{-0.42}$ | | $ \eta \ge 2.0 \text{ (small)}$ | $11.5^{+2.2}_{-2.1}$ | $0.26^{+0.08}_{-0.06}$ | $-12.6^{+8.2}_{-9.7}$ | $1.59^{+0.47}_{-0.43}$ | ### Muon Momentum Reconstruction # Muon Reconstruction and Identification Efficiency Reconstruction and identification efficiency measured from pp collision at $\sqrt{s}=13.6~TeV$ using $29\,fb^{-1}$ of data collected in 2022, relying on muon triggers #### public plots reference Very nice agreement between Data/MC # Muon Isolation Efficiency Isolation efficiency measured from pp collision at $\sqrt{s}=13.6~TeV$ using 29 fb^{-1} of data collected in 2022, relying on muon triggers #### <u>public plots reference</u> ### Summary Run3 $$\longrightarrow$$ new data $(29 fb^{-1})$ new muon transverse momentum calibration needed! New muon spectrometer alignment studies needed! (sample of cosmic ray tracks with toroid magnets turned off) After correcting for the relative misalignment, new calibration studies for ID, MS and CB have been done! New estimation for parameters correction have been obtained and validated via cross-check Finally a data/MC comparison after applying all the corrections have been studied for the J/Ψ and Z events showing a very nice agreement and proving the effectiveness of the corrections! Reconstruction, identification and isolation efficiency for different p_T range and Working Point have been presented using 29 fb^{-1} ATLAS Combined Performance group provided the whole set of recommendations with the whole 2022 dataset and these are used in the analyses # Backup ### Muon Momentum Calibration Cross-Check The corrected combined momenta from ID and MS measurements $p_T^{\it Corr,ID-MS}$ is also obtained as: $$p_T^{Corr,ID+MS} = f \cdot p_T^{Corr,ID} + (1 - f) \cdot p_T^{Corr,MS}$$ The weight is calculated by solving the following equation: $$p_T^{MC,CB} = f \cdot p_T^{MC,ID} + (1 - f) \cdot p_T^{MC,MS}$$ #### ID corrections | Region | $\Delta r_1^{\mathrm{ID}}(\times 10^{-3})$ | $\Delta r_2^{\mathrm{ID}} [\mathrm{TeV}^{-1}]$ | $s_1^{\text{ID}}(\times 10^{-3})$ | |--------------------------|--|--|-----------------------------------| | $ \eta < 1.05$ | $4.4^{+3.0}_{-2.7}$ | $0.12^{+0.03}_{-0.03}$ | $-0.82^{+0.19}_{-0.06}$ | | $1.05 \leq \eta < 2.0$ | $6.7^{+19.5}_{-3.1}$ | $0.31^{+0.03}_{-0.03}$ | $-0.86^{+0.36}_{-0.21}$ | | $ \eta \ge 2.0$ | $9.4^{+3.6}_{-5.3}$ | $0.08^{+0.02}_{-0.02}$ | $-0.45^{+1.19}_{-0.55}$ | #### MS corrections | Region | $\Delta r_0^{ m MS}$ [MeV] | $\Delta r_1^{\rm MS}(\times 10^{-3})$ | $\Delta r_2^{ m MS} \ [{ m TeV}^{-1}]$ | s ₀ ^{MS} [MeV] | $s_1^{\text{MS}} (\times 10^{-3})$ | |---|----------------------------|---------------------------------------|--|------------------------------------|------------------------------------| | $ \eta < 1.05 (large)$ | 71^{+41}_{-10} | $13.5^{+3.1}_{-2.6}$ | $0.11^{+0.02}_{-0.02}$ | -27^{+18}_{-14} | $2.33^{+0.61}_{-0.61}$ | | $ \eta < 1.05 \text{ (small)}$ | 63^{+35}_{-23} | $17.2^{+2.3}_{-3.6}$ | $0.12^{+0.02}_{-0.02}$ | -18^{+14}_{-24} | $-1.51^{+1.15}_{-0.45}$ | | $1.05 \le \eta < 2.0 \text{ (large)}$ | 42^{+401}_{-53} | $26.7^{+19.5}_{-2.8}$ | $0.14^{+0.02}_{-0.02}$ | -29^{+43}_{-57} | $-0.9^{+2.8}_{-1.9}$ | | $1.05 \le \eta < 2.0 \text{ (small)}$ | 44^{+437}_{-59} | $29.2^{+8.2}_{-1.5}$ | $0.18^{+0.02}_{-0.02}$ | -28^{+39}_{-43} | $-1.3^{+2.0}_{-1.6}$ | | $ \eta \ge 2.0$ (large) | 61^{+48}_{-27} | $16.8^{+3.2}_{-4.3}$ | $0.11^{+0.02}_{-0.02}$ | -1_{-29}^{+43} | $1.7^{+1.3}_{-1.4}$ | | $ \eta \ge 2.0 \text{ (small)}$ | 47^{+32}_{-40} | $17.8^{+1}_{-1.9}$ | $0.16^{+0.02}_{-0.02}$ | -8^{+14}_{-12} | $1.94^{+0.76}_{-0.54}$ |