

Results from muon reconstruction performance

with ATLAS at Run-3

Damiano Vannicola on behalf of the ATLAS Collaboration

Why muons?

Muons — very clean signature

precision measurements new physics searches

ATLAS Experiment at LHC

Proton-proton collisions at

$$\sqrt{s} = 13.6 \ TeV$$

Collision rate 40 MHz

Number of collisions ~ 33.7

- Inner Detector (ID)
- Electromagnetic and hadronic Calorimeter
- Muon Spectrometer (MS)

 $J/\Psi \rightarrow \mu^{+}\mu^{-}$ Candidate

Invariant Mass: 3.08 GeV/c²

Run: 427394

Event: 3606971

ATLAS muon reconstruction

MS sub-detector

- Trigger chambers
 - RPC
 - TGC
 - sTGC
- Precision chambers
 - MDT
 - MicroMegas

ATLAS different muons

Muon Reconstruction

Inner Detector (ID)
Calorimeter (Calo)
Muon Spectrometer (MS)

Different algorithm to reconstruct a muon:

- Combined (CB)
- Extrapolated (ME)
- Calorimeter Tagged (CT)
- Segment Tagged (ST)

ATLAS muon Working Point

Inclusive Working Point

Loose:

- maximize the acceptance (Higgs boson discovery)

Medium:

- very good acceptance
- per-mill level fake rate
- small systematic uncertainties

Tight:

- maximize the purity

Special Working Point

Low- p_T :

- good muon reconstruction efficiency down to p_T of 3 GeV
- keeping the fake rate under control

$High-p_T$:

- optimized to provide good momentum resolution for very high- p_T muons, of O(1) TeV

Muon Momentum Calibration

Procedure used to identify the corrections to the reconstructed muon p_T in simulation

to match the measurement of the same quantities in data

$$p_T^{Cor} = \frac{p_T^{MC} + \sum_{n=0}^{1} s_n(\eta, \phi)(p_T^{MC})^n}{1 + \sum_{m=0}^{2} \Delta r_m(\eta, \phi)(p_T^{MC})^{m-1} g^m}$$

Corrections are defined in $\eta - \phi$ regions s_n scale corrections

 $s_0 \longrightarrow$ the effect on the CB and MS momentum from the inaccuracy in the simulation of the energy loss in the calorimeter

 $s_1 \longrightarrow$ for inaccuracy in the description of the magnetic field integral

Muon Momentum Resolution

Determination of p_T calibration parameters

The CB, ID, and MS correction parameters are extracted from data using a fitting procedure that compares the invariant mass distributions for $J/\Psi \to \mu\mu$, $Z \to \mu\mu$ candidates in data and simulation

 Δr_2 initial value set from muon alignment studies!

All sources of uncertainties are evaluated by varying the parameters of the template fit

CB corrections

Region	$\Delta r_1^{\text{CB}} (\times 10^{-3})$	$\Delta r_2^{\text{CB}} [\text{TeV}^{-1}]$	s ₀ ^{CB} [MeV]	$s_1^{\text{CB}} (\times 10^{-3})$
$ \eta < 1.05 (large)$	$6.7^{+1.4}_{-0.9}$	$0.08^{+0.04}_{-0.05}$	$-5.0^{+2.9}_{-4.0}$	$0.35^{+0.24}_{-0.22}$
$ \eta < 1.05 \text{ (small)}$	$6.5^{+1.3}_{-1.0}$	$0.11^{+0.05}_{-0.05}$	$-0.9^{+2.5}_{-3.6}$	$-0.83^{+0.25}_{-0.14}$
$1.05 \le \eta < 2.0 \text{ (large)}$	$10.3^{+2.6}_{-2.7}$	$0.24^{+0.10}_{-0.07}$	$-2.0^{+5.7}_{-6.7}$	$-0.83^{+0.39}_{-0.30}$
$1.05 \le \eta < 2.0 \text{ (small)}$	$8.9^{+1.7}_{-2.7}$	$0.29^{+0.08}_{-0.03}$	$-3.0^{+3.3}_{-4.0}$	$-0.80^{+0.26}_{-0.21}$
$ \eta \ge 2.0$ (large)	$10.6^{+2.2}_{-2.7}$	$0.21^{+0.10}_{-0.07}$	$2.3^{+13}_{-9.3}$	$0.80^{+1.09}_{-0.42}$
$ \eta \ge 2.0 \text{ (small)}$	$11.5^{+2.2}_{-2.1}$	$0.26^{+0.08}_{-0.06}$	$-12.6^{+8.2}_{-9.7}$	$1.59^{+0.47}_{-0.43}$

Muon Momentum Reconstruction

Muon Reconstruction and Identification Efficiency

Reconstruction and identification efficiency measured from pp collision at $\sqrt{s}=13.6~TeV$ using $29\,fb^{-1}$ of data collected in 2022, relying on muon triggers

public plots reference

Very nice agreement between Data/MC

Muon Isolation Efficiency

Isolation efficiency measured from pp collision at $\sqrt{s}=13.6~TeV$ using 29 fb^{-1} of data collected in 2022, relying on muon triggers

<u>public plots reference</u>

Summary

Run3
$$\longrightarrow$$
 new data $(29 fb^{-1})$

new muon transverse momentum calibration needed!

New muon spectrometer alignment studies needed! (sample of cosmic ray tracks with toroid magnets turned off)

After correcting for the relative misalignment, new calibration studies for ID, MS and CB have been done!

New estimation for parameters correction have been obtained and validated via cross-check

Finally a data/MC comparison after applying all the corrections have been studied for the J/Ψ and Z events showing a very nice agreement and proving the effectiveness of the corrections!

Reconstruction, identification and isolation efficiency for different p_T range and Working Point have been presented using 29 fb^{-1}

ATLAS Combined Performance group provided the whole set of recommendations with the whole 2022 dataset and these are used in the analyses

Backup

Muon Momentum Calibration Cross-Check

The corrected combined momenta from ID and MS measurements $p_T^{\it Corr,ID-MS}$ is also obtained as:

$$p_T^{Corr,ID+MS} = f \cdot p_T^{Corr,ID} + (1 - f) \cdot p_T^{Corr,MS}$$

The weight is calculated by solving the following equation:

$$p_T^{MC,CB} = f \cdot p_T^{MC,ID} + (1 - f) \cdot p_T^{MC,MS}$$

ID corrections

Region	$\Delta r_1^{\mathrm{ID}}(\times 10^{-3})$	$\Delta r_2^{\mathrm{ID}} [\mathrm{TeV}^{-1}]$	$s_1^{\text{ID}}(\times 10^{-3})$
$ \eta < 1.05$	$4.4^{+3.0}_{-2.7}$	$0.12^{+0.03}_{-0.03}$	$-0.82^{+0.19}_{-0.06}$
$1.05 \leq \eta < 2.0$	$6.7^{+19.5}_{-3.1}$	$0.31^{+0.03}_{-0.03}$	$-0.86^{+0.36}_{-0.21}$
$ \eta \ge 2.0$	$9.4^{+3.6}_{-5.3}$	$0.08^{+0.02}_{-0.02}$	$-0.45^{+1.19}_{-0.55}$

MS corrections

Region	$\Delta r_0^{ m MS}$ [MeV]	$\Delta r_1^{\rm MS}(\times 10^{-3})$	$\Delta r_2^{ m MS} \ [{ m TeV}^{-1}]$	s ₀ ^{MS} [MeV]	$s_1^{\text{MS}} (\times 10^{-3})$
$ \eta < 1.05 (large)$	71^{+41}_{-10}	$13.5^{+3.1}_{-2.6}$	$0.11^{+0.02}_{-0.02}$	-27^{+18}_{-14}	$2.33^{+0.61}_{-0.61}$
$ \eta < 1.05 \text{ (small)}$	63^{+35}_{-23}	$17.2^{+2.3}_{-3.6}$	$0.12^{+0.02}_{-0.02}$	-18^{+14}_{-24}	$-1.51^{+1.15}_{-0.45}$
$1.05 \le \eta < 2.0 \text{ (large)}$	42^{+401}_{-53}	$26.7^{+19.5}_{-2.8}$	$0.14^{+0.02}_{-0.02}$	-29^{+43}_{-57}	$-0.9^{+2.8}_{-1.9}$
$1.05 \le \eta < 2.0 \text{ (small)}$	44^{+437}_{-59}	$29.2^{+8.2}_{-1.5}$	$0.18^{+0.02}_{-0.02}$	-28^{+39}_{-43}	$-1.3^{+2.0}_{-1.6}$
$ \eta \ge 2.0$ (large)	61^{+48}_{-27}	$16.8^{+3.2}_{-4.3}$	$0.11^{+0.02}_{-0.02}$	-1_{-29}^{+43}	$1.7^{+1.3}_{-1.4}$
$ \eta \ge 2.0 \text{ (small)}$	47^{+32}_{-40}	$17.8^{+1}_{-1.9}$	$0.16^{+0.02}_{-0.02}$	-8^{+14}_{-12}	$1.94^{+0.76}_{-0.54}$