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Weak scale susy?

More like TeV (or PeV or EeV) susy.
Dominant constraint from mH
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Building models of Inflation in 
(No-Scale) Supergravity
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Problems:

•Vacuum structure
•destabilization through quantum fluctuations 
•fine tuning (require curvature to be << MX)
•density fluctuations - δρ/ρ ~ 100 g52
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How SUSY can help

Exact Susy - V1-loop = 0

Broken Susy - A =
75

32⇡2v2
g2
5m2

s

fixes fine-tuning, δρ/ρ, etc.  - but 
isn’t really a model

Ellis, 
Nanopoulos, 

Olive, Tamvakis
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Supergravity

η-problem!

Start with a Kähler Potential 

Minimal N=1 defined by K = φiφi*

and scalar potential

V = e�i�⇤i


|@W

@�i
+ �⇤

i W |2 � 3|W |2
�

+ D� terms

or

for minimal N=1

Typically, m2 ~ H2

G = K + ln |W |2

V = eG
⇥
Gi(G

�1)ijG
j � 3

⇤
+D� terms



No-Scale Supergravity
Natural vanishing of cosmological constant (tree level) 
with the supersymmetry scale not fixed at lowest order.
(Also arises in generic 4d reductions of string theory.)

V = e
2
3 K |@W

@�i
|2

Globally supersymmetric potential once 
K (canonical) picks up a vev

K = �3 ln(T + T ⇤ � �i�i
⇤/3)

Cremmer, Ferrara, 
Kounnas, Nanopoulos; 

Ellis, Kounnas, 
Nanopoulos; Lahanas, 

Nanopoulos 



Supergravity

Constructing Models W = µ2
X

n

�n�n

μ2 fixed by amplitude of  density fluctuations, λn ~ O(1)

Nanopoulos, 
Olive, 

Srednicki, 
Tamvakis

Simplest example, W = µ2(1� �)2

K.A. Olive, Inflation 355

along the real direction (the imaginary direction is stable for 4,~= 0 and 4,R ~ 0 in this case). This
potential is plotted in fig. 10. For this model,

H2 = 81Tm4I3M~, (5.34)

and the cubic term is just
4 3 3/2

/3 = (4m IM~)(81T) . 5.35
The inflationary time scale is

Hr — 3H21 mf2 — [H2I(8Hm4)](M~I\1~)3—(1 /64V~ir)(M~Im2), (5.36)

where mi2 is found from (5.33) at 4, H. For m -~O(104)M~I\f~,Hr — 106, clearly enough
inflation. From eq. (4.43),

6pIp = 32V~7~(m2/M~)ln2(Hk’), (5.37)

so that for the same choice of m, 6pIp— i04. This result has been verified in detail in refs. [138,208].
Thus there is only a single parameter which must be slightly tuned (to the level of 10~)to make an
acceptable model ofinflation. In addition because F( 1) = F,~(1) = 0 (v = 1 is the global minimum in this
model) supersymmetry is unbroken.
Let us now return to the question of initial conditions and the thermal constraint. The importance of

this constraint with regard to supergravity models was stressed in refs. [170, 209]. The finite
temperature potential in supergravity theories [210]has been calculated [211,169, 212, 213]. Similar to
eq. (2.13), we can write

VT = —~1T2N
8T
4+ ~Tr(m~ + ~m~)T2, (5.38)

where NB is the number of boson degrees of freedom andm~(mt) is the boson (fermion) mass2 matrix.

V(4)

Fig. 10. The scalar potential V in eq. (5.33) derived from the superpotential in eq. (5.32). The potential given by eq. (5.56) is almost identical.

V = µ4e|�|2
h
1 + |�|2 � (�2 + �⇤2)� 2|�|2(� + �⇤)

+5|�2|2 + |�|2(�2 + �⇤2)� 2|�2|2(� + �⇤) + |�3|2
i

' µ4(1� 4�3 +
13
2

�4 + · · ·

Holman, 
Ramond, Ross
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R+R2 Gravity
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Classes of R+R2 in No-Scale Supergravity

Example 1:
Ellis, Nanopoulos, OliveW = M
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Classes of R+R2 in No-Scale Supergravity

Utilizing the no-scale symmetry, we can write

y1 =
✓

2�
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◆
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p
3
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Ellis, Kounnas,Nanopoulos (1983)



Classes of R+R2 in No-Scale Supergravity

Example 1:
Ellis, Nanopoulos, OliveW = M


�2

2
� �3

3
p
3

�

W = M


y21
2

✓
1 +

y2p
3

◆
� y31

3
p
3

�



Classes of R+R2 in No-Scale Supergravity
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SUSY breaking and LE phenomenology

breaking.

The purpose of this paper is to study the interplay of these cosmological and particle

constraints on the effective no-scale supergravity model of inflation arising from string

theory, showing how no-scale inflation may thereby serve as a bridge between string theory

and LHC physics.

Section 2 of this paper contains a brief review of relevant aspects of the no-scale

supergravity framework, and Section 3 introduces no-scale scenarios for inflation. Possible

patters of soft supersymmetry breaking within these scenarios are discussed in Section 4,

and inflaton decays and reheating are discussed in Section 5. Finally, Section 6 summarises

our results and indicates possible directions for future work on no-scale inflation.

2 Review of the No-Scale Supergravity Framework

As was shown in [3], generic string compactifications yield no-scale supergravity as the

effective field-theoretical framework for sub-Planckian physics. In a large class of string

compactifications, including orbifold examples [11], at the lowest-genus level the Kähler

potential K for the dilaton and untwisted moduli fields has the general form

K = − ln(S + S̄)−
∑

i

ln(Ti + T̄i)−
∑

j

ln(Uj + Ūj) , (1)

where S is the dilaton, the first sum is over the h1,1 untwisted Kähler moduli Ti, and

the second sum is over the h2,1 untwisted complex structure moduli Uj. We recall that

the untwisted Kähler moduli parameterise the sizes of the compactification tori, and that

the complex structure moduli parametrise their complex deformations. In general, both

h1,1 ≥ 3 and h2,1 are model-dependent: here we assume the minimum value h1,1 = 3. We

also assume that the dilaton S and the complex structure moduli Uj are fixed, as well as

the relative sizes of the untwisted Kähler moduli, so that we may simplify

− ln(S + S̄)−
∑

i

ln(Ti + T̄i)−
∑

j

ln(Uj + Ūj) → −3 ln(T + T̄ ) , (2)

where we term T the volume modulus. Untwisted matter fields φα may then be included

via the substitution

T + T̄ → T + T̄ −
1

3

∑

α

|φα|2 . (3)

Finally, we include in the lowest-genus effective Kähler potential twisted matter fields ϕa

with generic modular weights na, arriving at

K = −3 ln

(

T + T̄ −
1

3

∑

α

|φα|2
)

+
∑

a

|ϕa|2

(T + T̄ )na

, (4)

3Inflaton can be either T, Φ
Matter either Φ, or 𝛗

In W-Z-like model, can add a linear term, μ2 𝜙 - intersting limits on 
susy breaking scale King, Romao

King, Perdomo

Add a Polonyi sector (suited for T-inflation models)

Add a constant or more generally universal attractor models



SUSY breaking and LE phenomenology

Consider inflation = 𝜙1
tential of the form

W = Winf(T,φ1) + (T + c)βW2(φi) + (T + c)αW3(φi)

+ (T + c)σW2(ϕa) + (T + c)ρW3(ϕa) + µ ,
(28)

where c is an arbitrary constant, and W2,3 denote bilinear and trilinear terms with modular

weights that are in general non-zero. If we assume vanishing F terms for all the scalar fields:

⟨W I⟩ = 0, and vanishing vevs for all scalar fields except T , the inflationary minimum φ1 = 0

corresponds to a supersymmetry-breaking minimum with vanishing cosmological constant

if the following constraints are satisfied,

⟨W TT ⟩ = ⟨W Tφ1⟩ = 0 . (29)

These are trivially fulfilled for the Wess-Zumino superpotential (11). When {φ,ϕ} = 0,

the effective potential for T is completely flat at the tree level, so the volume modulus has

an undetermined vev, and the gravitino mass

m3/2 =
µ

(T + T̄ )3/2
(30)

varies with the value of the volume modulus.

The induced soft terms can readily be calculated‡: they are sector-dependent and

sensitive to the vev of T , and are given by

φα : m0 = 0 , B0 = −βm3/2
(T + c)β−1

(T + T̄ )1/2
, A0 = −αm3/2

(T + c)α−1

(T + T̄ )1/2
, (31)

ϕa :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

m0 = m3/2
(1− na)1/2

(T + T̄ )na/2
,

B0 = 2m3/2
(T + c)σ−1

(T + T̄ )3/2

[
(1− na)(T + c)−

σ

2
(T + T̄ )

]
,

A0 = 3m3/2
(T + c)ρ−1

(T + T̄ )3/2

[
(1− na)(T + c)−

ρ

3
(T + T̄ )

]
,

(32)

One can immediately check that GI = 0 for I = φα,ϕa, and that GT = −3/(T + T̄ ).

Therefore, as expected, the Goldstino η =
∑

l G
IχI is the fermionic partner of the modulus

T , namely the modulino χT .

The previous results ignore the fact that one typically needs to fix the vacuum ex-

pectation value of the volume modulus T during inflation. In the case of the Wess-Zumino

‡Related derivations of soft terms in string models with flux compactifications can be found in [45].

9

Ellis, Garcia, Nanopoulos, 
Olive



Upon stabilization of T:

�i : m0 = 0 , B0 = ��m3/2 , A0 = �↵m3/2

'a : m0 = (1� na)
1/2m3/2, B0 = 2

⇣
1� na �

�

2

⌘
m3/2, A0 = 3

⇣
1� na �

⇢

3

⌘
m3/2

• untwisted matter:  with α = β = 0, No scale supergravity.
• twisted matter: with na = 0, CMSSM-like models

• with ρ=σ, B0 = A0 - m0 as in mSUGRA-like models
• with ρ=σ=3, recover pure gravity meditated models

Ellis, Garcia, Nanopoulos, 
Olive

𝜙-inflation

<latexit sha1_base64="jWCzjNNPDVLkLLFNtjH8iaqnME0="></latexit>

mT /
m3/2

⇤
m3/2 = µ
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What happened to weak scale SUSY

CMSSM
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LHC Happened

CMSSM
Bagnaschi, Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, 
Ellis, Flacher, Heinemeyer, Isidori, Malik, Martinez Santos, 
Olive, Sakurai, de Vries, Weiglein

Mastercode

2015

Low mass  
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still observable  
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Focus Point

Ellis, Evans, Nagata, Olive, Velasco-Sevilla
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What’s left?

funnel region and also the part of the focus-point strip with m1/2 . 3.5 TeV. There is
also a small region of the focus-point strip with m1/2 & 6.5 TeV that is excluded by the
LHC measurement of mh. We also see that most of the well-tempered strip allowed by mh is
excluded by �

SI , leaving only a small set of points nearm1/2 ' 7 TeV. Finally, we find that all
of the strips for tan � = 55 and 56 are excluded: the former by a combination of mh and spin-
independent scattering, and the latter by mh alone. The other constraints considered also
exclude independently parts of the regions excluded by mh and spin-independent scattering,
but no supplementary regions.
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Figure 12: The portions of the dark matter strips for tan � = 5, 20, 40 and 50, calculated
assuming A0 = 0 and µ > 0, that are allowed by all the constraints, assuming an uncertainty

of 1.5 GeV in the calculation of mh. There are no allowed regions for tan � = 55 or 56.
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What’s left?
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Figure 13: As in Fig. 12, but assuming an uncertainty of 0.5 GeV in the calculation of mh.

6 The Case A0 = 3m0, µ > 0

For A0 = 0 and any fixed value of m1/2, radiative electroweak symmetry breaking, i.e. a
solution for the Higgs vevs by minimizing the Higgs potential, is no longer possible for
su�ciently large m0. This boundary is adjacent to the focus-point region where µ is driven
to zero. This boundary moves to higher values of m0 as A0/m0 increases. In addition, when
A0/m0 is increased, there is increased splitting in the squark sector, and most notably, one
of the stop masses becomes relatively light and comparable to the LSP mass allowing for the
possibility that LSP-stop coannihilations determine the relic density [5, 41, 43]. When this
occurs, there is again a thin dark matter strip adjacent to the boundary of the region where
the light stop becomes the LSP. At still higher m0, the lighter stop becomes tachyonic.
Examples of the stop coannihilation strips for the representative choice A0/m0 = 3 with

26



Stop strip

Ellis, Evans, Luo, Olive, Zheng
Bagnaschi et al.  

Ellis, Evans, Luo, Nagata, Olive, Sandick
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Other Possibilities  

Pure Gravity Mediation 

2 parameter model with very large scalar masses 

m0 = m3/2, tan β 

mAMSB 

similar to PGM, but allows m0 ≠ m3/2

More Constrained (fewer parameters)

(with PeV scales)



Other Possibilities

NUHM1,2:  m12 = m22 ≠ m02, m12 ≠ m22 ≠ m02 

μ and/or mA free 

NUGM 

gluino coannihilation 

subGUT models: Min < MGUT 

new parameter Min 

SuperGUT models: Min > MGUT  

requires SU(5) input couplings

Less Constrained (more parameters)
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e↵ective scalar potential is given by
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whereKij⇤ is the inverse of the Kähler metric. Our model
is characterized by the following Kähler potential:
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where ↵ is a curvature parameter (hereafter we set d =
1/2 for definiteness) and the superpotential W can be
written as follows:

W = WI(T,�) +WSM (X,�) +WdS(T,�) (3)

with

WI = M
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We now preview the interpretations of these expressions,
before discussing them in more detail in the bulk of the
paper.

The complex field T can be interpreted as a volume
modulus of compactification, and � as another gauge-
singlet modulus acting as the inflaton. Together they pa-
rameterize the no-scale SU(2,1)/SU(2)⇥U(1) coset man-
ifold [15], while Xi represent gauge-non-singlet matter
fields such as appear in the SM. The quartic terms in
(2) fix T [17, 18], WI in (4) fixes the inflaton � and
enables Starobinsky-like inflation with an energy scale
O(M) (other forms for WI are also possible: see [15, 18]),
and WSM in (5) contains bilinear and trilinear terms of
the generic forms appearing in SM-like superpotentials
as well as a coupling of the inflaton to matter to al-
low for reheating. The novel terms in (3) are those in
(6) with coe�cients a1,2, which have functional forms
that are holomorphic versions of the corresponding Her-
mitian terms of the gauge singlets in the Kähler poten-
tial (2). Taken alone, WdS leads to a de Sitter solution
for all real values of � and T . The couplings a1 and a2
determine the magnitudes of soft supersymmetry break-
ing and the cosmological constant, which are O(a1 � a2)
and O(a1a2), respectively. Choosing a1 = O(10�16) and
a2 ⌧ a1 (or vice versa) would yield a cosmological con-
stant and soft supersymmetry breaking of the desired
magnitudes. Throughout, we work in units of the re-
duced Planck mass, MP = 1/(8⇡GN ) ⇡ 2.4⇥ 1018 GeV.

We consider now in more detail the dS/dark energy
sector WdS (6). Constructions of dS vacua with multiple
moduli in SU(1, 1)/U(1) x U(1) no-scale supergravity
were discussed in [9], and can be extended to general
SU(N, 1)/SU(N) x U(1) Kähler coset manifolds via the

Kähler potential K = �3↵ ln
h
T + T †

�
�i�

†
i

3

i
. We find

that dS vacua solutions can be obtained from a superpo-
tential WdS of the form (6) with � ! �i and exponents
given by n± = 3

2 (↵±
p
↵) [9, 19, 20]. Holomorphy of

the superpotential requires ↵ � 1, and the no-scale case
K corresponds to ↵ = 1 [21]. We assume that the imag-
inary parts of the moduli fields are fixed to hIm T i = 0
and hIm �ii = 0, which can be realized by introducing
higher-order terms in the Kähler potential such as those
in the second line of (2), as was shown in [17, 18], or
(in some cases) by the dynamics of the potential. Spe-
cializing to the SU(2, 1)/SU(2) x U(1) no-scale case and
inserting the expressions (2) and (6) into (1), we find the
following e↵ective scalar potential:

V = 12 a1 a2 , (7)

for all values of ReT and Re�, which corresponds to a
de Sitter vacuum when a1 and a2 are of the same sign.
Thus the dS/dark energy superpotential WdS yields
a cosmological constant (7) following the end of inflation.

Combining WdS with a suitable inflationary super-
potential WI , we can incorporate soft supersymme-
try breaking without adding an additional Polonyi sec-
tor [10, 11] or introducing other possible dynamics [16].
To this end, we consider an inflationary superpotential
WI that vanishes when the complex scalar fields T and
�i are fixed at the potential minimum, i.e., we do not
induce supersymmetry breaking through WI , which typi-
cally has a mass scale of the order of the inflationary scale
⇠ 1013 GeV. When the volume modulus T is stabilized
through the quartic terms in Eq. (2) so that ReT = 1/2
and ImT = 0, the inflaton is stabilized so that Im� = 0
throughout inflation and Re� = 0 at the end of infla-
tion. Supersymmetry breaking is generated through an
F -term for T , which is given (for ↵ = 1) by

FT = �eG/2Kij⇤G
j = �m3/2(KT +WT /W )/3

= (a1 + a2) 6= 0 (8)

at the minimum, and is independent of the inflationary
scale M . The gravitino mass is simply given by m3/2 =
a1 � a2 [22].

Supersymmetry breaking with a Minkowski vacuum
would be obtained if either a1 or a2 vanishes, but we
are interested here in models with a1,2 6= 0. Specifi-
cally, we choose a1 � a2 = O(10�16) in order that the
gravitino mass be O(1) TeV [23]. If we also choose
a2 = O(10�104), we would obtain a value of the dark en-
ergy density (cosmological constant) comparable to the
present value, O(10�120). However, this is not the ap-
propriate choice, since we expect other contributions to
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as well as a coupling of the inflaton to matter to al-
low for reheating. The novel terms in (3) are those in
(6) with coe�cients a1,2, which have functional forms
that are holomorphic versions of the corresponding Her-
mitian terms of the gauge singlets in the Kähler poten-
tial (2). Taken alone, WdS leads to a de Sitter solution
for all real values of � and T . The couplings a1 and a2
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ing and the cosmological constant, which are O(a1 � a2)
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stant and soft supersymmetry breaking of the desired
magnitudes. Throughout, we work in units of the re-
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Thus the dS/dark energy superpotential WdS yields
a cosmological constant (7) following the end of inflation.

Combining WdS with a suitable inflationary super-
potential WI , we can incorporate soft supersymme-
try breaking without adding an additional Polonyi sec-
tor [10, 11] or introducing other possible dynamics [16].
To this end, we consider an inflationary superpotential
WI that vanishes when the complex scalar fields T and
�i are fixed at the potential minimum, i.e., we do not
induce supersymmetry breaking through WI , which typi-
cally has a mass scale of the order of the inflationary scale
⇠ 1013 GeV. When the volume modulus T is stabilized
through the quartic terms in Eq. (2) so that ReT = 1/2
and ImT = 0, the inflaton is stabilized so that Im� = 0
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at the minimum, and is independent of the inflationary
scale M . The gravitino mass is simply given by m3/2 =
a1 � a2 [22].

Supersymmetry breaking with a Minkowski vacuum
would be obtained if either a1 or a2 vanishes, but we
are interested here in models with a1,2 6= 0. Specifi-
cally, we choose a1 � a2 = O(10�16) in order that the
gravitino mass be O(1) TeV [23]. If we also choose
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ergy density (cosmological constant) comparable to the
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would be obtained if either a1 or a2 vanishes, but we
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the present vacuum energy density, specifically from elec-
troweak gauge symmetry breaking and confinement in
QCD, which are estimated to be O(m4

W ) ⇠ O(10�68)
and O(⇤4

QCD) ⇠ O(10�80), respectively. These can be
accommodated together with the present value of the
dark energy density by choosing a1 = O(10�16) and
a2 = O(10�52) with the values finely-tuned to cancel
the electroweak and QCD contributions so that the net
value of the dark energy is O(10�120). This is inelegant,
and we have no suggestion how this fine-tuning may be
achieved dynamically in a natural way, but it does pro-
vide an e↵ective framework for the di↵erent relevant mass
scales without additional fields or resorting to uplifting
with additional string dynamics.

One expects that the mass of the inflaton may be of
order M ⇠ O(10�5), in which case we can safely ignore
the mixing terms between a1,2 and M during inflation
because a2 ⌧ a1 ⌧ M , so the constants a1,2 do not af-
fect the slow-roll inflationary dynamics. As was shown
in [8, 18], the Starobinsky inflationary potential can be
recovered in no-scale SU(2,1)/SU(2) x U(1) supergrav-
ity from the Wess-Zumino-like superpotential WI in (4),
and we recall briefly some of the results. For simplic-
ity, we consider the Kähler potential (2) with two mod-
uli fields � and T , and set the curvature parameter to
↵ = 1. We assume that the scalar field T is fixed by
the quartic terms in Eq. (2), acquiring a vev hT i = 1/2.
The couplings b and c are expected to both be � 1,
corresponding to inverse mass scales b, c / 1/⇤2

T , with
⇤T ⌧ MP , similar to strong stabilization in some Polonyi
models [12, 13, 24–30]. In the limit a2 ! 0, if b = c, the
two real fields associated with T acquire the same mass.
However, in the absence of supersymmetry breaking both
remain massless [18], and only acquire a mass when su-
persymmetry is broken, mReT = 4

p
3ba1 ' 4

p
3bm3/2,

mImT = 4
p
3ca1 ' 4

p
3cm3/2.

Although the mass of T is significantly below the infla-
ton mass, there is no Polonyi-like problem [31] associated
with T . As in the strongly-stabilized Polonyi system, the
dominant decay mode for T is into a gravitino pair [12],
with a decay rate proportional to m3

3/2M
3
P /⇤

5
T [32]. The

problem of entropy production is easily evaded here. For
⇤T . 10�4, the modulus decays before the inflaton and
plays little role in subsequent reheating processes. As a
result, there is no additional constraint from the over-
production of gravitinos (and ultimately the lightest su-
persymmetric particle). Since our stabilization term in
the Kähler potential should be thought of as an e↵ec-
tive interaction, consistency would require ⇤T > mT or
⇤T > (48)1/4(m3/2MP )1/2. Thus there is a substantial
range of values for ⇤T for which there is no moduli prob-
lem: see [12] for further details. It is interesting that
⇤T = M lies within the allowed range.

With the modulus fixed at hT i = 1/2 and Im� = 0
(which minimizes the potential), so that Re � = �, we

can write the scalar potential as

V = 12a1a2 + 12a2M

✓
�2

2
�

�3

3
p
3

◆

+ 3M2

✓
�

p
3 + �

◆2

. (9)

The first term is the cosmological constant, and the sec-
ond term is a perturbation of the inflaton potential that
has a negligible e↵ect on the inflationary dynamics, be-
cause a2 ⌧ M . We then make the following field redefi-
nition to obtain a canonical kinetic term for Re�:

Re� =
p
3 tanh

⇣
x/

p
6
⌘
, (10)

With this field redefinition and dropping terms propor-
tional to a1 and a2, we obtain the Starobinsky potential
along the Re� direction:

V =
3

4
M2

⇣
1� e�

p
2/3x

⌘2
. (11)

The first two terms in Eq. (9) can be written as

�V = ⇤+ 6a2M tanh2(x/
p
6)

⇣
3� 2 tanh

⇣
x/

p
6
⌘⌘

,

(12)
where we have defined the cosmological constant ⇤ =
12a1a2. We note that, at large x, �V adds a relatively
small amount 6a2M to the Starobinsky plateau value of
(3/4)M2.

To visualize slow-roll inflation in the Re � - Re T plane,
we use the following field redefinition:

ReT =
1

2
e�

p
2
3⇢, (13)

together with the field redefinition Re� ! x (10). The
scalar potential acquires a complicated form in terms of
(x, ⇢) that we do not display here, which reduces to the
form V + �V given by (11) and (12) when ⇢ = 0. We
assume that the number of e-folds until inflation ends
is N = 55, which is realized with the nominal choice of
x = 5.31 and ⇢ = 0, yielding the tensor-to-scalar ratio
r = 0.0035 and the spectral tilt ns = 0.965 [33, 34]. The
potential in the x - ⇢ plane is shown in Fig. 1. The field
x exits the dS plateau and rolls down towards a potential
barrier on the left, located at x = 0, ⇢ ⇡ 0.34⇤T . Then
the field ⇢ evolves slowly towards the global minimum,
located at x = 0, ⇢ = 0, and starts spiraling about the
minimum with initial amplitude h⇢iMin ⇡ 0.34⇤T and
hxi ⇡ MP until ⇢ (or T ) decay which occurs well before
reheating when the inflaton decays.

Finally, we consider the full model with SM-like fields
characterized by the Kähler function (2), and the full
superpotential W = WdS + WI + WSM (3). After the
modulus acquires its vacuum expectation value, hT i = 1

2 ,
and as the inflaton settles to its minimum, the reheating
process begins. The coupling y�XiXj provides a decay

untwisted matter

twisted matter
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coupling to gauge bosons and gauginos through the gauge kinetic function

�(�1 ! gg) = �(�1 ! g̃g̃) =
3d2g,1
32⇡

✓
NG

12

◆
m3

M2
P

5.1.4 Decays to gauge bosons and gauginos

The decay of the inflaton φ1 into gauge fields and gauginos is possible in the presence of

a non-trivial coupling between φ1 and the gauge degrees of freedom, as would be provided

by a φ1-dependent gauge kinetic function fαβ = f(φ1)δαβ [45,63]. If supersymmetry is not

broken by the inflaton, this term will not contribute to gaugino masses. These require a

non-trivial dependence in the gauge kinetic function of fields involved in supersymmetry

breaking. The relevant supergravity Lagrangian terms correspond to

LG = −
1

4
(Re fαβ)FαµνF

µν
β +

i

4
(Im fαβ)FαµνF̃

µν
β

+

(
1

4
eG/2(f̄αβ),J(G

−1)JKG
Kλ̄αLλβR + h.c.

)
,

(105)

where F̃ µν
α = 1

2ϵ
µνρσFαρσ. Neglecting contributions suppressed by the gaugino masses, the

decay widths to canonically-normalized gauge boson pairs and gauginos can be evaluated

in a straightforward way, resulting in [45]

Γ(φ1 → gg) = Γ(φ1 → g̃g̃) =
3d2g,1
32π

(
NG

12

)
m3

M2
P

, (106)

where NG is the number of final states: NG = 12 for the standard model, and dg,1 is given

by

dg,1 ≡ ⟨Re f⟩−1

∣∣∣∣

〈
∂f

∂φ1

〉∣∣∣∣ . (107)

The equality of the rates to gauge bosons and gauginos requires that Wφ1φ1
is related to the

inflaton mass rather than the supersymmetry-breaking scale. In the presence of a coupling

such as (82), these rates are subdominant, being suppressed by (m/MP )2 relative to the

widths into Higgs, leptons and their supersymmetric partners, cf, (91) and (96). On the

other hand, if no such couplings are present, the decays to gauge bosons and gauginos are

the dominant channels, and would yield a reheating temperature

TR = (2× 1010 GeV) dg,1 g
−1/4

(
NG

12

)1/2( m

10−5MP

)3/2

. (108)

In this case, the constraint on the thermal production of gravitinos is easily satisfied if

dg, 1 <∼ 10−1.

The decay of φ1 to gauge bosons and gauginos can also be achieved through a coupling

between T and the gauge degrees of freedom. Indeed, a T -dependent gauge kinetic function

fαβ = f(T )δαβ is a generic feature of heterotic string effective field theories [11, 64]. A

superpotential such as (87) produces a mixing between φ1 and T , allowing in this case

decays of the φ1 mass eigenstate to gauge bosons, with a rate

Γ(φ1 → gg) = (p− 3)2
d2g,T |ζ |2

216π

(
NG

12

)
∆2m, (109)
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Significant reheating if the inflation (Φ) is directly coupled to 
matter

where we denote Φ ≡ {δT,φi,ϕa} and introduce the multiindex I = {δT, i, a}. Here we

have segregated the inflaton explicitly from the rest of the matter and moduli fields, and

we have associated the inflaton mass m with the vev of W 11
inf , as is true for the Wess-

Zumino superpotential (11). It is immediately evident that, in the absence of a direct

coupling between the inflaton and other fields in the matter superpotential, the field φ1 is

the inflaton mass eigenstate §.

A direct coupling between φ1 and the rest of the matter sector may be allowed. For

example, this field can be associated with a heavy singlet sneutrino [16, 56]. In such case,

one can consider the addition of a Yukawa-like term

∆W = yνHuLφ1 (82)

to the Standard Model superpotential, where yν denotes the Yukawa coupling. Such a

coupling leads to a mass matrix characteristic of seesaw models,

(
φ̄1 ¯̃ν

)(m2 + m̃2 −mm̃

−mm̃ m̃2 + κµ2

)(
φ1

ν̃

)

, (83)

where m̃ ≡ yν⟨Hu⟩ = yνv sin β, and κ = (1 − nν) for a twisted neutrino, κ = 0 for an

untwisted neutrino. Therefore, even in the presence of direct couplings, we can consider φ1

to be the inflaton mass eigenstate, up to corrections of order µ/m, v/m ≪ 1.

In order to determine the decay rate of the inflaton φ1, we must consider couplings

beyond quadratic interactions. Expansion of the scalar potential yields

LB,pot =
2√
3
mW̄1Jφ1δT Φ̄

J −
1√
3
B1

Jφ1δT Φ̄
J −

1

3
√
3
W 1TT

inf W̄TJφ1δT Φ̄
J

−
cIδT
3

W 1IW̄JTφ1ΦIΦ̄
J −W 1IKW̄KJφ1ΦIΦ̄

J −
1

6
mW 1TT

inf φ1δT̄ δT̄

+
2√
3
mW̄1Jφ1δT̄ Φ̄

J −
1√
3
B1

Jφ1δT̄ Φ̄
J −

1

2
mW̄1IJφ1Φ̄

IΦ̄J

−
1

2
W 1KW̄KIJφ1Φ̄

IΦ̄J −
cIJ
6
W 1T W̄IJφ1Φ̄

IΦ̄J + h.c. +O(µ) + · · ·

(84)

where we have introduced the notation

BI1I2...
J1J2...

=
[
(na − 3)W I1I2...aW̄aJ1J2... − 2W I1I2...kW̄kJ1J2...

]
. (85)

and

cIJ =

⎛

⎜⎝
−1 −3 nJ − 2

−3 −5 nJ − 4

nI − 2 nI − 4 nI + nJ − 3

⎞

⎟⎠ , (86)

§We have ignored subdominant O(µ) contributions in the expression (81), which actually vanish for a

φ1-independent matter superpotential.

22

and 𝜙1 can be associated with a right-handed neutrino

where the rows and columns correspond to submatrices following the notation I = {δT, i, a}.
The expression (84) shows that all couplings to matter vanish in the absence of an explicit

φ1 dependence in the matter superpotential, W 1I1I2... = 0. It can be verified that the same

is true for all the O(µ) terms that we have neglected in (84), as well for any couplings

leading to three- and four-body decay of the inflaton. The only non-vanishing interaction

in this limit correspond to those proportional to W 1TT
inf . This coupling vanishes identically

for the Wess-Zumino superpotential (11). However, it is known that the superpotential

(11) is not the unique superpotential that leads to Starobinsky inflation [13]. Consider,

e.g., the addition of the term

∆Winf = ζ(T − 1/2)2φ1 , (87)

which does not alter the shape of the potential for the inflaton Re φ1 for any value of ζ . In

the presence of this term, the mass matrix has the structure

m2|φ1|2 +m2
T |δT |2 +

2ζ

3
√
3
(p− 3)m3/2MP (φ1δT + h.c.) , (88)

and the inflaton mass eigenstate corresponds to

φM
1 ≃ φ1 + (p− 3)

2ζ∆MP

3
√
3m

δT̄ . (89)

In this case, the decay of the inflaton φ1 into the fluctuation of the modulus T is possible,

with rate

Γ(φ1 → δT δT ) = m
|ζ |2

72π
, (90)

assuming that the modulus mass satisfies the hierarchy m ≫ mT ≫ m3/2 as in (34). As we

see in the next subsubsection, this is the same rate as the decay into gravitinos. If these were

the dominant decay rates, the Universe would become dominated by moduli and gravitinos,

forcing their masses to exceed 10 TeV in order to obtain a reheating temperature above 1

MeV, and hence suitable for nucleosynthesis. However, in this case, decays into neutralinos

are liable to yield a relic neutralino density that is far too large. Thus we can not afford

decays to moduli (and gravitinos) to be the dominant decay product.

Decay of the inflaton into matter becomes possible only if we allow a non-trivial

dependence on φ1 for WM . In particular, the superpotential (82) leads to a non-vanishing

amplitude for which the dominant contribution corresponds to the seventh term in (84)

if W 1IJ ≠ 0, namely −1
2mW̄1IJφ1Φ̄IΦ̄J . In the particular case of sneutrino inflation, this

coupling would be −myνH̄u
¯̃Lφ1, and the decay width would be given by

Γ(φ1 → H0
uν̃, H

+
u f̃L) = m

|yν|2

16π
, (91)
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where we have neglected the masses of the final-state particles. This decay rate would

be fast if |yν | = O(1) and, in order to avoid problems associated with gravitino produc-

tion during reheating, we must set a bound on the Yukawa coupling associated with the

inflaton [16]

yν <∼ 10−5 (92)

with a corresponding constraint on the reheating temperature that we discuss below.

5.1.2 Decays to matter fermions

The decay of the inflaton φ1 to matter fermions is mediated by the interactions determined

by the fermion kinetic term, the fermion mass matrix and the fermion-scalar interactions

of the supergravity Lagrangian. The fermion kinetic term is given by

LF,kin =
i

2
GI

J χ̄ILγ
µDµχ

J
L + h.c. , (93)

and yields no couplings relevant to two-, three- and four-body decays. One must then look

for interactions stemming from the fermion mass matrix and the fermion-scalar interactions.

Working in the unitary gauge, one finds no dependence on the modulino χT , which becomes

the longitudinal component of the gravitino,

LF,int =
i

2
χ̄IL /DΦJχ

K
L (−GIJ

K +
1

2
GI

KG
J)

+
1

2
eG/2(−GIJ −GIGJ +GIJ

K (G−1)KAG
A)χ̄ILχJR + h.c. (94)

+ four-fermion terms

= −
1

2
W 1IJφ1χ̄ILχJR +

i

4µ
W 1JΦJ χ̄KL/∂φ1χ

K
L +

i

4µ
W 1Jφ1χ̄KL/∂ΦJχ

K
L

+
1

4µ
W 1JW IKφ1ΦJ χ̄ILχKR −

1

2
W 1IJKφ1ΦJ χ̄ILχKR (95)

+

√
3

2
W 1JKφ1(Re δT )χ̄JLχKR −

1

2
W 1Kφ1Φ̄

J(χ̄KLχJR + χ̄JLχKR) + · · ·

Similarly to the scalar case, all couplings to matter fermions vanish for a φ1-independent

matter superpotential. The decay into a fermion and a higgsino is possible if we identify

φ1 with a singlet neutrino, with superpotential (82). In this case, the rate is given by

Γ(φ1 → H̃0
uν, H̃

+
u fL) = m

|yν |2

16π
, (96)

i.e., equal to the rate of decay into scalars.
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Similarly to the scalar case, all couplings to matter fermions vanish for a φ1-independent

matter superpotential. The decay into a fermion and a higgsino is possible if we identify

φ1 with a singlet neutrino, with superpotential (82). In this case, the rate is given by

Γ(φ1 → H̃0
uν, H̃

+
u fL) = m

|yν |2

16π
, (96)

i.e., equal to the rate of decay into scalars.
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or

It can also be shown that all two-body decays involving one inflatino and one matter fermion

χJ are dependent on the coupling W 11J , which vanishes in the limit of no φ1 dependence

in WM , as well for a superpotential such as (82).

We are led to conclude that, in the absence of a direct coupling between the inflaton

and the rest of the matter (and gauge) sectors, there are no efficient decay channels for

the inflaton, if it is identified with an untwisted matter field, as found in other studies of

no-scale supergravity [43]. On the other hand, if the field φ1 is associated with a singlet

neutrino, the decay rates (91) and (96) imply a reheating temperature

TR = (5.6× 1014GeV)|yν|
(

g

915/4

)−1/4( m

10−5MP

)1/2

, (104)

assuming that the Yukawa coupling yν ! O(1) so that the decay of the inflaton occurs

after the end of inflation, during the oscillation of the inflaton around the minimum of the

potential. Here g denotes the effective number of degrees of freedom, and g = 915/4 for

the MSSM.

5.1.4 Decays to gauge bosons and gauginos

The decay of the inflaton φ1 into gauge fields and gauginos is possible in the presence of

a non-trivial coupling between φ1 and the gauge degrees of freedom, as would be provided

by a φ1-dependent gauge kinetic function fαβ = f(φ1)δαβ [43,59]. If supersymmetry is not

broken by the inflaton, this term will not contribute to gaugino masses. These require a

non-trivial dependence in the gauge kinetic function of fields involved in supersymmetry

breaking. The relevant supergravity Lagrangian terms correspond to

LG = −
1

4
(Re fαβ)FαµνF

µν
β +

i

4
(Im fαβ)FαµνF̃

µν
β

+

(
1

4
eG/2(f̄αβ),J(G

−1)JKG
Kλ̄αLλβR + h.c.

)
,

(105)

where F̃ µν
α = 1

2ϵ
µνρσFαρσ. Neglecting contributions suppressed by the gaugino masses, the

decay widths to canonically-normalized gauge boson pairs and gauginos can be evaluated

in a straightforward way, resulting in [43]

Γ(φ1 → gg) = Γ(φ1 → g̃g̃) =
3d2g,1
32π

(
NG

12

)
m3

M2
P

, (106)

where NG is the number of final states: NG = 12 for the standard model, and dg,1 is given

by

dg,1 ≡ ⟨Re f⟩−1

∣∣∣∣

〈
∂f

∂φ1

〉∣∣∣∣ . (107)
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written as

LB,eff = −
δT√
3
(nI + nL − 3)W ILW̄LJΦIΦ̄

J

−
δT

2
√
3
(nI + nL − 3)W ILW̄LJKΦIΦ̄

JΦ̄K

−
δT

2
√
3
(nI + nJ + nL − 3)W IJLW̄LKΦIΦJ Φ̄

K

−
δT√
3
(nJ + nL − 3)W JLW̄LKΦIΦJ Φ̄

IΦ̄K

−
δT

6
√
3
(nI + nL − 3)W ILW̄LJKMΦIΦ̄

JΦ̄KΦ̄M (117)

−
δT

4
√
3
(nI + nJ + nL − 3)W IJLW̄LKMΦIΦJΦ̄

KΦ̄M

−
δT

6
√
3
(nI + nJ + nK + nL − 3)W IJKLW̄LMΦIΦJΦKΦ̄

M

−
δT

12
√
3
(nI + nJ − 3)

(
9 + (nI + nJ − 1)(nK + nM − 3)

)
W IJW̄KMΦIΦJΦ̄

KΦ̄M

+ · · ·

Under the assumption that the masses of all scalar matter fields are hierarchically smaller

than the inflaton mass, mI ≪ m, the two-body decay rate can be computed immediately:

Γ(T → ΦIΦ̄
J ) = (nI + nL − 3)2

|W ILW̄LJ |2

48πmM2
P

, (118)

where a sum over the repeated index L is implied. This rate is dependent on the matter

sector to which the decay products belong, and is weak-scale suppressed in the case of

MSSM scalars. For example, the rate for decay to two Higgs bosons is

Γ(T → Hu,dH̄
u,d) = (2nH − 3)2

|µH |4

24πmM2
P

, (119)

where µH denotes the MSSM bilinear Higgs coupling. These two-body rates lead to an

extremely low reheating temperature: for an inflaton mass m ∼ 10−5MP , and µH ∼ 1 TeV,

TR ∼ 10−1 eV. In the three-body case, the decay to light scalars is given by the widths

Γ(T → ΦIΦ̄
J Φ̄K) = (nI + nL − 3)2

|W ILW̄LJK |2m
12(8π)3M2

P

, (120)

Γ(T → ΦIΦJ Φ̄
K) = (nI + nJ + nL − 3)2

|W IJLW̄LK |2m
12(8π)3M2

P

. (121)

In particular, the decay to the neutral d-type Higgs and the left and right stops has the

rate

Γ(T → H̄0
d
¯̃tRt̃L, H

0
d t̃R

¯̃tL) =
(
(2nH − 3)2 + (2nt + nH − 3)2

) |µHyt|2m
4(8π)3M2

P

, (122)
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Also decays to gauge bosons

The decay of T to the gravitino in the Polonyi scenario is mediated by the following

couplings:

L3/2,z = −
3
√
3

16
(4− 3γ̄)Λ2γ̄

z ∆2

[
1

2
ϵµνρσψ̄µγνψρ∂σδT + im3/2δT ψ̄µσ

µνψν

]
+ · · · , (141)

where now γ̄ = 0 for the (T,ϕ1) superpotential (27), and γ̄ = 1 for the (T,φ1) superpotential

(16). In the latter case the amplitude is further suppressed by the factor Λ2
z. The width is

then given by

Γ(T → ψ3/2ψ3/2) ≃ (4− 3γ̄)2
(

Λz

M2
P

)4γ̄ 3∆2m3

256πM2
P

. (142)

It is straightforward to verify that the decays of T to the Polonyi modulus and to the

gravitino in this scenario are negligible relative to the matter decay (133),

Γ(T → zz̄)

Γ(T → H0
utLt̄R)

∼ 106
(

∆

Λz/MP

)4

,
Γ(T → ψ3/2ψ3/2)

Γ(T → H0
utLt̄R)

∼ 103∆2

(
Λz

M2
P

)4γ̄

. (143)

The decays to a single gravitino and a fermion belonging to a chiral multiplet are me-

diated by the interaction terms (100). It is straightforward to show that the amplitudes for

the decays with a final-state matter fermion vanish up to O(∆2). The only non-vanishing

couplings with T are those with the inflatino and the φ1 or ϕ1-ino. The corresponding am-

plitudes are dependent on the supersymmetry-breaking mechanism. However, in all cases it

can be shown that the decay rates to kinematically-allowed final-state mass eigenstates are

suppressed by a factor of∆2: Γ ∼ ∆2(m3/M2
P ), due to the mass degeneracy m−mχ ∼ m3/2.

In the absence of a direct coupling of T to the gauge degrees of freedom, i.e., fT
αβ = 0,

where fαβ is the gauge kinetic function, the total decay rate of the inflaton is the sum of

the rates previously shown. The largest width corresponds is that to two matter fermions

plus a matter scalar, (133), which implies the reheating temperature

TR = (108 GeV) |yt(2nt + nH − 6)|
(

g

915/4

)−1/4( m

10−5MP

)3/2

. (144)

5.2.4 Decays to gauge bosons and gauginos

The inflaton T can decay to gauge fields and gauginos through a coupling in the gauge

kinetic function fαβ(T ), which, as was mentioned before, is a generic feature of heterotic

string effective field theories [11, 64]. The supergravity Lagrangian terms containing the

relevant interactions are given by (105), disregarding contributions suppressed by the gaug-

ino masses. The decay width to the canonically-normalized gauge boson pairs is readily

evaluated, resulting in

Γ(T → gg) =
d2g,T
32π

(
NG

12

)
m3

M2
P

, (145)
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where NG is the number of final states: NG = 12 for the Standard Model, and dg,T has

been defined in (110). The corresponding reheating temperature is

TR = (3× 109 GeV) dg,T

(
NG

12

)1/2( g

915/4

)−1/4( m

10−5MP

)3/2

. (146)

The coefficient dg,T might well be O(1), e.g., for a gauge kinetic function linear in T with

O(1) coefficients, in which case all other decay channels of the volume modulus T would

be overwhelmed by the decays to gauge bosons, and the reheating temperature would be

large. The effective reheating temperature generated by decays into gauge bosons would

exceed that due to decays into matter particles, (144), for any dg,T ! O(1/30).

On the other hand, the decays of T to gauginos are subdominant. Our results differ

from the treatment of [65], in that in our case the mass of the modulus T is determined

not by the bilinear coupling W TT , which has a vanishing vev, but by the coupling W Tφ1 or

W Tϕ1 . This results in an amplitude for decay to gauginos that is suppressed by ∆ relative

to the amplitude for the decay to gauge bosons. Assuming for simplicity that f(T ) is a

holomorphic function with real coefficients, the corresponding decay rate is

Γ(T → g̃g̃) =
d2g∆

2

16π

(
NG

12

)
m3

M2
P

. (147)

A similar suppression for the decay to gauginos was seen in [63].

6 Summary and Prospects

We have considered in this paper various aspects of no-scale inflation, considering two main

classes of models: those in which the inflaton is identified with an untwisted matter field φ,

and those in which the inflaton is identified with the compactification volume modulus T .

We have focused on two important phenomenological issues: possible patterns of soft super-

symmetry breaking, and inflaton decays and the related reheating temperature of the Uni-

verse subsequent to inflation. We have considered in Section 4 various possible mechanisms

for supersymmetry breaking, including via the volume moduli and the Polonyi mechanism.

These mechanisms yield many possibilities for the soft supersymmetry-breaking parameters

effective low-energy theory. In general, the patterns of soft supersymmetry breaking for

the untwisted and twisted matter sectors are different. For example, no-scale, CMSSM or

mSUGRA boundary conditions are natural possibilities in the untwisted sector, whereas in

the twisted sector the soft supersymmetry-breaking parameters are not universal in gen-

eral, since they depend on the modular weights of the fields. As usual, the gaugino masses

would in general arise from a non-minimal gauge kinetic function or through loop effects
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where TRH is defined by [37]

⇢�(aRH) = ↵T
4

RH
= M

4

P

 p
3�

3

k
y
2⌃y

k
�
� 2

k (k + 2)

8⇡(7 � k)

!k

.

(70)
Thus for all models with a reheat temperature due to
decays, which is less than that given in Eq. (69), the
maximum temperature during the reheat process is de-
termined by scattering (mediated by gravity) and thus
can not be ignored. Note also that for such small values
of y, the kinetic effects due to the effective mass induced
by the coupling y�f̄f are non-existent, as shown in [37].

We show in Fig. 2 the evolution of the energy densities
of the inflaton (blue), the radiation produced by inflaton
decays (orange dashed), the radiation produced by infla-
ton scattering mediated by gravity (green dashed), and
the total radiation density (red) as function of the scaling
parameter a/aend for a Yukawa-like coupling y = 10�8

with k = 2 and ⇢end = 1064 GeV4. We clearly see that
the beginning of the evolution of the radiation density
is dominated by the scattering of the inflaton via gravi-
ton exchange (orange line), which determines the maxi-
mum temperature. For k = 2, the radiation density from
scattering falls as a

�4 [37], whereas the density from de-
cays falls more slowly as a

�3/2 so that eventually the
latter begins to dominate the population of the thermal
bath when a = aint, until the reheating is complete when
⇢� = ⇢R at a = aRH. For aint � aend, we can approxi-
mate the cross-over point from Eqs. (56) and (63) using
the equality ⇢

y

R
= ⇢

h

R
. For sufficiently small y and for

k = 2, we find

aint

aend
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✓

8y
2⌃y

2

5N⌃h

2

M
4

P

⇢end

◆� 2

5

, (71)

which gives aint ' 430 aend in good agreement with
the numerical solution for the parameter choices used
in Fig. 2. We stress that the maximum temperature at-
tained Tmax ' 1012 GeV is independent of any beyond
the Standard Model physics, and is purely gravitational
and can not be ignored when production rates are highly
dependent on the ratio Tmax/TRH.

We can finally apply our result to the dark matter pro-
duction through a graviton exchange while the bath is
also dominated by scattering of � through graviton ex-
change. For TRH . 109 GeV, the Boltzmann equation
one needs to consider is

dY
h

X
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=

p
3MPp
⇢end

a
2

✓
a

aend

◆ 3k
k+2

R
h

X
(a) (72)
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R
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⇢
2
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↵2M
4
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⇣
amax

a

⌘8
. (73)

FIG. 2: Evolution of the radiation density (red) and inflaton

density (blue) as a function of a/aend for a Yukawa-like

coupling y = 10�8
with ⇢end = 1064 GeV

4
and k = 2. This

plot is obtained by solving numerically equations (29), (30)

and (55). The evolution of the radiation density produced

from inflaton decays (orange-dashed) and scattering

mediated by gravity (green-dashed) are also shown.
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where aint corresponds to the value of the scale factor
when the radiation density produced by inflaton decays
begins dominate over that produced by gravitational in-
flaton scattering (this only occurs if y satisfies the bound
in Eq. (67)). For a > aint, the slope of the radiation en-
ergy density curve as a function of a changes as seen in
Fig. 2 and any thermal contribution to the production of
dark matter originates from inflaton decay.

For sufficiently small y, aint � aend, and Eq. (74) can
be simplified and we see that the dark matter yield does
not depend on this intermediate scale factor, but only on
aend and ⇢end. Thus for small y, we can also use Eq. (74)
to evaluate the dark matter density at a = aRH,
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where TRH is defined by [37]

⇢�(aRH) = ↵T
4

RH
= M

4

P

 p
3�

3

k
y
2⌃y

k
�
� 2

k (k + 2)

8⇡(7 � k)

!k

.

(70)
Thus for all models with a reheat temperature due to
decays, which is less than that given in Eq. (69), the
maximum temperature during the reheat process is de-
termined by scattering (mediated by gravity) and thus
can not be ignored. Note also that for such small values
of y, the kinetic effects due to the effective mass induced
by the coupling y�f̄f are non-existent, as shown in [37].

We show in Fig. 2 the evolution of the energy densities
of the inflaton (blue), the radiation produced by inflaton
decays (orange dashed), the radiation produced by infla-
ton scattering mediated by gravity (green dashed), and
the total radiation density (red) as function of the scaling
parameter a/aend for a Yukawa-like coupling y = 10�8

with k = 2 and ⇢end = 1064 GeV4. We clearly see that
the beginning of the evolution of the radiation density
is dominated by the scattering of the inflaton via gravi-
ton exchange (orange line), which determines the maxi-
mum temperature. For k = 2, the radiation density from
scattering falls as a

�4 [37], whereas the density from de-
cays falls more slowly as a

�3/2 so that eventually the
latter begins to dominate the population of the thermal
bath when a = aint, until the reheating is complete when
⇢� = ⇢R at a = aRH. For aint � aend, we can approxi-
mate the cross-over point from Eqs. (56) and (63) using
the equality ⇢

y

R
= ⇢

h

R
. For sufficiently small y and for

k = 2, we find
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which gives aint ' 430 aend in good agreement with
the numerical solution for the parameter choices used
in Fig. 2. We stress that the maximum temperature at-
tained Tmax ' 1012 GeV is independent of any beyond
the Standard Model physics, and is purely gravitational
and can not be ignored when production rates are highly
dependent on the ratio Tmax/TRH.

We can finally apply our result to the dark matter pro-
duction through a graviton exchange while the bath is
also dominated by scattering of � through graviton ex-
change. For TRH . 109 GeV, the Boltzmann equation
one needs to consider is
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FIG. 2: Evolution of the radiation density (red) and inflaton

density (blue) as a function of a/aend for a Yukawa-like

coupling y = 10�8
with ⇢end = 1064 GeV

4
and k = 2. This

plot is obtained by solving numerically equations (29), (30)

and (55). The evolution of the radiation density produced

from inflaton decays (orange-dashed) and scattering

mediated by gravity (green-dashed) are also shown.
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where aint corresponds to the value of the scale factor
when the radiation density produced by inflaton decays
begins dominate over that produced by gravitational in-
flaton scattering (this only occurs if y satisfies the bound
in Eq. (67)). For a > aint, the slope of the radiation en-
ergy density curve as a function of a changes as seen in
Fig. 2 and any thermal contribution to the production of
dark matter originates from inflaton decay.

For sufficiently small y, aint � aend, and Eq. (74) can
be simplified and we see that the dark matter yield does
not depend on this intermediate scale factor, but only on
aend and ⇢end. Thus for small y, we can also use Eq. (74)
to evaluate the dark matter density at a = aRH,
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where TRH is defined by [37]
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Thus for all models with a reheat temperature due to
decays, which is less than that given in Eq. (69), the
maximum temperature during the reheat process is de-
termined by scattering (mediated by gravity) and thus
can not be ignored. Note also that for such small values
of y, the kinetic effects due to the effective mass induced
by the coupling y�f̄f are non-existent, as shown in [37].

We show in Fig. 2 the evolution of the energy densities
of the inflaton (blue), the radiation produced by inflaton
decays (orange dashed), the radiation produced by infla-
ton scattering mediated by gravity (green dashed), and
the total radiation density (red) as function of the scaling
parameter a/aend for a Yukawa-like coupling y = 10�8

with k = 2 and ⇢end = 1064 GeV4. We clearly see that
the beginning of the evolution of the radiation density
is dominated by the scattering of the inflaton via gravi-
ton exchange (orange line), which determines the maxi-
mum temperature. For k = 2, the radiation density from
scattering falls as a

�4 [37], whereas the density from de-
cays falls more slowly as a

�3/2 so that eventually the
latter begins to dominate the population of the thermal
bath when a = aint, until the reheating is complete when
⇢� = ⇢R at a = aRH. For aint � aend, we can approxi-
mate the cross-over point from Eqs. (56) and (63) using
the equality ⇢

y

R
= ⇢

h

R
. For sufficiently small y and for

k = 2, we find
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which gives aint ' 430 aend in good agreement with
the numerical solution for the parameter choices used
in Fig. 2. We stress that the maximum temperature at-
tained Tmax ' 1012 GeV is independent of any beyond
the Standard Model physics, and is purely gravitational
and can not be ignored when production rates are highly
dependent on the ratio Tmax/TRH.

We can finally apply our result to the dark matter pro-
duction through a graviton exchange while the bath is
also dominated by scattering of � through graviton ex-
change. For TRH . 109 GeV, the Boltzmann equation
one needs to consider is
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FIG. 2: Evolution of the radiation density (red) and inflaton

density (blue) as a function of a/aend for a Yukawa-like

coupling y = 10�8
with ⇢end = 1064 GeV

4
and k = 2. This

plot is obtained by solving numerically equations (29), (30)

and (55). The evolution of the radiation density produced

from inflaton decays (orange-dashed) and scattering

mediated by gravity (green-dashed) are also shown.
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where aint corresponds to the value of the scale factor
when the radiation density produced by inflaton decays
begins dominate over that produced by gravitational in-
flaton scattering (this only occurs if y satisfies the bound
in Eq. (67)). For a > aint, the slope of the radiation en-
ergy density curve as a function of a changes as seen in
Fig. 2 and any thermal contribution to the production of
dark matter originates from inflaton decay.

For sufficiently small y, aint � aend, and Eq. (74) can
be simplified and we see that the dark matter yield does
not depend on this intermediate scale factor, but only on
aend and ⇢end. Thus for small y, we can also use Eq. (74)
to evaluate the dark matter density at a = aRH,
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where TRH is defined by [37]
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Thus for all models with a reheat temperature due to
decays, which is less than that given in Eq. (69), the
maximum temperature during the reheat process is de-
termined by scattering (mediated by gravity) and thus
can not be ignored. Note also that for such small values
of y, the kinetic effects due to the effective mass induced
by the coupling y�f̄f are non-existent, as shown in [37].

We show in Fig. 2 the evolution of the energy densities
of the inflaton (blue), the radiation produced by inflaton
decays (orange dashed), the radiation produced by infla-
ton scattering mediated by gravity (green dashed), and
the total radiation density (red) as function of the scaling
parameter a/aend for a Yukawa-like coupling y = 10�8

with k = 2 and ⇢end = 1064 GeV4. We clearly see that
the beginning of the evolution of the radiation density
is dominated by the scattering of the inflaton via gravi-
ton exchange (orange line), which determines the maxi-
mum temperature. For k = 2, the radiation density from
scattering falls as a

�4 [37], whereas the density from de-
cays falls more slowly as a

�3/2 so that eventually the
latter begins to dominate the population of the thermal
bath when a = aint, until the reheating is complete when
⇢� = ⇢R at a = aRH. For aint � aend, we can approxi-
mate the cross-over point from Eqs. (56) and (63) using
the equality ⇢

y

R
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h

R
. For sufficiently small y and for

k = 2, we find
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which gives aint ' 430 aend in good agreement with
the numerical solution for the parameter choices used
in Fig. 2. We stress that the maximum temperature at-
tained Tmax ' 1012 GeV is independent of any beyond
the Standard Model physics, and is purely gravitational
and can not be ignored when production rates are highly
dependent on the ratio Tmax/TRH.

We can finally apply our result to the dark matter pro-
duction through a graviton exchange while the bath is
also dominated by scattering of � through graviton ex-
change. For TRH . 109 GeV, the Boltzmann equation
one needs to consider is
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FIG. 2: Evolution of the radiation density (red) and inflaton

density (blue) as a function of a/aend for a Yukawa-like

coupling y = 10�8
with ⇢end = 1064 GeV

4
and k = 2. This

plot is obtained by solving numerically equations (29), (30)

and (55). The evolution of the radiation density produced

from inflaton decays (orange-dashed) and scattering

mediated by gravity (green-dashed) are also shown.
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where aint corresponds to the value of the scale factor
when the radiation density produced by inflaton decays
begins dominate over that produced by gravitational in-
flaton scattering (this only occurs if y satisfies the bound
in Eq. (67)). For a > aint, the slope of the radiation en-
ergy density curve as a function of a changes as seen in
Fig. 2 and any thermal contribution to the production of
dark matter originates from inflaton decay.

For sufficiently small y, aint � aend, and Eq. (74) can
be simplified and we see that the dark matter yield does
not depend on this intermediate scale factor, but only on
aend and ⇢end. Thus for small y, we can also use Eq. (74)
to evaluate the dark matter density at a = aRH,
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when the energy density of the inflaton is equal to the
energy density of radiation, corresponding to
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In order to evaluate the constraint on Treh from over-
production of supersymmetric dark matter in scenarios
where the gravitino is lighter than Treh, we use the ex-
pression [29, 32]9
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where Y3/2 ⌘ n3/2/nrad is the gravitino yield, nrad =
⇣(3)T 3

/⇡
2, m3/2 the gravitino mass, and m1/2 the gluino

mass [33–35]. Disregarding the term m
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3/2 in

(26) and using the observed dark matter density today,
⌦CDMh
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' 0.12, we find the following upper limit on the

Yukawa-like inflaton coupling, assuming that the grav-
itino decays after the lightest supersymmetric particle
(LSP) decouples,
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where mLSP is the mass of the LSP and the inflaton
masses for the di↵erent inflationary attractor potentials
are given by Eqs. (22) and (23).10 We note that, since
m' / 1/

p
↵, |y| / ↵

1/4.11

In high-scale supersymmetry models in which the grav-
itino mass may be significantly larger than the elec-
troweak scale and the other supersymmetric particles are
heavier than the inflaton, the gravitino, which is now the
LSP, is pair-produced via its longitudinal components
[37]. In such a scenario, we find [38]
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9 We use here an analytical approximation since there is only a
0.03 % di↵erence between the analytical and fully numerical cal-
culation.

10 If the gravitino is the LSP, the second term in the brackets in
(26) must be taken into account, and the constraint on y depends
on the ratio m1/2/m3/2.

11 For another recent analysis of gravitino constraints in light of the
BICEP/Keck results, see [36].

wherem3/2 is the gravitino mass and ↵3 is the strong cou-
pling. Using the observed dark matter abundance today
to constrain ⌦3/2h

2, we find that avoiding overproduc-
tion of dark matter imposes the following bound:
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We note that in a non-supersymmetric theory there
would, in general, be a lower limit on y due to the fact
that it generates radiative corrections / y

4 in the ef-
fective inflaton potential [39]. However, this is not the
case in supersymmetric models such as those discussed
above, where these radiative corrections cancel down to
the level of the relatively small supersymmetry-breaking
e↵ects [40].

IV. RESULTS

We solve the cosmic background equations (17)-(20)
numerically to determine the number of e-folds N⇤, NEW,
and NBBN. In the ↵ = 1 case, the procedure of calcu-
lating the analytical approximations for N⇤ is given in
Appendix A (see Eqs. (A.11) and (A.12)). The full nu-
merical computation of the CMB observables is discussed
in Appendix B.

Figure 1 summarizes our numerical results based on
the analysis of [3]: those for ↵-Starobinsky models are
shown in the upper pair of panels and those for T mod-
els in the lower pair. For each of the two models, we
derive limits on N⇤ from the requirements that Treh > 2
MeV (100 GeV) and the supersymmetric relic density
when mLSP = 100 GeV. The former gives a lower limit
to N⇤, while the latter gives an upper limit. We also de-
rive the corresponding limits on y. These are compared
to the 68% and 95% C.L. limits on N and y from the
BICEP/Keck constraints on ns. For ↵ = 1, we find the
following limits:

↵-Starobinsky :

41.8(45.6) < N⇤ < 51.8,

1.7⇥ 10�18(1.6⇥ 10�13) < |y| < 2.6⇥ 10�5
,

N68% = 50.9, N95% = 45.9,

Treh, 68% = 8.7⇥ 108 GeV, Treh, 95% = 2.4⇥ 102 GeV,

y68% = 1.7⇥ 10�6
, y95% = 3.8⇥ 10�13

, (30)

T Model :

42.0(45.8) < N⇤ < 52.1,

2.3⇥ 10�18(2.2⇥ 10�13) < |y| < 3.6⇥ 10�5
,

N68% = 52.6, N95% = 47.5,

Treh, 68% = 5.9⇥ 1010 GeV, Treh, 95% = 1.4⇥ 104 GeV,

y68% = 1.7⇥ 10�4
, y95% = 3.6⇥ 10�11

. (31)
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fective inflaton potential [39]. However, this is not the
case in supersymmetric models such as those discussed
above, where these radiative corrections cancel down to
the level of the relatively small supersymmetry-breaking
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MeV (100 GeV) and the supersymmetric relic density
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which can be expressed as function of ⇢end using Eq. (34):
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where we assumed aRH � aend. Note that the depen-
dence on ⇢� used in Eq. (44) hides the fact that we con-
sidered a decaying inflaton during the reheating.

For fermionic dark matter we obtained

n
�

1/2
(aRH) =

m
2

X

p
3(k + 2)⇢

1

2
+

2

k
RH

12⇡k(k � 1)�
2

k M
1+

8

k
P

"✓
aRH

aend

◆ 6

k+2

� 1

#
⌃k

1

2

' m
2

X

p
3(k + 2)⇢

1

2
+

2

k
RH

12⇡k(k � 1)�
2

k M
1+

8

k
P

✓
⇢end

⇢RH

◆ 1

k

⌃k
1

2

(48)
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We can simplify the expression to write

⌦�

1/2
h
2

0.1
=

⌃k

1/2

2.4
8

k

k + 2

k(k � 1)

✓
10�11

�

◆ 2

k
✓

1040GeV4

⇢RH

◆ 1

4
� 1

k

⇥
✓

⇢end

1064GeV4

◆ 1

k
✓

mX

8.3 ⇥ 106+
6

k GeV

◆3

(50)

Up until now, we have assumed that the thermal bath
was produced via inflaton decays. However, for low re-
heat temperatures, and hence small values of the Yukawa-
like inflaton coupling, y, it is possible that radiation, in
the form of Higgs bosons, is produced directly from the
condensate via gravitational interactions. This is consid-
ered in the next subsection.

C. � � ! hµ⌫ ! SM SM

The calculation for the production of SM fields pro-
duced by the scattering of the inflaton via gravity is sim-
ilar to the preceding calculation for dark matter. As was
shown in [31] and [37], there exists the possibility that

the thermal bath is produced not by inflaton decay but
rather by inflaton scattering after inflation. This occurs
for instance for low values of y. In this case, the max-
imum temperature is not given by the inflaton width,
but by the scattering process, whereas the final reheat-
ing (and thus TRH) is still dominated by the decay. This
is illustrated in Fig. 2 below. In fact, the gravitational
scattering �� ! hµ⌫ ! HH is always present and can
never be eliminated. Such a process generates an effec-
tive coupling
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2
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2
. (51)

From Eq. (A.23) of [37], we can write the left-hand side
of Eq. (30) as
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where N = 4 is the number of real scalars in the Standard
Model, when we neglect the Higgs mass. Identifying this
rate with that in Eq. (20), and (1 + w)��⇢� = !R
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for each real scalar. Thus for the Standard Model Higgs,
and in the case k = 2 we have
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�h can be considered as the lowest possible and inevitable
value for a quartic coupling between the inflaton and
scalars. This may be important and even dominate the
reheating process at its earliest stages. We note that in a
theory with additional weak scale scalars such as the min-
imal supersymmetric Standard Model (MSSM), the grav-
itational production is increased due to the large number
of scalars, N = 98 in the MSSM. Note also that there is a
minimal gravitational production rate for the production
of SM fermions and gauge bosons though this is com-
pletely negligible due to the mass suppression (see e.g.
Eq. (23) for fermions). Thus if we restrict our attention
to the Standard Model, we take N = 4 corresponding to
the four real scalar degrees of freedom.

We now recompute the evolution of the radiation den-
sity using Eq. (30) and (52),
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The solution of (55) is
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which can be expanded about the origin4
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The time-dependent oscillating inflaton field can be
parametrized as

�(t) = �0(t) · P(t) , (17)

where �0(t) is the time-dependent amplitude that in-
cludes the effects of redshift and P(t) describes the peri-
odicity of the oscillation.

To calculate the dark matter production rate, we com-
bine the potential (16) with Eq. (17), which leads to
V (�) = V (�0) · P(t)k. We next expand the potential
energy in terms of the Fourier modes [37, 46, 47]
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where ! is the frequency of oscillation of �, given by [37]
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For scalar dark matter, we find that the particle pro-
duction rate per unit volume and unit time for an arbi-
trary value of k is given by
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where the factor of two accounts for the fact we produce
two dark matter particles per scattering, with
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where En = n! is the energy of the n-th inflaton oscil-
lation mode and mX is the mass of the produced dark
matter. A detailed calculation of this rate is presented
in Appendix B.

For the case k = 2, we find that the particle production
rate is given by
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where m
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we find that only the second Fourier mode in the sum
contributes, with
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It should be noted that our discussion is general and not limited

to T-models of inflation.
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We note that the rate calculated here differs from [31] by a factor

of 8, because in the latter the inflaton was treated as a particle

and not a condensate resulting in a difference by a factor of 2 in

the applied symmetry factors. In addition, the interaction con-

sidered there did not use a properly normalized graviton resulting

in a factor of 2 in the vertex and 16 in the rate.

For a fermionic dark matter candidate, we find the
following rate
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where the factor of two accounts for the sum over the
particle and antiparticle final states, with
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For the case k = 2, we obtain
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A detailed discussion related to the dark matter produc-
tion rates through the inflaton condensate scattering is
given in Appendix B.

For the production of SM fields from inflaton oscil-
lations, we follow the same procedure, but replace the
partial amplitude, M

j

µ⌫
, for dark matter with the appro-

priate amplitude involving SM fields. Below, we consider
only the example of producing Higgs bosons, namely
� + � ! H + H.

III. GRAVITATIONAL PRODUCTION OF
QUANTA

As we discussed in the previous section, the graviton
can act as a portal between the inflaton, SM fields and a
potential dark matter candidate. As outlined above we
here consider three cases in detail:

A. The graviton portal between a thermal bath and dark
matter. This is essentially a gravitational freeze-in
mechanism for the production of dark matter.

B. The graviton portal between the inflaton and dark
matter. In this case, the inflaton directly populates
the dark matter without the need of either the ther-
mal bath or a mediator between the SM and the dark
matter candidate.

C. The graviton portal between the inflaton and the
Standard Model sector to produce a radiative bath
at the start of reheating.

A. SM SM ! hµ⌫ ! DM DM

The spin-2 portal for the production of dark matter
was considered recently in [19] for both massive and
massless spin-2 fields. Here we restrict our attention to
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FIG. 1: Feynman diagram for the production of dark matter

through the gravitational scattering of the Standard Model

particle bath or inflaton condensate.

Standard Model fields (during the reheat process) from
the inflaton condensate in the initial state.

Although the direct coupling to the massless graviton
appears to be feeble due to Planck suppression, the en-
ergy available in the thermal bath during the initial stage
of reheating is large enough to make the gravitational
production rates significant.

The scattering amplitudes related to the produc-
tion rate of the processes �/SMi(p1) + �/SMi(p2) !
SMi

/X
j(p3) + SMi

/X
j(p4) can be parametrized by

Mij / M
j

µ⌫
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M
i

⇢�
, (6)

where (i, j) denotes the spin of the (initial,final) state
involved in the scattering process and i, j = 0, 1/2, 1.
⇧µ⌫⇢� is the graviton propagator for the canonical field
h with momentum k = p1 + p2,
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The partial amplitudes, M
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µ⌫
, are given by
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with analogous expressions for dark matter in terms of
the dark matter momenta, p3, p4, and potential V (X), if
X is a scalar. For an initial state inflaton with S = �, we
replace M

0

µ⌫
with T

0

µ⌫
from Eq. (3). As we only consider

vectors in the Standard Model, their masses have been
neglected in Eq. (10).

In what follows, we consider three distinct processes
based on the diagram in Fig. 1: for the production of dark

matter, A) SM + SM ! X+X; B) �+� ! X+X, where
the latter involves the inflaton condensate (zero mode)
in the initial state rather than an initial state particle
with momentum p1,2 (see below for more detail), and
C) � + � ! SM + SM, as a minimal and unavoidable
contribution to the reheating process.

The dark matter production rate from SM fields can
be readily calculated by assuming that the initial particle
states are massless. This assumption can be justified by
the fact that the energy associated with the momenta,
p1 , p2 is extremely large at the end of inflation and dom-
inates over electroweak scale quantities.

The dark matter production rate R(T ) for the SM+SM
! X + X process with amplitude M3 is

R(T ) =
2

1024⇡6
⇥
Z

f1f2E1 dE1E2 dE2 d cos ✓12

Z
|M|2 d⌦13 ,

(11)
where the factor of two accounts for two dark matter
particles per scattering, Ei denotes the energy of parti-
cle i = 1, 2, 3, 4, ✓13 and ✓12 are the angles formed by
momenta p

1,3
and p1,2, respectively, and

fi =
1

eEi/T ± 1
, (12)

represent the assumed thermal distributions of the in-
coming SM particles.

The total amplitude squared for the gravitational scat-
tering process SM+SM ! Xj + Xj is given by a sum
of the three amplitudes associated with different initial
state spins,

|M|2 = 4|M0|2 + 45|M1/2|2 + 12|M1|2 . (13)

These were calculated in [19] and it was found that the
dark matter production rate is given by

R
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j
= Rj(T ) = �j

T
8

M
4

P

, (14)

where j refers to the spin of X (either 0 or 1/2), the
constants �j and details related to the computation of
dark matter production rate and the amplitude squared
are given in Appendix A.

For the production of dark matter through the scat-
tering of the inflaton condensate we consider the time-
dependent oscillation of a classical inflaton field �(t).
Since our computation depends explicitly on inflaton po-
tential, we consider the ↵-attractor T-model [39] as a
specific example,

V (�) = �M
4

P
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p

6 tanh

✓
�p

6MP
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k

, (15)

3
It should be noted that we include the symmetry factors associ-

ated with identical initial and final states in the squared ampli-

tude, |M|2.
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FIG. 1: Feynman diagram for the production of dark matter

through the gravitational scattering of the Standard Model

particle bath or inflaton condensate.

Standard Model fields (during the reheat process) from
the inflaton condensate in the initial state.

Although the direct coupling to the massless graviton
appears to be feeble due to Planck suppression, the en-
ergy available in the thermal bath during the initial stage
of reheating is large enough to make the gravitational
production rates significant.

The scattering amplitudes related to the produc-
tion rate of the processes �/SMi(p1) + �/SMi(p2) !
SMi

/X
j(p3) + SMi
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j(p4) can be parametrized by
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where (i, j) denotes the spin of the (initial,final) state
involved in the scattering process and i, j = 0, 1/2, 1.
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with analogous expressions for dark matter in terms of
the dark matter momenta, p3, p4, and potential V (X), if
X is a scalar. For an initial state inflaton with S = �, we
replace M

0
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with T
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from Eq. (3). As we only consider

vectors in the Standard Model, their masses have been
neglected in Eq. (10).

In what follows, we consider three distinct processes
based on the diagram in Fig. 1: for the production of dark

matter, A) SM + SM ! X+X; B) �+� ! X+X, where
the latter involves the inflaton condensate (zero mode)
in the initial state rather than an initial state particle
with momentum p1,2 (see below for more detail), and
C) � + � ! SM + SM, as a minimal and unavoidable
contribution to the reheating process.

The dark matter production rate from SM fields can
be readily calculated by assuming that the initial particle
states are massless. This assumption can be justified by
the fact that the energy associated with the momenta,
p1 , p2 is extremely large at the end of inflation and dom-
inates over electroweak scale quantities.

The dark matter production rate R(T ) for the SM+SM
! X + X process with amplitude M3 is
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where the factor of two accounts for two dark matter
particles per scattering, Ei denotes the energy of parti-
cle i = 1, 2, 3, 4, ✓13 and ✓12 are the angles formed by
momenta p

1,3
and p1,2, respectively, and
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1
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represent the assumed thermal distributions of the in-
coming SM particles.

The total amplitude squared for the gravitational scat-
tering process SM+SM ! Xj + Xj is given by a sum
of the three amplitudes associated with different initial
state spins,

|M|2 = 4|M0|2 + 45|M1/2|2 + 12|M1|2 . (13)

These were calculated in [19] and it was found that the
dark matter production rate is given by
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where j refers to the spin of X (either 0 or 1/2), the
constants �j and details related to the computation of
dark matter production rate and the amplitude squared
are given in Appendix A.

For the production of dark matter through the scat-
tering of the inflaton condensate we consider the time-
dependent oscillation of a classical inflaton field �(t).
Since our computation depends explicitly on inflaton po-
tential, we consider the ↵-attractor T-model [39] as a
specific example,
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It should be noted that we include the symmetry factors associ-

ated with identical initial and final states in the squared ampli-

tude, |M|2.



Summary

Wide class of Starobinsky-like models of Inflation easily 
constructed in No-Scale Supergravity 

Consistent with supersymmetry breaking and leads to various 
types of gravity mediated phenomenological models.  

LHC susy and Higgs searches have pushed CMSSM-like 
models to strips of parameter space 

Reheating most easily to gauge bosons and gauginos 

To Higgs bosons in the case of high scale susy 

Particle production (including dark matter production) efficient 
during the early stages of reheating (even purely gravitational 
production)


