B-L Supersymmetric Extension of the Standard Model (BLSSM)

Shaaban Khalil

Center for Fundamental Physics Zewail City of Science and Technology

17-21/7/2023

 ${\sf SUSY-2023},\ {\sf Southampton}\ {\sf University}$

Introduction

- Despite the absence of direct experimental verification, SUSY is still the most promising candidate for a unified theory beyond the SM.
- ▶ SUSY is a generalization of the space-time symmetries of the QFT that relates bosons to fermions .
- SUSY solves the problem of the quadratic divergence in the Higgs sector of the SM in a very elegant natural way.
- ▶ The most simple supersymmetric extension of the SM is know as the MSSM.

$$W = h_U Q_L U_L^c H_2 + h_D Q_L D_L^c H_1 + h_L L_L E_L^c H_1 + \mu H_1 H_2.$$

- Soft SUSY breaking terms at GUT scale:
 - Universal: m_0 , $m_{1/2}$, A_0
 - Non-Universal: Large number of free paramters

- Due to R-parity conservation, SUSY particles are produced or destroyed only in pairs. The LSP is absolutely stable, candidate for DM.
- ▶ MSSM predicts an upper bound for the Higgs mass: $m_h \lesssim 130$ GeV, which was consistent with the measured value of Higgs mass (of order 125 GeV) at the LHC.
- ► This mass of lightest Higgs boson implies that the SUSY particles are quite heavy. This may justify the negative searches for SUSY at the LHC-run I & II.
- Combining the collider and astrophysics constraints almost rule out the MSSM (with universal soft SUSY breaking).
- Non-minimal supersymmetric extensions of the SM with a larger particle content or a higher symmetry can evade the problems of the MSSM.
- Such models may be well-motivated by Grand Unified Theories (GUTs) and can provide a rich new phenomenology.
- Simple examples of Non-minimal SUSY models:
 - (i) Extended Higgs sector, eg. NMSSM
 - (ii) Extended Gauge sector, eg. BLSSSM

SUSY B-L Extension of the SM

- The solid experimental evidence for neutrino oscillations, pointing towards non-vanishing neutrino masses, is one of the few firm hints for physics beyond the SM.
- ▶ BLSSM is the minimal extension of MSSM, based on the gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-I}$.

S.K (2008)

- ▶ This type of extension implies the existence of extra 3 superfields, one per generation, with B-L charge equal -1, in order to cancel the associate B-L triangle anomaly.
- ▶ These superfields are identified with the right-handed neutrinos and will be denoted N_i.
- ▶ In addition, in order to break the B-L symmetry at TeV scale, two Higgs superfields $\hat{\chi}_{1,2}$ with ∓ 2 B-L charges are required.

	Ωį	\hat{U}_{i}^{c}	\hat{D}_{i}^{c}	$\hat{\ell}_i$	Ê;c	\hat{N}_i^c	\hat{H}_1	\hat{H}_2	$\hat{\chi}_1$	$\hat{\chi}_2$
SU(3)c	3	3	3	1	1	1	1	1	1	1
SU(2) _L	2	1	1	2	1	1	2	2	1	1
$U(1)_Y$	$\frac{1}{6}$	$-\frac{2}{3}$	1 3	$-\frac{1}{2}$	1	0	$-\frac{1}{2}$	1/2	0	0
$U(1)_{B-L}$	1/3	1/3	1/3	-1	-1	-1	0	0	-2	2

Radiative B - L symmetry breaking in the BLSSM

▶ The superpotential of BLSSM is given by $W_{\text{BLSSM}} = W_{\text{MSSM}} + W_{\text{BL}}$:

$$W_{\rm BLSSM} = Y_U Q H_2 U^c + Y_D Q H_1 D^c + Y_E L H_1 E^c + Y_\nu L H_2 N^c + \frac{1}{2} Y_N N^c N^c \chi_1 + \mu H_1 H_2 + \mu' \chi_1 \chi_2$$

▶ The soft breaking terms

$$\begin{split} V_{\text{soft}} & = V_{\text{soft}}^{\text{MSSM}} + m_{\tilde{N}}^2 |\tilde{N}|^2 + m_{\chi_1}^2 |\chi_1|^2 + m_{\chi_2}^2 |\chi_2|^2 + \left[\left(\frac{1}{2} M_{1/2} \tilde{Z}' \tilde{Z}' + Y_{\nu} A_{\nu} \tilde{L} H_2 \tilde{N}^c + \frac{1}{2} Y_N A_N \tilde{N}^c \chi_1 \tilde{N}^c + B \mu' \chi_1 \chi_2 \right) + h.c. \right] \end{split}$$

▶ The Higgs Potential

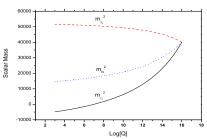
$$\begin{array}{lcl} V(H_1,H_2,\chi_1,\chi_2) & = & \frac{g^2+g'^2}{8} \big(|H_2|^2 - |H_1|^2 \big)^2 + \frac{1}{2} g''^2 \left(|\chi_2|^2 - |\chi_1|^2 \right)^2 + m_1^2 |H_1|^2 + m_2^2 |H_2|^2 \\ & - & m_3^2 (H_1 H_2 + h.c.) + \mu_1^2 |\chi_1|^2 + \mu_2^2 |\chi_2|^2 - \mu_3^2 (\chi_1 \chi_2 + h.c.) \end{array}$$

where
$$m_i^2=m_0^2+\mu^2, \quad i=1,2 \quad m_3^2=B\mu,$$

$$\mu_i^2=m_0^2+\mu'^2, \quad i=1,2 \quad \mu_3^2=B\mu'.$$

Shaaban Khalil BLSSM 5

▶ The full scalar potential is splitted into two separated terms:


$$V(H_1, H_2, \chi_1, \chi_2) = V_1(H_1, H_2) + V_2(\chi_1, \chi_2)$$

The condition of stability of $V_2(\chi_1,\chi_2)$: $2\mu_3^2 < \mu_1^2 + \mu_2^2$.

Also, to get a non-zero vev, we must impose the condition: $\mu_1^2\mu_2^2<\mu_3^4$

And, as before, these two conditions can **not** be satisfied simultaneously for positive values of μ_1^2, μ_2^2 .

▶ Running from GUT down to B-L breaking scale shows that Higgs singlets χ_1 and χ_2 have different mass running. At B-L scale, $m_{\chi_1}^2$ becomes negative and $m_{\chi_2}^2$ remains positive.

$$\frac{dm_{\chi_{1}}^{2}}{dt} = 9\tilde{\alpha}_{B-L} M_{B-L}^{2} - 2\tilde{Y}_{N} (m_{\chi_{1}}^{2} + 2m_{\tilde{N}}^{2} + A_{N}^{2})$$

Shaaban Khalil BLSSM 6 / 2

S.K., Masiero (2008)

Neutrino Masses in BLSSM

▶ A type I seesaw can be obtained from the BLSSM super potential:

$$\mathcal{L}_{B-L} \in Y_{\nu} \overline{I} H_2 \nu_R + \frac{1}{2} Y_N \overline{\nu_R^c} \chi_1 \nu_R^c + h.c.$$

Majorana mass, after B-L symmetry breaking is generated: $M_R=Y_N\langle\chi_1\rangle=Y_Nv'$. Thus

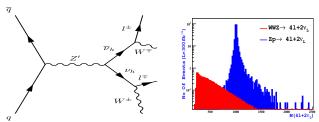
$$\nu^{\prime} \sim \mathcal{O}(1) \mathrm{TeV}, \ Y_N \sim \mathcal{O}(1) \Rightarrow M_R \sim \mathcal{O}(1) \mathrm{TeV}$$

Dirac mass (after Electroweak symmetry breaking): $\emph{m}_{\emph{D}} = \emph{Y}_{\nu} \langle \emph{H}_{2} \rangle = \emph{Y}_{\nu} \emph{v}$

► Thus, the follow neutrino mass matrix is obtained:

$$M_{\nu} = \left(\begin{array}{cc} 0 & m_D \\ \\ \\ m_D^T & M_R \end{array} \right)$$

▶ Light neutrino mass: $m_{\nu} = -m_D M_R^{-1} m_D^T$.


Thus
$$m_{\nu} \sim {\cal O}(1)~eV$$
 if $m_D \sim 10^{-4}~{\rm GeV} \Rightarrow Y_{\nu} \sim 10^{-6} \sim Y_E$

BLSSM Spectrum

- ▶ BLSSM New Particle Contents:
 - **1** Extra Neutral Gauge Boson: $Z_{B-L} \equiv Z'$
 - 2 Right-Handed Neutrinos and Sneutrinos: ν_{R_i} and $\tilde{\nu}_{R_i}$
 - $oldsymbol{0}$ Extra Higgs Bosons: h', A', and H'
 - **①** Extra Neutralinos: \tilde{Z}' , $\tilde{\chi}_i$
- ► Signatures and Implications

Neutral Gauge Bosnon Z'

- ► The $U(1)_Y$ and $U(1)_{B-L}$ gauge kinetic mixing can be absorbed in the covariant derivative redefinition. In this basis, one finds $M_Z^2 = \frac{1}{4}(g_1^2 + g_2^2)v^2$, $M_{Z'}^2 = g_{BI}^2 v'^2 + \frac{1}{4} \tilde{g}^2 v^2$.
- ightharpoonup The decay of a Z' boson to heavy neutrinos, which subsequently decay into four leptons and two neutrinos, is a promising channel for probing Z' at the LHC.
- ightharpoons This channel, $qar q o Z' o
 u_har
 u_h
 abla_h o WW\ell\ell$, offers a distinct signature and has a tiny SM background

- ▶ Invariant mass of 4-leptons plus 2 light neutrinos from Z' with WWZ background.
- ▶ The decay channel $4 \ l + 2 \ \nu$ is the quite clean channel and quite promising for probing both Z' and ν_h using only few cuts to extract signals from background.

Shaaban Khalil BLSSM 9 / 2

Higgs Bosons in BLSSM

- ▶ In BLSSM, we have 2 Higgs doublet and 2 Higgs singlet superfields, i.e. 12 degrees of freedom:
 - * 4 have been eaten by W^{\pm}, Z , and Z'.
 - * 2 neutral pseudoscalar Higgs bosons A.
 - * 2 charged Higgs bosons H^{\pm} .
 - * 4 neutral scalar Higgs bosons h, H.
- ▶ The squared-mass matrix of the BLSSM CP-odd neutral Higgs fields at tree level is given by

$$m_{A,A'}^2 = \left(\begin{array}{cccc} B_\mu \tan\beta & B_\mu & 0 & 0 \\ B_\mu & B_\mu \cot\beta & 0 & 0 \\ 0 & 0 & B_{\mu'} \tan\beta' & B_{\mu'} \\ 0 & 0 & B_{\mu'} & B_{\mu'} \cot\beta' \end{array} \right) \,.$$

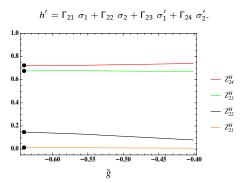
- ▶ It is clear that the MSSM-like CP-odd Higgs A is decoupled from the BLSSM-like one A' (at tree level).
- ▶ Due to the dependence of B_{μ} on v', $m_A^2 = \frac{2B_{\mu}}{\sin 2\beta} \sim m_{A'}^2 = \frac{2B_{\mu'}}{\sin 2\beta'} \sim \mathcal{O}(1 \text{ TeV})$.

▶ The mass matrix of BLSSM CP-even neutral Higgs at tree level is given by

$$M^{2} = \begin{pmatrix} M_{hH}^{2} & M_{hh'}^{2} \\ & & \\ M_{hh'}^{2T} & M_{h'H'}^{2} \end{pmatrix}$$

 $ightharpoonup M_{hH}^2$ is MSSM neutral CP-even Higgs mass matrix $\Rightarrow m_h \sim 125$ GeV $\&m_H \sim m_A \sim \mathcal{O}(1$ TeV).

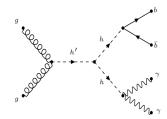
$$M_{h'H'}^2 = \begin{pmatrix} m_{A'}^2 c_{\beta'}^2 + g_{BL}^2 v_1'^2 & -\frac{1}{2} m_{A'}^2 s_{2\beta'} - g_{BL}^2 v_1' v_2' \\ -\frac{1}{2} m_{A'}^2 s_{2\beta'} - g_{BL}^2 v_1' v_2' & m_{A'}^2 s_{\beta'}^2 + g_{BL}^2 v_2'^2 \end{pmatrix}$$


$$\Rightarrow m_{h',H'}^2 = \frac{1}{2} \left[(m_{A'}^2 + M_{Z'}^2) \mp \sqrt{(m_{A'}^2 + M_{Z'}^2)^2 - 4 m_{A'}^2 M_{Z'}^2 \cos^2 2\beta'} \right]$$

$$\Rightarrow m_{h'} \simeq \left(\frac{m_{A'}^2 M_{Z'}^2 \cos^2 2\beta'}{m_{A'}^2 + M_{Z'}^2} \right)^{\frac{1}{2}} \simeq \mathcal{O}(100 \text{ GeV})$$

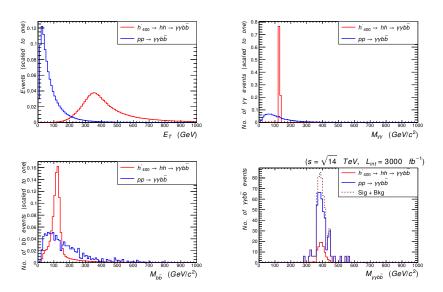
Shaaban Khalil BLSSM 11 / 22

▶ Finally,
$$M_{hh'}^2 = \frac{1}{2} \tilde{g} g_{BL} \begin{pmatrix} v_1 v_1' & -v_1 v_2' \\ -v_2 v_1' & v_2 v_2' \end{pmatrix}$$


- ▶ This mixing is crucial for generating mixing between BLSSM Higgs bosons and MSSM-like Higgs states.
- ▶ A numerical scan confirms that, while $\tan' \beta \le 1.2$, the h' state can be the second Higgs boson mass whereas the other two CP-even states H, H' are heavy, i.e.,

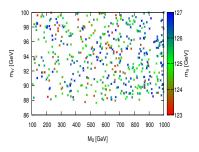
The Higgs mixing Z_{2i}^H $(i=1,\ldots,4)$ versus the gauge kinetic mixing coupling \tilde{g}

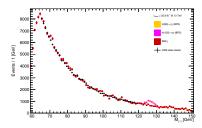
Search for a heavy BLSSM Higgs boson at the LHC


- ▶ Heavy BLSSM Higgs boson, h', is mainly produced at the LHC from gluon-gluon fusion process.
- ▶ We focus on the on-shell SM Higgs pair production from h', followed by their decays: $h' \rightarrow hh \rightarrow bb\gamma\gamma$.
- ▶ This process has smaller cross section than $\sigma(pp \rightarrow h' \rightarrow hh \rightarrow 4b)$ but is more promising due to the clean di-photons trigger with excellent mass resolution and low background contamination.

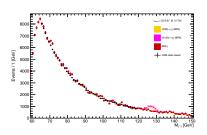
$$\sigma(pp \to h' \to hh \to b\bar{b}\gamma\gamma) \approx \sigma(pp \to h') \times \mathsf{BR}(h' \to hh \to b\bar{b}\gamma\gamma).$$

We use HL-LHC luminosity, $L_{\rm int}=3000~{\rm fb^{-1}}$, as this channel is not accessible during Run 3.


▶ S and B distributions in E_T , $M_{\gamma\gamma}$, $M_{b\bar{b}}$, and $M_{\gamma\gamma b\bar{b}}$,


▶ Notice that event rates are computed after implementing the acceptance cuts.

Di-photon decay of a light Higgs state


▶ In the BLSSM, we investigate the consistency of a light Higgs boson, with mass around 90 - 97 GeV, with the results of a search performed by the CMS collaboration in the di-photon channel.

BP	M_0	M 1/2	$tan \beta$	A_0	μ	μ'	m _h '	m _h	$\sigma(pp \rightarrow h' \rightarrow \gamma \gamma)$	$\sigma(pp \rightarrow h \rightarrow \gamma\gamma)$
1	998	2141	29.9	3837	1849	2020	95.3	125.9	13.1	43.5
2	359	3103	31.2	3705	2561	1247	94.2	125.3	8.6	49.3
3	146	3351	44.7	3736	2739	1162	96.3	125.4	10.0	49.0
4	874	2450	11.4	3709	2092	1770	96.6	125.3	13.0	44.7
5	870	4014	57.4	3477	3222	1522	89.7	125.7	9.7	49.3
- 6	363	4234	40.2	3744	3386	1237	90.0	126.2	8.7	47.6

BP5 versus CMS data at 13 TeV. Yellow points represent $h'\to\gamma\gamma$, pink points represent $h\to\gamma\gamma$ while red points show the SM background.

BP6 versus CMS data at 13 TeV. Yellow points represent $h'\to\gamma\gamma$, pink points represent $h\to\gamma\gamma$ while red points show the SM background.

Lightest Neutralino in the BLSSM

▶ In BLSSM the neutralino mass matrix, in the basis: $\left(\tilde{B}, \tilde{W}^0, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{B}', \tilde{\chi_1}, \tilde{\chi_2}\right)$, is given by

where $v_{\eta} = \langle \chi_1 \rangle$ and $v_{\bar{\eta}} = \langle \chi_2 \rangle$

$$V\mathcal{M}_7V^T = \operatorname{diag}(m_{\tilde{\chi}_k^0}), \quad k = 1, \ldots, 7.$$

$$\tilde{\chi}_{1}^{0} = V_{11}\tilde{\mathcal{B}} + V_{12}\tilde{\mathcal{W}}^{3} + V_{13}\tilde{\mathcal{H}}_{d}^{0} + V_{14}\tilde{\mathcal{H}}_{u}^{0} + V_{15}\tilde{\mathcal{B}}' + V_{16}\tilde{\chi}_{1} + V_{17}\tilde{\chi}_{2}.$$

Shaaban Khalil BLSSM 17 / 2

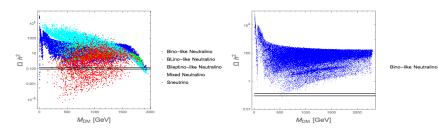
Right-handed Sneutrinos in the BLSSM

▶ In the BLSSM model, the sneutrino mass matrix is a 2×2 block diagonal matrix in the basis $(\tilde{\nu}_L, \tilde{\nu}_L^*, \tilde{\nu}_R, \tilde{\nu}_R^*)$. The element 11 corresponds to the diagonal left-handed sneutrino mass matrix, and the element 22 represents the right-handed sneutrino mass matrix, denoted as M_{RR} .

$$M_{RR}^2 = \begin{pmatrix} M_N^2 + m_{\tilde{N}}^2 + m_D^2 + \frac{1}{2} M_{Z'}^2 \cos 2\beta' & M_N (A_N - \mu' \cot \beta') \\ \\ M_N (A_N - \mu' \cot \beta') & M_N^2 + m_{\tilde{N}}^2 + m_D^2 + \frac{1}{2} M_{Z'}^2 \cos 2\beta' \end{pmatrix}.$$

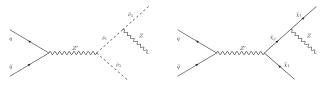
▶ The mass eigenvalues of right-handed sneutrinos are given by

$$m_{\tilde{\nu}_{\mp}}^2 \equiv m_{\tilde{\nu}_{I,R}}^2 = M_N^2 + m_{\tilde{N}}^2 + m_D^2 + \frac{1}{2} M_{Z'}^2 \cos 2\beta' \mp \Delta m_{\tilde{\nu}_R}^2$$

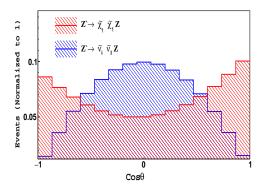

where

$$\Delta m_{\tilde{\nu}_R}^2 = \left| M_N (A_N - \mu' \cot \beta') \right|$$

- ▶ When the mass difference is positive, the $\tilde{\nu}_1^{\rm I}$ has the lightest mass of $m_{\tilde{\nu}_-}$. In the case of a negative mass difference, $\tilde{\nu}_1^{\rm R}$ -LSP, with mass $m_{\tilde{\nu}_-}$.
- ▶ In general, one finds that $M_N(A_N \mu' \cot \beta')$ tends to be positive and so there are many more CP-odd sneutrino LSPs than CP-even.


DM in MSSM versus BLSSM

▶ Here we present the relic density as function of the LSP mass for both the BLSSM and MSSM.


- Different DM types (Bino-, BLino-, Bileptino-like and mixed neutralino, alongside the sneutrino) can comply with experimental evidence over a M_{DM} interval which extends up to 2 TeV.
- ▶ In the MSSM case solutions can only be found for much lighter LSP masses and limitedly to one nature (the usual Bino-like neutralino).
- ▶ BLSSM yields a more varied nature of the LSP, with more numerous combinations of DM annihilation diagrams, and can play a significant role in dramatically changing the response of the model to the cosmological data, in comparison to the much constrained MSSM.

- ▶ In BLSSM, one can extract mono-Z signatures leading to the identification of the DM properties of its spin.
- Spin determination methods rely on the final state spins and the chiral structure of the couplings.
- ▶ Thus, we focus on the following FSR Mono-Z signals of $\tilde{\nu}_1$ and $\tilde{\chi}_1$ DM:

- ▶ The decays of heavier neutralinos, $\tilde{\chi}_i$, to a massive Z boson and $\tilde{\chi}_1$ DM , $\tilde{\chi}_i^0 \to \tilde{\chi}_1^0 Z(\to \ell^+\ell^-)$), produce a Z boson in three helicity states: ± 1 (transverse) and 0 (longitudinal).
- ▶ The decays of heavier sneutrinos, $\tilde{\nu}_i$, to a massive Z boson and $\tilde{\nu}_1$ DM, $\tilde{\nu}_i \to \tilde{\nu}_1 Z(\to \ell^+ \ell^-)$, produce a Z boson in a zero-helicity (longitudinal) state only.
- ▶ Determining DM spin state through angular distributions in rest frame analysis of Z Boson leptonic decays

- ▶ The transverse states follow an angular distribution proportional to $(1 \pm \cos^2 \theta)$, while the longitudinal state follows an angular distribution proportional to $\sin^2 \theta$.
- $m{ heta}$ is the angle between the momentum direction of the lepton and the Z boson in the rest frame Z boson.

Angular Distribution of Final State Leptons in the Rest Frame of the Z Boson: Neutralino and Sneutrino Mediators

Conclusions

- \blacktriangleright We have introduced the minimal SUSY version of the well established B-L model.
- ▶ The BLSSM nicely combines the theoretically appealing features of SUSY with key experimental evidence of BSM physics in the form of neutrino masses.
- We constructed the BLSSM Lagrangian and demonstrated how dynamical EWSB occurs through RGE evolution.
- \blacktriangleright We outlined the particle spectrum of the BLSSM, focusing on the dynamics of the four sectors: Z', Higgs, neutralino, and (s)neutrino.
- ▶ We discussed how Z' can be produced and decay into various leptonic and hadronic signatures through heavy neutrinos, resulting in detectable signals at the LHC.
- ightharpoonup We emphasized the notable aspect of the BLSSM in the Higgs sector, which includes a potential light Higgs resonance that leads to significant $Z\gamma$ production.
- Our study reveals that the mono-Z channel at the LHC can differentiate between a fermionic or (pseudo)scalar dark matter particle in the BLSSM.
- ▶ The BLSSM is a viable SUSY model that complies with current data and provides unique signatures at the LHC, allowing it to be distinguished from other BSM scenarios.