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Flavour in Standard Model

All Observed Flavour transitions can be accomodated in Yukawa

couplings:

LY = H Q̄i Y
d
ij dj + H∗ Q̄i Y

u
ij uj

Only masses and CKM mixings, VCKM, observable...

But... ⇒ a) what is the origin of the Yukawa structures??

b) why is there a CP-violating phase in CKM??

�� ��New �avour observables needed !!

New Physics

New �avour structures generically present ⇒ measure of

new observables provides new information on �avour origin...
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�
�

�
�SUSY Flavour (and CP) problems

Soft masses �xed by m3/2. O(m3/2) elements in soft matrices.

⇒ Severe FCNC problem !!!

CP broken, we can expect all complex paramaters have O(1)
phases. ⇒ Too large EDMs !!!

�� ��SM Flavour and CP

Fermion masses �xed by MW . If O(1) elements in Yukawa matrices

and O(1) phases

⇒ Impossible reproduce masses, mixings

and CP observables !!!
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Flavour symmetries in SUSY

• Very di�erent elements in Yukawa matrices: yt ≃ 1, yu ≃ 10−5

• Expect couplings in a �fundamental� theory O(1)

• Small couplings generated as function of small vevs or loops.

• Froggatt-Nielsen mechanism and �avour symmetry to understand

small Yukawa elements.

Example: U(1)fl

×

×

ψL i

Q=1

ψc
R j

Q=0

Ψ

M

H

〈θ〉Q=-1

⇒ Yij =

(
⟨θ⟩
M

)
≪ 1
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• Flavour symmetry explains

masses and mixings in Yukawas.

• Yukawa couplings forbidden

by symmetry, generated only

after Spontaneous Symmetry

Breaking.

• Unbroken symmetry applies

both to fermion and sfermions.

• Diagonal soft masses allowed by

symmetry.

• Nonuniversality in soft terms

proportional to symm. breaking.

⇓
�
�

�



We can relate the structure in Yukawa matrices to

the nonuniversality in Soft Breaking masses !!!

New information on �avor if Yukawa matrices and

soft terms not simultaneously diagonalizable.
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Froggatt-Nielsen e�ective theory

• Yukawa couplings in We� after integration of heavy states.

ψc
0

φ−1

ψ2

φ−1 H

χ1χ̄−1 χ̄0 χ0

• Even with �avour universal SUSY breaking, Fx = m0,

non-universal corrections to trilinear couplings.

ψc
0

φ−1

ψ2

φ−1 H

χ1χ̄−1 χ̄0 χ0

Fx
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• Similar with corrections to kinetic terms and soft masses.

ψ0

φ−1 φ̄1

χ̄−1

ψ3

φ−1

χ̄−2 χ2

⇓�
�

�



(
m2

ψ̃

)
ij
= n m2

0
× (

θiθ
†
j

M2 )
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Discrete Non-Abelian symmetries: ∆(27)

• ∆(27), Z2, U(1)FN, U(1)R , charges for leptons:

Field ℓ, ν ℓc , νc Hu,d Σ ϕ123 ϕ1 ϕ̄3 ϕ̄23 ϕ̄123

∆(27) 3 3 1 1 3 3 3̄ 3̄ 3̄

Z2 1 1 1 1 1 -1 -1 -1 -1

U(1)FN 0 0 0 2 -1 -4 0 -1 1

U(1)R 1 1 0 0 0 0 0 0 0

⟨ϕ̄3⟩ = υ3 (0, 0, 1), ⟨ ϕ̄23⟩ = υ23 (0,−1, 1), ⟨ϕ̄123⟩ = υ123 (1, 1, 1)

• Higgs couplings, υ3Λ ≃ √
yτ ,

υ23
Λ ≃ √

yτε,
υ123
Λ ≃ √

yτε
2:

Yℓ ∼ yτ

 ε8 −ε3 ε3

−ε3 3 ε2 −3ε2

ε3 −3 ε2 1

 , Aℓ ∼ yτ a0

 13 ε8 −5 ε3 5 ε3

−5 ε3 21 ε2 −21 ε2

5 ε3 −21 ε2 5


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• Soft mass matrices,

m2

ℓ,R ∼ m2

0

 1+ 2 yτε
4 −12yτ ε

3 12yτ ε
3

−12yτ ε
3 1+ 2yτε

2 −2yτ ε
2

12yτ ε
3 −2 yτ ε

2 1+ 2yτ


• After canonical normalization and SCKM basis:

m2

ℓ,R ∼ m2

0

 1 −9yτ ε
3 9yτ ε

3

−9yτ ε
3 1+ yτε

2 2yτ ε
2

9yτ ε
3 2 yτ ε

2 1+ yτ


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�� ��Lepton Flavour Violation

• µ→ eγ and µ→ 3e very sensitive even with heavy sfermions

𝑀
1/

2
(G

eV
)

𝑚0 (GeV)

tg𝜷 = 𝟐𝟎 , 𝒗u�u�u�/𝑴u� ∼ √𝒚u�,u� 𝜺u�

ℓ̃(2TeV)

ℓ̃(4TeV)

ℓ̃(6TeV)

ℓ̃(8TeV)
ℓ̃(10TeV)

ℓ̃(12TeV)

𝑔(2TeV)

𝑔(4TeV)

𝑔(6TeV)

Future bounds:
𝐶𝑅(𝜇 − 𝑒)u�u� > 10−17

𝐵𝑅(𝜇 → 3 𝑒) > 10−16

Current bounds:
𝐵𝑅(𝜇 → 𝑒 𝛾) > 4.2 × 10−13

|𝜖u� − 𝜖u�u�
u� | > 1.4 × 10−3
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Present bounds on µ→ eγ, µ→ 3e, and εK , gray rectangle LHC.
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• Flavour symmetries solve the CP and �avour problems both in

New Physics (SUSY) and in the SM.

• New �avour structures will provide valuable information on the

origin of �avour

• In SUSY, non-universality always present in soft-breaking terms.

• Flavour structures of soft masses and trilinears remember

structures in �avour basis.

• Large reach of �avour observables in realistic �avour models,

beyond LHC.

But... ⇒ No SUSY found, so far, at LHC !!

�
�

�
�Is SUSY still useful in �avor ??
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Vacuum Alignment in Non-SUSY potentials

• Very particular �avon alignment required to reproduce masses

and mixings.

• For triplet representations (see ∆(27) example):

⟨ϕ̄3⟩ = (0, 0, 1), ⟨ ϕ̄23⟩ = (0,−1, 1), ⟨ϕ̄123⟩ = (1, 1, 1)

• Extremely di�cult to obtain in non-Supersymmetric scalar

potentials from symmetries!!!.

• In particular, all quartics |(ϕi , ϕj)|2 are always allowed by any

symmetry, irrespective of the charges of (ϕi , ϕj).

⇒ We have to eliminate some of this quartics

arbitrarily assuming some couplings small or zero.
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�� ��SUSY Vacuum alignment

Scalar potential derived from Superpotential, W .

VSUSY =
∑

n FnF
†
n =

∑
n (∂nW ) (∂nW )†

W : cubic function of super�elds singlet under all symmetries.

⇒ Possible to select �avon bilinears from the F-terms of

additional driving �elds, Φn, with appropriate charges.

W =
∑

nΦn (ϕi , ϕj)

Driving �elds linearly in superpotential ⇒ Zero vev, if coe�cient

of quadratic term positive. No other role in low-energy.

⇒ Alignment from vanishing of, driving �eld, F-terms
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�� ��Non-SUSY Vacuum alignment

SUSY-broken scalar potential:

V = VSUSY + Vsoft =
∑

n FnF
†
n +m2

∑
j ϕ

∗
j ϕj

where F-terms: Fn = Mϕk + f (ϕi , ϕj), with f (ϕi , ϕj), second
order pol. in ϕ.

In the SUSY limit Fn|VS
= 0, ⇒ f (ϕl , ϕn)|VS

= −M ϕk |VS

What SUSY-breaking will preserve this alignment??

υ|V = ζ υ|VS

• Isolated SUSY minimum (no �at directions).

• Arbitrary m2 ≪ M2 (ζ ≃ 1), �avor symmetric.
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�� ��Non-SUSY Vacuum alignment

The full potential at the minimum:

V (ϕ|V ) =
∑

n FnF
†
n

∣∣∣
V
+m2

∑
j ϕ

∗
j ϕj

∣∣∣
V

and the F-terms:

Fn|V = ζM ϕk |VS
+ ζ2 f (ϕi , ϕj)|VS

= ζ (1− ζ)M ϕk |VS

⇒ V (ϕ|V ) =
(
M2 ζ2 (1− ζ)2 + m2 ζ2

) ∑
j ϕ

∗
j ϕj

∣∣∣
VS

Extremizing respect ζ:

∂V (ζ)
∂ζ = 0 ⇒ (1− 3 ζ + 2 ζ2)M2 +m2 = 0

ζ ≈ 1

2
+ m2

M2 and ζ ≈ 1− m2

M2

Minimum at V
(
ζ ≈ 1− m2

M2

)
≈ m2

∑
k ϕk ϕ

⋆
k |VS
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Example: Two orthogonal �avons in A4

Ws = λa
[
(ϕaϕa)1 − x2a

]
Φ0

a + λb
[
(ϕbϕb)1 − x2b

]
Φ0

b

+ λc (ϕaϕb)1 Φ0

c + λd (ϕaϕa)3 Φ0

d + λe (ϕbϕb)3 Φ0

e .

Vanishing of the Driving �elds, Φ0
n, F-terms:

∂W

∂Φ0

a,b

= λa,b
[
(ϕa,bϕa,b)1 − x2a,b

]
= 0,

∂W

∂Φ0
c

= λc (ϕaϕb)1 = 0,

∂W

∂Φ0

d,ei

= λd,e ϕa,bi+1 ϕa,bi+2 = 0.

⇒ ⟨ϕa⟩ = (xa, 0, 0)
⟨ϕb⟩ = (0, xb, 0)

�
�

�
�Can we preserve this alignment in non-SUSY models??
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�� ��SUSY broken at high scales

Non-SUSY at low energies. Scalar potential from Supersymmetry,

plus soft-breaking terms.

V = VS + µ2a (ϕaϕ
∗
a)1 =

∑
n FnF

†
n + µ2a (ϕaϕ

∗
a)1

We require that SUSY-breaking preserves the supersymmetric

alignment, υ|V = ζ υ|VS

Fa0,b0 = λa,b

[
ζ2 (ϕa,bϕa,b)|VS

− x2a,b

]
= λa,b x2a,b

(
ζ2 − 1

)
Then, the scalar potential at the minimum,

V = λ2a x4a (1− ζ2)2 + λ2b x4b (1− ζ2)2 + ζ2µ2a x
2
a + ζ2µ2b x

2

b .
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If we minimize the full potential as a function of ζ,

∂V

∂ ζ
= 4 ζ (1− ζ2)

(
λ2a x4a + λ2b x4b

)
+ 2 ζ µ2a x

2

a + 2 ζ µ2b x
2

b = 0 .

⇒ ζ2 = 1− µ2a x
2
a + µ2b x

2

b(
λ2a x4a + λ2b x4b

) .

BUT soft masses arbitrary, we impose universal rescaling,

µ2a
λ2ax

2
a
=

µ2b
λ2bx

2

b
,

and then,

ζ2 = 1− µ2a
λ2a x2

= 1− µ2b
λ2b y2

.
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⇒ SUSY alignment maintained exactly!!

for invariant soft-breaking masses.

even for non-invariant soft-breaking:

V = VS + µ2kjϕ
∗
kϕj = µ2kj ϕ

a ∗
k ϕaj +M2

a ϕ
a ∗
i ϕai + V4 .

as before,

∂V

∂ϕ∗i
= M2

aϕi + µ2ij ϕj +
∂V4

∂ϕ∗i
= 0 .

µ2ij ϕj
∣∣
V

= −(1− ζ2) M2

a ϕi
∣∣
V
,

Still preserve vacuum alignment iif the SUSY VEV
is eigenvector of SUSY soft-breaking matrix.
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Conclusions

• New �avour structures will provide valuable information on the

origin of �avour

• In SUSY, non-universality always present in soft-breaking terms.

• Large reach of �avour observables in realistic �avour models,

beyond LHC.

• Even if SUSY not present at low energies, nice properties help in

�avor sector.

• Supersymmetric Vacuum alignment can be preserved in

softly-broken models.

�� ��Flavor needs SUSY and SUSY needs �avor
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Backup



25/25

�� ��Mediator Superpotential

W ⊃ g
∑

qi

(
ψqi χ̄−qi+1

ϕ + χqi χ̄−qi+1
ϕ + χqi−1

χ̄−qi ϕ̄ + χ̄−qiψ
c
r ,qiH

)
+ M

∑
qi
χqi χ̄−qi + Mϕϕ̄ + . . .

�� ��Diagrams in components

ψc
R,0

φ−1

ψ3

φ−1

χ̄−2

φ−1 H

χ̄−1 χ̄0

+ . . .

FX

M M M

ψc
R,0

φ−1

ψ3

φ−1

χ̄−2

φ−1 H

χ̄−1 χ̄0

+

FX

M M M
χ2

M
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