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Precision Tests of QED : g-2

• The precession frequency of the lepton spin in a magnetic field is 
controlled by the so-called g-factor (              )


• That can be compared with the cyclotron frequency


• Hence,  


• Precise measurement of g-2 is based on a clever way of measuring 
this frequency difference in a uniform magnetic field. 
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polarized muons of momentum 90 MeV/c were injected into a 6-meter long magnet

with a graded magnetic field. As the muons moved in almost circular orbits which

drifted transverse to the gradient, their spin vectors precessed with respect to their

momenta. The rate of spin precession is readily calculated. Assuming that !β · !B = 0,

the momentum vector of a muon undergoing cyclotron motion rotates with frequency

!ωC = −
q !B

mγ
. (13)

The spin precession relative to the momentum occurs at the difference frequency, ωa,

between the spin frequency in Equation 12 and the cyclotron frequency,

!ωa = !ωS − !ωC = −
(

g − 2

2

)
q !B

m
= −aµ

q !B

m
. (14)

The precession frequency ωa has the important property that it is independent of the

muon momentum. When the muons reached the end of the magnet, they were extracted
and their polarizations measured. The polarization measurement exploited the self-

analyzing property of the muon: more electrons are emitted opposite than along the

muon spin. For an ensemble of muons, ωa is the average observed frequency, and B is

the average magnetic field obtained by folding the muon distribution with the magnetic

field map.

The result from the first CERN experiment was[34] aµ+ = 0.001 145(22) (1.9%),

which can be compared with α/2π = 0.001 161 410 · · ·. With additional data this
technique resulted in the first observation of the effects of the (α/π)2 term in the QED

expansion[35].

The second CERN experiment used a muon storage ring operating at 1.28 GeV/c.

Vertical focusing was achieved with magnetic gradients in the storage-ring field. While

the use of magnetic gradients to focus a charged particle beam is quite common, it makes

a precision determination of the (average) magnetic field which enters into Equation 14
rather difficult for two reasons. Since the field is not uniform, information on where the

muons are in the storage ring is needed to correct the average field for the gradients

encountered. Also, the presence of gradient magnetic fields broadens the NMR line-

shape, which reduces the precision on the NMR measurement of the magnetic field.

A temporally narrow bunch of 1012 protons at 10.5 GeV/c from the CERN proton

synchrotron (PS) struck a target inside the storage ring, producing pions, a few of which
decay in such a way that their daughter muons are stored in the ring. A huge flux of

other hadrons was also produced, which presented a challenge to the decay electron

detection system. The electron detectors could only be placed in positions around the

ring well-removed from the production target, which limited their geometric coverage.

Of the pions which circulated in the ring for several turns and then decayed, only one in

a thousand produced a stored muon, resulting in about 100 stored muons per injected
proton bunch. The polarization of the stored muons was 26%[36].

In all of the experiments discussed in this review, the magnetic field was measured

by observing the Larmor frequency of stationary protons, ωp, in nuclear magnetic
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Figure 99: Tenth-order vertex diagrams. There are 12 672 diagrams in total, and they are divided into 32 gauge-invariant subsets over six super
sets. Typical diagrams of each subsets are shown as I(a)–(j), II(a)–(f), III(a)–(c), IV, V, and VI(a)–(k). There are 208 Set I diagrams (1 for I(a),
9 for I(b), 9 for I(c), 6 for I(d), 30 for I(e), 3 for I(f), 9 for I(g), 30 for I(h), 105 for I(i), and 6 for I(j)), 600 Set II diagrams (24 for II(a), 108 for
II(b), 36 for II(c), 180 for II(d), 180 for II(e), and 72 for II(f)), 1140 Set III diagrams (300 for III(a), 450 for III(b), and 390 for III(c)), 2072 Set IV
diagrams, 6354 Set V diagrams, and 2298 Set VI diagrams (36 for VI(a), 54 for VI(b), 144 for VI(c), 492 for VI(d), 48 for VI(e), 180 for VI(f),
480 for VI(g), 630 for VI(h), 60 for VI(i), 54 for VI(j), and 120 for VI(k)). The straight and wavy lines represent lepton and photon propagators,
respectively. The external photon vertex is omitted for simplicity and can be attached to one of the lepton propagators of the bottom straight line in
super sets I–V or the large ellipse in super set VI. Reprinted from Ref. [773].
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where Li2(z) is the dilogarithm and for |z| < 1,

Li2(z) = �
Z z

0

dt
t

log(1 � t) . (6.11)

For |z| > 1, the logarithm log(1 � z) is analytically continued and its principal value Log(1 � z) is instead used:

Log(1 � z) = log |1 � z| + iArg(1 � z) . (6.12)

For x = me/mµ < 1, the expansion is found to be

A(4)
2 (mµ/me) = �25

36
� log x

3
+
⇡2x
4
+ (3 + 4 log x)x2 � 5⇡2x3
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is 2.747 5720(14) ⇥ 10�12 in total. The hadronic and electroweak corrections are ahad
e = 1.693(12) ⇥ 10�12 and

aEW
e = 0.03053(23)⇥10�12, respectively, both quoted from Refs. [27, 219].46 The obtained ↵�1(ae) is 0.104(43)⇥10�6

smaller than Eq. (6.26) and the discrepancy is 2.4�. When ↵(ae) is used to evaluate aQED
µ , one must keep in mind

that ↵(ae) and the theoretical formula Eq. (6.2) are strongly correlated with each other. The mass-independent terms
A(2n)

1 are common to the QED formulae for both ae and aµ. Even for the mass-dependent terms, the same computer
programs are used for numerical calculation just by changing loop-fermion masses.

6.5. QED contribution to aµ
Summing the terms in the perturbative QED expansion up to tenth order, we obtain the QED contribution to

the muon anomalous magnetic moment, as summarized in Table 18. The two possible choices for the fine-structure
constant, ↵(Cs) of Eq. (6.26) and ↵(ae) of Eq. (6.29), lead to

aQED
µ (↵(Cs)) = 116 584 718.931(7)(17)(6)(100)(23)[104] ⇥ 10�11 , (6.30)

aQED
µ (↵(ae)) = 116 584 718.842(7)(17)(6)(100)(28)[106] ⇥ 10�11 , (6.31)

where the uncertainties are due to the ⌧-lepton mass m⌧, the eighth-order QED, the tenth-order QED, the estimate of the
twelfth-order QED, the fine-structure constant ↵, and the sum in quadrature of all of these. Apart from the respective
input for ↵ and the lepton masses, these final values are based on the latest QED calculations from Refs. [33, 34],
which should be cited in any work that uses or quotes Eqs. (6.30) and (6.31). The di↵erence between Eq. (6.30)
and Eq. (6.31) is 0.09 ⇥ 10�11, so that we may use either one as far as comparison with the on-going experiments is
concerned.

46See also the recent evaluation in Ref. [7], ahad
e = 1.7030(77)⇥10�12, which is fully compatible but more precise. Both evaluations use aHLbL

e =
0.037(5)⇥10�12 [27, 219], whose central value is close to previous estimates, aHLbL

e = 0.035(10)⇥10�12 [475] and aHLbL
e = 0.039(13)⇥10�12 [476],

but in view of the relative accuracy that we quote in Eq. (4.92), its uncertainty may be underestimated.
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5 QED Loop Contributions 

See, for example,  Aoyama, Kinoshita, Nio’17, 



Muon g-2 factor

• The muon is a heavier cousin of the electron with a mass that is about 200 times 
larger.


• The muon g-2 factor is affected by the same corrections as the electron one, but also 
by the contribution of weak gauge bosons and heavy mesons in QCD become 
relevant

4
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◆2Electroweak contribution

9/17/14B. Casey, muon g-27/29

Gnendiger, Stockinger, Stockinger-Kim 
PRD 88, 053005 (2013)

(G = longitudinal component of 
gauge boson)

(g  2) 
2

(EW )= 0.000000001536(10)

Calculated analytically to 2nd order and estimated out to 4th order
Recently updated to included measured value of the Higgs mass

This is 10-9 and the leading term is 10-3 so we call this a ppm correction

Very convenient way of thinking about different contributions:
New physics with weak scale masses and weak scale couplings naively 

gives a ppm level correction to muon g-2

The Program II:  Data driven light-by-light

• New detectors installed in KLOE-II to measure outgoing e+e- in two photon collisions

• Can measure transition form factors down to unprecedented q2

• This data can be used to verify the models used to calculate hadronic light-by-light

• Recent workshop held in Mianz produced a draft roadmap for a data driven 
approach to hLbL (arXiv:1407.4021)

• Projections for future improvement do not assume a reduction in uncertainty.  Only a 
more robust uncertainty.  

9/17/14B. Casey, muon g-215/29

Leading hadronic contribution

9/17/14B. Casey, muon g-28/29

2.2.1 Hadronic cont r ibut ion

Thehadronic contribut ion toaµ isabout 60 ppm of thetotal value. Thelowest-order diagram
shown in Fig. 3(a) dominates this contribut ion and its error, but the hadronic light-by-light
contribut ion Fig. 3(e) is also important. We discuss both of these contribut ions below.

Figure3: Thehadronic contribut ion to themuon anomaly, where thedominant contribut ion
comes from the lowest-order diagram (a). The hadronic light-by-light contribut ion is shown
in (e).
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Figure 4: (a) The “cut” hadronic vacuum polarizat ion diagram; (b) The e+ e− annihilat ion
into hadrons; (c) Init ial state radiat ion accompanied by the production of hadrons.

The energy scale for the virtual hadrons is of order mµc2, well below the perturbat ive
region of QCD. However it can be calculated from the dispersion relat ion shown pictorially
in Fig. 4,

ahad;LOµ =
⇣↵mµ

3⇡

⌘2 Z 1

m2
⇡

ds
s2
K (s)R(s), where R ⌘ σtot (e+ e− ! hadrons)

σ(e+ e− ! µ+ µ− )
, (8)

using the measured cross sect ions for e+ e− ! hadrons as input, where K (s) is a kinemat ic
factor ranging from 0.4 at s = m2

⇡ to 0 at s = 1 (see Ref. [16]). This dispersion relat ion
relates the bare cross sect ion for e+ e− annihilat ion into hadrons to the hadronic vacuum
polarizat ion contribut ion to aµ. Because the integrand contains a factor of s− 2, the values
of R(s) at low energies (the ⇢resonance) dominate the determination of ahad;LOµ , however
at the level of precision needed, the data up to 2 GeV are very important. This is shown
in Fig. 5, where the left-hand chart gives the relat ive contribut ion to the integral for the
di↵erent energy regions, and the right-hand gives the contribut ion to the error squared on
the integral. Thecontribut ion isdominated by the two-pion final state, but other low-energy

5

Hadronic vacuum polarization

Use analyticity to convert into a 
dispersion relation

Use optical theorem in 
reverse to convert to a 
cross section

Figs from T. Teubner

Dominant 
term:

e

J
e

S��

S��

W

W

S��

S��Q

Use CVC and isospin
to convert to m(S+S0) 
in W�decays

depends on the parameterization of the one- and two-loop results. Specifically, an accidental cancellation among the
three-loop corrections was observed in Ref. [35] if the two-loop result is parameterized in terms of GF ↵. In this case
the three-loop logarithms are numerically negligible. Hence,

aEW(�3)
µ = 0(0.20) ⇥ 10�11 , (7.15)

where the uncertainty estimate is from Ref. [35]. It corresponds to estimating the nonleading logarithmic three-loop
contributions to be below a percent of the two-loop contributions.

Summing up the previous numerical results of the one-loop contributions Eq. (7.1), the bosonic two-loop con-
tributions Eq. (7.12), the four fermionic two-loop contributions Eqs. (7.8), (7.9), (7.13), and (7.14), and the leading
three-loop logarithms Eq. (7.15), we obtain

aEW
µ = 153.6(1.0) ⇥ 10�11 , (7.16)

as already given in Eq. (7.3). This value is mainly based on Refs. [35, 36], which should be cited in any work that
uses or quotes Eq. (7.16). The result is illustrated in Fig. 103, which is an update of Fig. 5 from Ref. [36]. We
assess the final theory uncertainty of these contributions to be ±1.0 ⇥ 10�11, the estimate of Ref. [35] for the overall
hadronic uncertainty from the diagrams of Fig. 102b, which is now by far the dominant source of uncertainty of the
EW contributions. The uncertainty from unknown three-loop contributions and neglected two-loop terms suppressed
by M2

Z/m
2
t and (1� 4s2

W) is significantly smaller and the uncertainty due to the experimental uncertainty of the Higgs-
boson, W-boson, and top-quark masses is well below 10�12 and thus negligible.
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aLBL
µ = 92(19)⇥ 10�11 Vacuum polarization


contributions computed

using hadron cross section

data and dispersion relations

(optical theorem)
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Figure 14: The ⇡+⇡� cross section from KLOE combination, BABAR, CMD-2, SND, and BESIII in the ⇢–! interference region [82]. Reprinted
from Ref. [82].
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Figure 15: Comparison of results for aHVP, LO
µ [⇡⇡], evaluated between 0.6 GeV and 0.9 GeV for the various experiments.

computed taking into account all the correlations between the measurements, for both the statistical and systematic
uncertainties. They show some systematic deviations from unity (Fig. 16) that are statistically significant and not
fully taken into account by the local scaling procedure [170], leading to what is likely an underestimated systematic
uncertainty in the combined result. Since these deviations largely cancel when integrating the spectrum, the integral
values are consistent [82]. These discrepancies are not present in the ratio between the KLOE-2012 and KLOE-2010
measurements, which is consistent with unity in the whole energy range (see Fig. 16).

Very recently the SND collaboration has presented their results at VEPP-2000 on the ⇡+⇡� channel [171] with
increased statistics and reduced systematic uncertainties (0.8%) compared to their analysis at VEPP-2M discussed
above. They perform a fit of the pion form factor using a vector-meson dominance (VMD) ansatz for the ⇢ reso-
nance together with ! and ⇢0 contributions. This description of their data is used to compare with existing data in
a convenient way. The resulting comparison ratios are shown in Fig. 17 separately for BABAR, KLOE-2008, and
KLOE-2010, and VEPP2M results from SND and CMD-2. While there are some small deviations from the latter two
results, more severe discrepancies are found with KLOE and BABAR. On the one hand, below 0.7 GeV both KLOE-
2008 and BABAR are higher than SND by 2–4%, while KLOE-2010 is more in agreement. On the other hand, above
0.7 GeV SND agrees well with BABAR, while both KLOE measurements are below by 2–3%. If these observations
could provide some hints for understanding the KLOE–BABAR discrepancy, it is clear that still more experimental
investigations with high precision are needed for further progress in this crucial ⇡+⇡� contribution. The new SND
results are not yet included in the data combinations discussed in this WP version, but will be added later after they

26

Hadronic Vacuum Polarization  Contributions 

based on Data Driven Methods

e+e- hadronic cross section + dispersion relations
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Figure 36: The ⇡+⇡�(�) contribution to ahad,LO
µ
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s < 0.88 GeV obtained from this

and other experiments.

Experiment a⇡
+⇡�,LO

µ , 10�10

before CMD2 368.8± 10.3
CMD2 366.5± 3.4
SND 364.7± 4.9
KLOE 360.6± 2.1
BABAR 370.1± 2.7
BES 361.8± 3.6
CLEO 370.0± 6.2
SND2k 366.7± 3.2
CMD3 379.3± 3.0

Table 4: The ⇡+⇡�(�) contribution to ahad,LO
µ

from energy range 0.6 <
p
s < 0.88 GeV ob-

tained from this and other experiments.

in Table. 4, where the first line in the table corresponds to the combined result of all
measurements before CMD-2 experiment.

The pion formfactor mesuarements from the di↵erent RHO2013 and RHO2018 seasons
of the CMD-3 give the statistically consistent result in the ahad,LOµ integral as:

a⇡⇡,LOµ (RHO2013) = (380.06± 0.61± 3.64)⇥ 10�10

a⇡⇡,LOµ (RHO2018) = (379.30± 0.33± 2.62)⇥ 10�10

a⇡⇡,LOµ (average) = (379.35± 0.30± 2.95)⇥ 10�10 (18)

Two CMD-3 values are in very good agreement in spite of a very di↵erent data taking
conditions (as was discussed earlier). The combined CMD-3 result was obtained in very
conservative assumption of 100% correlation between systematic errors of two data sets. The
CMD-3 result is significantly higher compared to other e+e� data, both energy scan and ISR.
Although this evaluation was done in the limited energy range only and the full evaluation
of ahad,LOµ is yet to be done, it is clear that our measurement will reduce tension between
the experimental value of the anomalous magnetic moment of muon and its Standard Model
prediction.

9. Conclusions

The measurement of e+e� ! ⇡+⇡� cross section was performed by the CMD-3 exper-
iment at the VEPP-2000 collider in the energy range

p
s = 0.32 ÷ 1.2 GeV in 209 energy

points. The analysis was based on the biggest ever used collected statistics at ⇢ resonance
region with 34 ⇥ 106 ⇡+⇡� events at

p
s < 1 GeV. The large statistics allows to study the

possible systematic e↵ects in details. The development of the analysis strategy, cross-checks

42

Recent CMD3 Result
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Fermilab g-2 Experiment

Accurate determination of muon Spin precession

in a delicately uniform magnetic field
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The muon g-2 collaboration confirms the Brookhaven result. 

Deviation of 4.2 standard deviations from SM Expectations.


A very important result, that will be further tested in the coming years.

I. INTRODUCTION

The Standard Model (SM) of particle physics has built its reputation on decades of

measurements at experiments around the world that testify to its validity. With the discovery

of the Higgs boson almost a decade ago [1, 2] all SM particles have been observed and the

mechanism that gives mass to the SM particles, with the possible exception of the neutrinos,

has been established. Nonetheless, we know that physics beyond the SM (BSM) is required

to explain the nature of dark matter (DM) and the source of the observed matter-antimatter

asymmetry. Furthermore, an understanding of some features of the SM such as the hierarchy

of the fermion masses or the stability of the electroweak vacuum, is lacking.

The direct discovery of new particles pointing towards new forces or new symmetries

in nature will be the most striking and conclusive evidence of BSM physics. However, it

may well be the case that BSM particles lie beyond our present experimental reach in mass

and/or interaction strength, and that clues for new physics may first come from results for

precision observables that depart from their SM expectations. With that in mind, since

the discovery of the Higgs boson, we are straining our resources and capabilities to measure

the properties of the Higgs boson to higher and higher accuracy, and flavor and electroweak

physics experiments at the LHC and elsewhere are pursuing a complementary broad program

of precision measurements. Breakthroughs in our understanding of what lies beyond the SM

could occur at any time.

Recently, new results of measurements involving muons have been reported. The LHCb

experiment has reported new values of the decay rate of B-mesons to a kaon and a pair

of muons compared to the decay into a kaon and electrons [3], providing evidence at the

3 �-level of the violation of lepton universality. This so-called RK anomaly joins the ranks

of previously reported anomalies involving heavy-flavor quarks such as the bottom quark

forward-backward asymmetry at LEP [4, 5], and measurements of meson decays at the LHC

and B-factories such as RK⇤ [6–8] and RD(⇤) [9–14]. The Fermilab Muon (g-2) experiment

has just reported a new measurement of the anomalous magnetic moment of the muon,

aµ ⌘ (gµ � 2) /2. The SM prediction of aµ is known with the remarkable relative precision

of 4 ⇥ 10�7, a
SM

µ
= 116 591 810(43) ⇥ 10�11 [15–35]. From the new Fermilab Muon (g-

2) experiment, the measured value is a
exp, FNAL

µ
= 116 592 040(54) ⇥ 10�11 [36], which

combined with the previous E821 result a
exp, E821

µ
= 116 592 089(63) ⇥ 10�11 [37], yields a

2

value a
exp

µ
= 116 592 061(41) ⇥ 10�11.

An important point when considering the tension between experimental results and the

SM predictions are the current limitations on theoretical tools in computing the hadronic

vacuum polarization (HVP) contribution to a
SM

µ
, which is governed by the strong interaction

and is particularly challenging to calculate from first principles. The most accurate result

of the HVP contribution is based on a data-driven result, extracting its value from precise

and reliable low-energy (e+e
�

! hadrons) cross section measurements via dispersion theory.

Assuming no contribution from new physics to the low energy processes and conservatively

accounting for experimental errors, this yields a value a
HVP

µ
= 685.4(4.0)⇥10�10 [15, 20–26],

implying an uncertainty of 0.6 % in this contribution.1 The SM prediction for the anomalous

magnetic moment of the muon and the measured value then di↵er by 4.2 �,

�aµ ⌘ (aexp

µ
� a

SM

µ
) = (251 ± 59) ⇥ 10�11

. (1)

It is imperative to ask what these anomalies may imply for new physics. The most

relevant questions that come to mind are: Can the aµ and R
K(⇤) anomalies be explained

by the same BSM physics? Can they give guidance about the nature of DM? Are they

related to cosmological discrepancies? How constrained are the possible solutions by other

experimental searches? What are future experimental prospects for the possible solutions?

In Sec. II we provide a brief overview of the many models which have been previously

proposed in the literature to explain the (gµ�2) anomaly and consider their impact on other

possible anomalies and on unresolved questions of the SM. Then, in Sec. III, we discuss a

supersymmetric solution in the most simplistic supersymmetric model at hand, the Minimal

Supersymmetric Standard Model (MSSM). We focus on a region of the parameter space of

the MSSM where the (gµ � 2) anomaly can be realized simultaneously with a viable DM

candidate. We show that in the region of moderate |µ| and moderate-to-large values of

tan �, a Bino-like DM candidate can be realized in the proximity of blind spots (that require

µM1 < 0) for spin independent direct detection experiments [43]. In this way, our MSSM

scenario explores a di↵erent region of parameter space than the one considered in the study

1 The HVP contribution has recently been computed in lattice QCD, yielding a higher value of aHVP

µ =

708.7(5.3) ⇥ 10�10 [38]. Given the high complexity of this calculation, independent lattice calculations

with commiserate precision are needed before confronting this result with the well tested data-driven one.

We stress that if a larger value of the HVP contribution were confirmed, which would (partially) explain

the (gµ � 2) anomaly, new physics contributions will be needed to bring theory and measurements of

(e+e� ! hadrons) in agreement [39–42]. 3
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experimental searches? What are future experimental prospects for the possible solutions?

In Sec. II we provide a brief overview of the many models which have been previously

proposed in the literature to explain the (gµ�2) anomaly and consider their impact on other

possible anomalies and on unresolved questions of the SM. Then, in Sec. III, we discuss a

supersymmetric solution in the most simplistic supersymmetric model at hand, the Minimal

Supersymmetric Standard Model (MSSM). We focus on a region of the parameter space of

the MSSM where the (gµ � 2) anomaly can be realized simultaneously with a viable DM

candidate. We show that in the region of moderate |µ| and moderate-to-large values of

tan �, a Bino-like DM candidate can be realized in the proximity of blind spots (that require

µM1 < 0) for spin independent direct detection experiments [43]. In this way, our MSSM

scenario explores a di↵erent region of parameter space than the one considered in the study

1 The HVP contribution has recently been computed in lattice QCD, yielding a higher value of aHVP

µ =

708.7(5.3) ⇥ 10�10 [38]. Given the high complexity of this calculation, independent lattice calculations

with commiserate precision are needed before confronting this result with the well tested data-driven one.

We stress that if a larger value of the HVP contribution were confirmed, which would (partially) explain

the (gµ � 2) anomaly, new physics contributions will be needed to bring theory and measurements of

(e+e� ! hadrons) in agreement [39–42]. 3

Observe that the g-2 errors are mainly statistical ones.

arXiv:2104.03281
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Comments on the current  g-2 Anomaly
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In a sense, the current discrepancy is between the experimental 
determination of g-2, supported by the Brookhaven and the 
Fermilab g-2 experiments, and the e+e- hadronic cross section 
data.


In that sense, this anomaly should be taken seriously.   The current 
tension in the hadronic cross section data (KLOE vs BABAR), that 
cannot lead to an explanation of the measured anomaly, and has 
already been taken into account in the systematic errors. 


    Recent CMD-3 result has not yet been taken into account.


The good thing is that the g-2 collaboration will reduce the error 
by a factor 2 by next spring and there will be further work on the 
theoretical estimates. 

arXiv:2006.04822
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Data accumulated so far

• Accumulated 7.4xBNL 
through run 3

• Full run 1 has ~1.2xBNL 
after Data Quality Cuts

• Improvements between
run1 and run 2/3 for:
– Better beam dynamics
– Reduced muon loss
– More stable

temperature

20
G. Venanzoni,  SIF, 16  Sett 2020

RUN1: March-July 2018, ~2x BNL (à 1.2 xBNL after data quality)
RUN2: March 2019 – July 2019 ~2x BNL 
RUN3: Nov 2019 – March 2020 ~3.2 x BNL



New physics ?  Too many possibilities.
Marciano and Czarnecki, hep-ph/ 0102122

J. Liu,  N. McGinnis,  X. Wang, C.W.   arXiv:1810.11028,  2110.14665

Φ

II. G-2 ANOMALIES FOR ELECTRON AND MUON

In our approach, the new physics only comes from the scalar sector, where a singlet light

complex scalar � solves both �ae/µ. We use the fact that the contributions to g � 2 of

scalars with scalar and pseudo-scalar coupling to leptons are of opposite sign. The pseudo-

scalar �I from � contributes only to �ae because of a global PQ-like symmetry and the

CP symmetry, while the CP-even scalar �R is responsible for the contributions to �aµ.

Therefore, the relative sign between �ae and �aµ has its origin from the CP properties of

scalars.

In the following we begin with a generic Yukawa coupling of a scalar to electron or

muon. To be specific, a scalar with both scalar and pseudo-scalar couplings to leptons,

S ¯̀(gR + igI�5) `, it can contribute to the anomalous magnetic dipole moment as [71, 72]

�a` =
1

8⇡2

Z
1

0

dx
(1� x)2 ((1 + x)g2

R
� (1� x)g2

I
)

(1� x)2 + x (mS/m`)
2

. (3)

However, if a real scalar has both non-zero scalar and pseudo-scalar couplings, gR and

gI , respectively, the CP is violated and lepton electric dipole moment will be generated.

To avoid this constraint, we require CP conservation that each scalar has either scalar or

pseudo-scalar couplings. In particular, we assume the presence of a pseudo-scalar �I that

couples to electron and a CP-even scalar which couples to muon as

Lint = ig
e

�I
�I ē�5e+ g

µ

�R
�Rµ̄µ. (4)

We show the parameter space for �ae/µ in Eq. (1) and Eq. (2) in Fig. 1 and the relevant

constraints for the couplings are added in the plot. For the coupling to electrons, using

electron beam, the beam dump experiments E137 [73], E141 [74], and Orsay [75] may produce

scalars via Bremsstrahlung-like process. The scalar would travel macroscopic distances and

decay back to electron pairs. The lack of observation of such events results in the orange

shaded exclusion region [67, 68] in Fig. 1 (a). The JLab experiment HPS [76] projection for

scalars [68] is plotted as a region bounded by the dot-dashed dark cyan line as well.

The BaBar collaboration searches for dark photons through the process e+e� ! �A
0 [77],

where A
0
! `

+
`
� decays democratically. Ref. [78] recasts the results and give constraints

for scalars via e
+
e
�
! �S, which is shown in green shaded region in Fig. 1 (a). In the BaBar

study, A0
! µ

+
µ
� channel is more sensitive than e

+
e
�. The constraint for scalar from [78]
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FIG. 1. The color shaded regions with solid boundary are excluded by current experiments, the

regions with dot-dashed boundaries are future projections. The black star corresponds to the

benchmark in Table. II. (a): The parameter space (ge
�I
,m�I ) for �ae and the constraints from

di↵erent experiments. The shaded orange region is from beam dump experiment [67, 68] and the

dot-dashed dark cyan contour area is from future projection for HPS [68, 76]. The collider limits

include shaded green region searching for e
+
e
�

! �� at BaBar [78], shaded purple region from

KLOE [81, 82] and Belle-II projection [68, 79] which is shown in dot-dashed green contour region.

(b): The parameter space (gµ
�R

, m�R) for �aµ and the constraints from collider searches. BaBar

search via e
+
e
�
! µ

+
µ
�
� is shown in the shaded green region [68, 84] and future projection for

Belle-II [84] is shown by the green dot-dashed contour. The ATLAS experiment has looked for

exotic Z decay Z ! 4µ at LHC Run-I, which has been re-casted for scalar mediator by Ref. [84]

, and the limits for both Run-I and HL-LHC are shown by shaded brown region and dot-dashed

brown contour. The CMS collaboration has studied a similar process at 13 TeV with an integrated

luminosity of 77.3 fb�1 , but required a dilepton resonance from two opposite-sign muons [86],

which leads to the exclusion of the red shaded region.

III. EFT MODEL WITH A LIGHT COMPLEX SCALAR

In this section, we demonstrate at the e↵ective field theory (EFT) level that a complex

scalar �, accompanied with some symmetry assumption can simultaneously solve the �ae

7
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Scalar that couples to muons which induces a photon coupling. 
Cosmological bound in the 1MeV region may be avoided if φ 
is the source of neutrino masses
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Bounds on gauge bosons coupled to muons but not electrons or quarks
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Constraints on Muon-specific light boson
2

N N

µ+

µ�

�
�

k1
k2

p+

p�

q

k Z �

�

FIG. 1. The leading order contribution of the Z0 to neutrino
trident production (another diagram with µ+ and µ� reversed
is not shown). Other contributions at the same order in g0

are further suppressed by the Fermi scale.

is not directly relevant for our work, and thus we suppress
any additional pieces in (1) related to the corresponding
Higgs sector.

This model contributes to the neutrino trident pro-
duction at lowest order through the diagram shown in
Fig. 1. This contribution interferes with the SM contri-
bution coming from W±/Z exchange. In order to gain
insight into the di↵erent contributions, in what follows
we provide analytical results using the equivalent pho-
ton approximation (EPA) [14, 15]. Under the EPA, the
full cross-section of a muon-neutrino scattering with a
nucleus N is related to the cross-section of the neutrino
scattering with a real photon through,

�(⌫µN ! ⌫µNµ+µ�) =

Z
�(⌫µ� ! ⌫µµ

+µ�) P (s, q2) .(2)

Here, P (q2, s) is the probability of creating a virtual pho-
ton in the field of the nucleus N with virtuality q2 which
results in the energy being

p
s in the center-of-mass frame

of the incoming neutrino and a real photon. This proba-
bility is given by [16]

P (q2, s) =
Z2e2

4⇡2

ds

s

dq2

q2
F 2(q2) , (3)

where Ze and F (q2) are the charge and the electromag-
netic form-factor of the nucleus, respectively. The in-
tegral over s is done from 4m2 to 2E⌫q, with the muon
mass m and the neutrino energy E⌫ . The q integral has a
lower limit of 4m2/(2E⌫) and the upper limit is regulated
by the exponential form-factor. We thus concentrate on
the computation of the cross-section �(⌫µ� ! ⌫µµ+µ�).
Computations of the full ⌫µN ! ⌫µNµ+µ� process have
been performed in [17–22] in the context of the V-A the-
ory and of the SM.

We begin with the di↵erential cross-section for the
⌫� ! ⌫µ+µ� sub-process associated with a pure V-A
charged interaction between neutrinos and muons. It is
given symbolically by

d� =
1

2s
dPS3

0

@1

2

X

pol

|M1M2|
2

1

A G2

F
e2

2
, (4)

where GF =
p

2g2/(8M2

W
) is the Fermi constant. The

3-body phase-space (with correction of a typo in the cor-
responding expression of ref. [23]) is given by

dPS3 =
1

2

1

(4⇡)2
dt

2s

d`

2⇡
v
d⌦0

4⇡
, (5)

where ` = (p+ + p�)2 is the square of the invariant
mass of the µ+µ� pair, ⌦0 is the solid angle with re-
spect to the photon four-vector in the µ+µ� rest-frame,
v =

p
1 � 4m2/` is the velocity of each muon in that

frame, and t ⌘ 2k · q. M1 and M2 in (4) are the neutrino
and the muon-pair blocks in the amplitude, that form
the total amplitude according to M = GFep

2
M1M2. The

factor of 1/2 in (4) originates from the average over the
incoming photon polarizations.

Using M1,2 explicitly, and summing over spins and po-
larizations, we get (in agreement with result of ref. [16])

1

2

X

pol

|M1M2|
2

⌘ 512 |MV�A|
2

' 512 ⇥

 
(6)

(k1 · p+)(q · k2)(q · p�)

A2
+

(k2 · p�)(q · k1)(q · p+)

B2

+
2(k1 · p+)(k2 · p�)(p+ · p�)

AB
�

(k2 · p�)(p+ · p�)(q · k1)

AB

�
(k1 · p+)(p+ · p�)(q · k2)

AB
�

(k1 · p+)(k2 · p�)(q · p�)

AB

+
(k1 · p+)(k2 · p+)(q · p�)

AB
+

(k1 · p�)(k2 · p�)(q · p+)

AB

�
(k1 · p+)(k2 · p�)(q · p+)

AB

!
,

where A = (p� � q)2 � m2 and B = (q � p+)2 � m2.
The result for the full SM contribution together with the
Z0 vector-boson exchange can be obtained from the V-A
matrix-element contribution, if we neglect terms propor-
tional to the muon mass. The full square of the matrix-
element is defined as in Eq. (6) but with,

1

2

X

pol

|M1M2|
2 = 512 |MV�A|

2
⇥

1

2

 
C2

V
+ C2

A
(7)

�2CVC
(Z

0
)

V

m2

Z0

k2 � m2

Z0
+

✓
C(Z

0
)

V

m2

Z0

k2 � m2

Z0

◆2
!

.

Here, k is the momentum of the exchanged Z0 and the SM
coe�cients of the vector and axial-vector currents in the
interaction of muon-neutrinos with muons are CV = 1

2
+

2 sin2 ✓W , CA = 1

2
, with ✓W being the weak mixing angle.

The second line in Eq. (7) features the Z0 contribution
with the vector-current coe�cient defined as,

C(Z
0
)

V
= 4

M2

W

m2

Z0

g02

g2
=

v2
SM

v2
Z0

, (8)

where vSM = 246 GeV is the SM Higgs vacuum expecta-
tion value and v

Z0 = mZ0/g0.

Altmannshofer, Gori,

Pospelov, Yavin’14



Many other Solutions

• Axion light particles (beyond the naive one loop solution)


• Leptoquarks, for suitable arrangement of couplings


• Two Higgs doublet models, for certain arrangement of the 
Higgs mass splittings…


• Are any of these theories connected to a further 
understanding of physics at high energies ?

13
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III. TINY (gµ � 2) MUON WOBBLE WITH SMALL |µ| IN THE MSSM

Supersymmetric extensions of the SM remain among the most compelling BSM scenar-

ios [84–86], not least because in supersymmetric theories the stability of the Higgs mass pa-

rameter under quantum corrections can be ensured. In minimal supersymmetric extensions

of the SM, the SM-like Higgs is naturally light [87–97] and the corrections to electroweak

precision as well as flavor observables tend to be small, leading to good agreement with

observations. Supersymmetric extensions can also lead to gauge coupling unification and

provide a natural DM candidate, namely the lightest neutralino.

In this section, we discuss the regions of parameter space of the Minimal Supersymmetric

Standard Model (MSSM) [84–86] where the (gµ�2) anomaly can be simultaneously realized

with a viable DM candidate. Related recent (but prior to the publication of the Fermilab

Muon (g-2) result) studies can, for example, be found in Refs. [44, 45, 98–100]. One crucial

di↵erence in the region of parameter space we study here compared to the very recent work

in Refs. [44, 45] is that we show how the experimentally observed value of aµ can be explained

in the MSSM together with a viable DM candidate for moderate (absolute) values of the

Higgsino mass parameter |µ| . 500 GeV. In this region of parameter space, a Bino-like

neutralino can be an excellent DM candidate if its (spin independent) direct detection cross

section is suppressed by the so-called blind spot cancellations [43], which require µ and the

Bino mass parameter, M1, to have opposite sign.

A. �aµ and Direct Dark Matter Detection Constraints

The MSSM contributions to aµ have been discussed extensively in the literature, see, for

example, Refs. [100–107]. The most important contributions arise via chargino-sneutrino

and neutralino-smuon loops, approximately described by [100]

a
e�±�evµ
µ

'
↵m

2

µ
µM2 tan �

4⇡ sin2
✓Wm

2

evµ

2

4
f�±

⇣
M

2

2
/m

2

evµ

⌘
� f�±

⇣
µ
2
/m

2

evµ

⌘

M
2

2
� µ2

3

5 , (2)

a
e�0�eµ
µ

'
↵m

2

µ
M1 (µ tan � � Aµ)

4⇡ cos2 ✓W

⇣
m

2

eµR
� m

2

eµL

⌘
"

f�0

�
M

2

1
/m

2

eµR

�

m
2

eµR

�
f�0

�
M

2

1
/m

2

eµL

�

m
2

eµL

#
, (3)

7

Supersymmetry
Barbieri, Maiani’82, Ellis et al’82, Grifols and Mendez’82

Moroi’95, Carena, Giudice, CW’95, Martin and Wells’00…

where M2 is the Wino mass parameter and m ef are the scalar particle ef masses, with the

loop functions

f�±(x) =
x
2
� 4x + 3 + 2 ln(x)

(1 � x)3
, (4)

f�0(x) =
x
2
� 1 � 2x ln(x)

(1 � x)3
; (5)

see Refs. [104, 107] for the full (one-loop) expressions. It is interesting to note that these two

contributions can be of the some order of magnitude: The chargino-sneutrino contribution is

proportional to Higgsino-Wino mixing which can be sizeable, but suppressed by the small-

ness of the Higgsino-sneutrino-muon coupling which is proportional to the muon Yukawa

coupling, / mµ tan �/v with the SM Higgs vacuum expectation value v. The neutralino-

smuon contribution, on the other hand, arises via muon-smuon-neutralino vertices which are

proportional to the gauge couplings, but is suppressed by the small smuon left-right mixing,

/ mµ(µ tan � � Aµ)/(m2

eµR
� m

2

eµL
). Regarding corrections beyond one-loop [108, 109], the

most relevant contribution is associated with corrections to the muon Yukawa coupling, �µ.

These corrections become relevant at large values of µ tan � and can be re-summed at all

orders of perturbation theory [110]. While these corrections lead to small modifications of

aµ, they do not change the overall dependence of �aµ on the masses of the supersymmetric

particles.

From Eqs. (2)–(3) we can observe that the sign of the MSSM contributions to aµ depend

sensitively on the relative signs of the gaugino masses M1 and M2 and the Higgsino mass

parameter µ. As we will discuss shortly, a DM candidate compatible with the current null-

results from direct detection experiments can be realized for |µ| . 500 GeV if M1 and µ have

opposite signs. For this combinations of signs, the contribution from the neutralino-smuon

loop to aµ will be negative, a
e�0�eµ
µ

< 0. Since the measured value of aµ is larger than the

SM prediction by �aµ ' 25 ⇥ 10�10, we require the chargino-sneutrino contribution to be

positive and larger than the neutralino-smuon contribution. This can be realized if M2 has

the same sign as µ and if |M2| is of similar size as |µ| and the soft smuon masses. In the

regime of moderate or large values of tan �, and assuming all weakly interacting sparticles

have masses of the same order, em, one obtains approximately

�aµ ' 1.3 ⇥ 10�9 tan � ⇥

✓
100 GeV

em

◆2

, (6)
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Rough Approximation

• If all weakly interacting supersymmetric particle masses were 
the same, and the gaugino masses had the same sign, then


• This implies that, for tanβ = 10,  particle masses of order 250 
GeV could explain the anomaly, while for  values of tanβ = 60 
( consistent with the unification of the top and bottom 
Yukawa) these particle masses could be of order 700 GeV.

15

(�aµ)
SUSY ' 150⇥ 10�11

✓
100 GeV

mSUSY

◆2

tan�

value a
exp

µ
= 116 592 061(41) ⇥ 10�11.

An important point when considering the tension between experimental results and the

SM predictions are the current limitations on theoretical tools in computing the hadronic

vacuum polarization (HVP) contribution to a
SM

µ
, which is governed by the strong interaction

and is particularly challenging to calculate from first principles. The most accurate result

of the HVP contribution is based on a data-driven result, extracting its value from precise

and reliable low-energy (e+e
�

! hadrons) cross section measurements via dispersion theory.

Assuming no contribution from new physics to the low energy processes and conservatively

accounting for experimental errors, this yields a value a
HVP

µ
= 685.4(4.0)⇥10�10 [15, 20–26],

implying an uncertainty of 0.6 % in this contribution.1 The SM prediction for the anomalous

magnetic moment of the muon and the measured value then di↵er by 4.2 �,

�aµ ⌘ (aexp

µ
� a

SM

µ
) = (251 ± 59) ⇥ 10�11

. (1)

It is imperative to ask what these anomalies may imply for new physics. The most

relevant questions that come to mind are: Can the aµ and R
K(⇤) anomalies be explained

by the same BSM physics? Can they give guidance about the nature of DM? Are they

related to cosmological discrepancies? How constrained are the possible solutions by other

experimental searches? What are future experimental prospects for the possible solutions?

In Sec. II we provide a brief overview of the many models which have been previously

proposed in the literature to explain the (gµ�2) anomaly and consider their impact on other

possible anomalies and on unresolved questions of the SM. Then, in Sec. III, we discuss a

supersymmetric solution in the most simplistic supersymmetric model at hand, the Minimal

Supersymmetric Standard Model (MSSM). We focus on a region of the parameter space of

the MSSM where the (gµ � 2) anomaly can be realized simultaneously with a viable DM

candidate. We show that in the region of moderate |µ| and moderate-to-large values of

tan �, a Bino-like DM candidate can be realized in the proximity of blind spots (that require

µM1 < 0) for spin independent direct detection experiments [43]. In this way, our MSSM

scenario explores a di↵erent region of parameter space than the one considered in the study

1 The HVP contribution has recently been computed in lattice QCD, yielding a higher value of aHVP

µ =

708.7(5.3) ⇥ 10�10 [38]. Given the high complexity of this calculation, independent lattice calculations

with commiserate precision are needed before confronting this result with the well tested data-driven one.

We stress that if a larger value of the HVP contribution were confirmed, which would (partially) explain

the (gµ � 2) anomaly, new physics contributions will be needed to bring theory and measurements of

(e+e� ! hadrons) in agreement [39–42]. 3
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DM : Direct Detection Bounds

where v = 246 GeV.

The coupling of the Higgs bosons to up and down quarks are given by

gddh =
md

p
2

v
, (3.7)

guuh =
mu

p
2

v
, (3.8)

gddH = �
md

p
2 tan�

v
, (3.9)

guuH =
mu

p
2 tan�

v
, (3.10)

where mu and md are the up and down quark masses. In the above, we have ignored

the finite corrections to the Higgs couplings coming from the decoupling of squarks and

gluinos [55–59] since they are small in the region of parameters we are interested in, where

|µ| is much smaller than the squark and gluino masses.

In the region of parameters we are investigating, the cross section for SI direct detection

is controlled predominantly by the exchange of the Higgs bosons. Also including the

approximate contributions due to heavy squarks and taking the limit m
2
e�0
1
⌧ µ

2 for a

predominantly bino-like LSP, the SI cross section for the scattering of DM o↵ protons is

given by (similar expression holds for scattering o↵ neutrons) [42, 51, 54]

�
SI
p '

4m4
Z
s
4
W
m

2
pm

2
r

⇡v4µ4
N

4
11


�

⇣
F

(p)
d

+ F
(p)
u

⌘ (me�1 + µ sin 2�)

m
2
h

�

 
�F

(p)
d

+
F

(p)
u

tan2 �

!
µ tan� cos 2�

m
2
H

�

F
(p)
u

⇣
me�0

1
+ µ/ tan�

⌘
+ F

(p)
d

⇣
me�0

1
+ µ tan�

⌘

2m2
eQ

3

5
2

,

(3.11)

with F
(p)
u ⌘ f

(p)
u +2⇥ 2

27f
(p)
TG

⇡ 0.15 and F
(p)
d

= f
(p)
Td

+f
(p)
Ts

+ 2
27f

(p)
TG

⇡ 0.14, mp is the proton

mass, mr = mpme�0
1
/(mp+me�0

1
) is the reduced mass, and m eQ is the common squark mass.

Since F
(p)
u ⇡ F

(p)
d

, in the large tan� limit this expression becomes proportional to

�
SI
p /

m
4
Z

µ4

"
2(me�0

1
+ 2µ/ tan�)

1

m
2
h

+ µ tan�
1

m
2
H

+ (me�0
1
+ µ tan�/2)

1

m
2
eQ

#2
. (3.12)

It is hence clear that the cross section is reduced for negative values of µ ⇥ me�0
1
,

where we shall assume me�0
1
' M1 to be positive, where M1 is the bino mass parameter.

Consequently, while positive values of µ tend to lead to conflict with the current bounds

from the PandaX, XENON1T and LUX experiments, negative values of µ easily lead to

consistency with these constraints in the large tan� regime. Depending on the values of

the neutralino mass, the heavy Higgs boson mass, the squark masses and tan�, the SI

cross section may be close to the current bound, or may be e�ciently suppressed in the

proximity of blind spots that occur when [42, 51, 54]

2

✓
me�0

1
+ 2

µ

tan�

◆
1

m
2
h

' �µ tan�

 
1

m
2
H

+
1

2m2
eQ

!
. (3.13)
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where v = 246 GeV.

The coupling of the Higgs bosons to up and down quarks are given by

gddh =
md

p
2

v
, (3.7)

guuh =
mu

p
2

v
, (3.8)

gddH = �
md

p
2 tan�

v
, (3.9)

guuH =
mu

p
2 tan�

v
, (3.10)

where mu and md are the up and down quark masses. In the above, we have ignored

the finite corrections to the Higgs couplings coming from the decoupling of squarks and

gluinos [55–59] since they are small in the region of parameters we are interested in, where

|µ| is much smaller than the squark and gluino masses.

In the region of parameters we are investigating, the cross section for SI direct detection

is controlled predominantly by the exchange of the Higgs bosons. Also including the

approximate contributions due to heavy squarks and taking the limit m
2
e�0
1
⌧ µ

2 for a

predominantly bino-like LSP, the SI cross section for the scattering of DM o↵ protons is

given by (similar expression holds for scattering o↵ neutrons) [42, 51, 54]

�
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Z
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2
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N
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d

+
F
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!
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m
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H

�

F
(p)
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⌘
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(p)
d
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1
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2m2
eQ

3

5
2
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with F
(p)
u ⌘ f

(p)
u +2⇥ 2

27f
(p)
TG

⇡ 0.15 and F
(p)
d

= f
(p)
Td

+f
(p)
Ts

+ 2
27f

(p)
TG

⇡ 0.14, mp is the proton

mass, mr = mpme�0
1
/(mp+me�0

1
) is the reduced mass, and m eQ is the common squark mass.

Since F
(p)
u ⇡ F

(p)
d

, in the large tan� limit this expression becomes proportional to

�
SI
p /

m
4
Z

µ4

"
2(me�0

1
+ 2µ/ tan�)

1

m
2
h

+ µ tan�
1

m
2
H

+ (me�0
1
+ µ tan�/2)

1

m
2
eQ

#2
. (3.12)

It is hence clear that the cross section is reduced for negative values of µ ⇥ me�0
1
,

where we shall assume me�0
1
' M1 to be positive, where M1 is the bino mass parameter.

Consequently, while positive values of µ tend to lead to conflict with the current bounds

from the PandaX, XENON1T and LUX experiments, negative values of µ easily lead to

consistency with these constraints in the large tan� regime. Depending on the values of

the neutralino mass, the heavy Higgs boson mass, the squark masses and tan�, the SI

cross section may be close to the current bound, or may be e�ciently suppressed in the

proximity of blind spots that occur when [42, 51, 54]
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!
. (3.13)

– 8 –

Finally, Eq. (3.12) shows a strong dependence of the SI cross section with the value of |µ|,

a behavior that is related to its dependence on the square of the Higgsino components.

The spin dependent (SD) cross section, instead, depends only on the coupling to the

Z [60, 61], and hence to the di↵erence of the squares of the up and down Higgsino compo-

nents. From the expression given in Eq. (3.6), one can see that

�
SD

/
m

4
Z

µ4
cos2(2�) , (3.14)

where we have again assumed that µ
2
� m

2
e�0
1
. Hence, in the large tan� regime and

for |µ| su�ciently large, the SD cross section is suppressed by four powers of µ, without

any other strong parametric suppression. This behavior should be contrasted with the SI

cross section which, in spite of its overall suppression by only two powers of µ, may be

further suppressed due to a reduction of the neutralino coupling to the 125 GeV Higgs

boson together with interference e↵ects. As we will show, for negative values of µ, and

|µ| su�ciently large to avoid the SD cross section limits, the SI cross section tends to be

below the current experimental bounds on this quantity. However, it can come closer to

the current limits depending on the precise value of tan� and mH .

4 Anomalous Magnetic Moment of the Muon

The anomalous magnetic moment of the muon is a very relevant quantity since it may be

measured with great precision and is sensitive to physics at the weak scale. The theoretical

prediction within the SM may be divided in four main parts

aµ = a
QED
µ + a

EW
µ + a

had
µ (vac. pol.) + a

had
µ (� ⇥ �) , (4.1)

where aµ ⌘ (gµ � 2)/2. The first term a
QED
µ represents the pure electromagnetic contri-

bution, and is known with great accuracy, up to five loop order [62]. The second term

denotes the electroweak contributions, which are known at the two-loop level, and are

about (153.6±1.)⇥10�11 [63]. The hadronic contributions contain the largest uncertainty

in the determination of aµ. While the vacuum polarization contributions can be extracted

from the scattering process of e+e� to hadrons and are of order of (7⇥ 10�8 [64–66]), the

so-called light by light contributions ahadµ (� ⇥ �) cannot be related to any observable and

have to be estimated theoretically. These are estimated to be about 105⇥ 10�11 [67] and

hence of the order of the electroweak contributions.

Overall, the theoretical calculation of aµ in the SM [68] di↵ers from the result measured

experimentally at the Brookhaven E821 experiment [69] by

�aµ = a
exp
µ � a

theory
µ = 268(63)(43)⇥ 10�11

, (4.2)

where the errors are associated with the experimental and theoretical uncertainties, respec-

tively. The discrepancy, of order 3.5�, is of similar size as the electroweak contributions

and hence can be potentially explained by new physics at the weak scale. The E821 exper-

imental result will be tested by the upcoming Muon g � 2 Experiment at Fermilab [70].
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FIG. 2: SI scattering cross section as a function of mA for tan� = 50 (up left), tan� = 30 (up

right) and tan� = 10 (down left), µ ⇠ �2M1 and tan� = 30, µ ⇠ �4M1 (down right). The red

dots are for the µ > 0 case, and blue dots are for µ < 0 case. The green shaded area are excluded by

the CMS H,A ! ⌧⌧ searches. The orange line is the LUX limit, and the blue line is the projected

Xenon 1T limit

.

is enhanced by tan �, but since µ grows together with tan �, the down-Higgsino component

is suppressed roughly by tan �. At large mA, the cross section approaches 10�13 pb�1, which

is below the atmospheric and di↵use supernova neutrino backgrounds. There are various

contributions to this asymptotic value, including squarks, incomplete cancellation of the

couplings and loop e↵ects.

We also analyze the relic density. Considering a thermally produced neutralino DM, the

annihilation cross section is too small for Bino-like DM, which leads to DM density over

abundance, while the annihilation is too e�cient for pure wino or Higgsino-like DM, which

results in under abundance unless the LSP is heavier than 1 TeV [41, 42] or 2.7 TeV [42, 43],
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Negative values of μ : Much weaker direct spin-independent detection bounds

P. Huang, C.W.  1404.0392
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Reduction of the cross section is obtained for negative values of 


The direct detection cross sections can also be suppressed for large values of


g-2 has two contributions, the Bino one proportional to

and the other (chargino) proportional to  

µ⇥M1

µ⇥M1
µ⇥M2

The Bino contribution to g-2 is negative at the proximity of the blind spot but

becomes subdominant at smaller values of μ 

The chargino  contribution is the dominant one for masses of the same order 
and is suppressed at large μ 

µ

Since g-2 needs to be positive, compatibility between g-2 results and Direct 
detection may be either achieved for large values of μ or for smaller values of μ, 
when the relative sign of the gaugino masses is opposite.

g-2 and Direct Detection

Baum, Carena, Shah and CW, arXiv:2104.03302
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Compatibility of Dark Matter and g-2  Constraints for a representative 
example of a compressed spectrum. Stau co-annihilation is assumed

Baum, Carena, Shah and C.W., arXiv:2104.03302

Large hierarchy of values of μ between positive and

negative values of the Bino mass parameter is observed. 
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Figure 1: Illustration of a representative process giving rise to the mono-photon+/ET

+jets/leptons final state arising at the LHC via radiative decays of the Wino-like neu-

tralino �̃
0
2
.

processes are typically quite large. However, there is an interesting interplay between the
sign of (M1 ⇥ µ) and the decay modes of the Wino-like neutralinos: For (M1 ⇥ µ) > 0,
radiative decays (�̃0

2
! �̃

0

1
+ �) mediated by loops involving charginos or sleptons have rel-

atively small branching ratios and the (�̃0

2
! �̃

0

1
+ ff̄) decays dominate, except in the very

compressed regime where m�̃0
2
' m�̃0

1
. For (M1 ⇥ µ) < 0, on the other hand, the di↵erent

diagrams mediating (�̃0

2
! �̃

0

1
+ �) decays interfere constructively, enhancing the associated

branching ratio and suppressing the (�̃0

2
! �̃

0

1
+ ff̄) decays.

As we will see, in the region of parameter space motivated by DM and the (gµ � 2)
anomaly, we find quite generally values of BR(�̃0

2
! �̃

0

1
+ �) ⇠ 0.2 � 0.4 for (M1 ⇥ µ) < 0.

On the one hand, this means that the existing multi-lepton+ /ET searches are less sensitive
in this region. On the other hand, the large radiative-decay branching ratios motivate a
new search channel: mono-photon+/ET accompanied by jets or a lepton from the chargino
decay and possible initial state radiation (ISR), see Fig. 1. Interestingly, during the long
shutdown of LHC preceding the current LHC Run 3, the experimental collaborations have
significantly upgraded the event selection triggers.3 These upgrades now allow to trigger
on a combination of a single photon and /ET with much lower transverse-momentum (pT )
thresholds than a more traditional photon-only or /ET -only trigger would allow for. In
combination with expected improvements in the multi-lepton+ /ET searches with LHC Run 3
data, this opens up the exciting possibility to make significant progress towards covering the
region of the MSSM parameter space motivated by DM and the muon (gµ � 2) anomaly in
the near future, and perhaps, to make a discovery.

This rest of the article is organized as follows. In Sec. 2 we describe the neutralino,
chargino and slepton sectors relevant for the present analysis. In Sec. 3 we discuss the
phenomenological properties of the MSSM in the compressed region, presenting analytical
results that conribute to the understanding of the numerical results of our work. In Sec. 4 we
present our numerical results, and in Sec. 5 we discuss their relevance for current and future
searches for electroweakinos at the LHC. We reserve Sec. 6 for our conclusions. Further
relevant results are presented in the Appendices.

3
We thank David Miller for a discussion on these issues.
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Figure 6: m�̃0
2
vs. (m�̃0

2
�m�̃0

1
) plane, with µ fixed such that the MSSM explains the observed value

of �aµ. The green region is where neutralino relic density saturates the cosmological

DM density. Above the green band, neutralinos overclose the universe, and below the

green band neutralinos would only be a subcomponent of DM. Gray direct detection

bounds (rescaled with relic density) cover the upper-right region, and constraints from

collider searches are displayed as bounds on the left (see legend). The black contours

represent the radiative decay branching ratio of the second neutralino. For (M1⇥M2) >

0 (top panel), most of the parameter space consistent with the observed relic density

(green band) is excluded. For (M1⇥M2) < 0 (bottom panel), there is a region between

⇠ 200� 350GeV where the MSSM provides an explanation for both DM and �aµ, and

the radiative decay branching ratio is sizeable. (DR: Make these top/bottom. Rename

labels to CMS A, with description/citation in caption)
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S. Baum, M. Carena, N. Shah, C. Wagner

D. Rocha, T. Ou,  arXiv: 2203.01523


(see M. Carena’s talk on Thursday)
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Comparison of BMW lattice computation

with data driven methods

Z. Fodor ‘ 21



 The Lattice results should be taking seriously  and are a triumph of  physics.


 HPV effects would have an impact on the variation of the fine structure constant, 
affecting precision measurements at Mz, and any correction from the current values 
should be limited to energies below 0.9 GeV.


Tension with data could be resolved by a large systematic error in the cross sections 
evaluation or by new physics contributing to them  (Lattice = SM).


It could also be resolved by some unaccounted systematic error in the lattice 
evaluations.  BMW provides a detailed account of their error estimates and it could 
be therefore double checked by other lattice groups. So far, all checks have 
confirmed the BMW results, but in an energy window that represents only a third of 
the total contribution to the hadronic vacuum polarization.


For a recent analysis see  arXiv:2306.16808

23

Comments on the Lattice Evaluation

Crivellin et al, 2003.04886;  Kezhavarzi, Marciano, Pasera, Sirlin, arXiv: 2006.12666 

arXiv: 2202.12347,  2204.12256, 2206.0582,

2206.15084, 2204.01280, 2301.08696, 2301.08274…

See also arXiv:2010.07943
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2. Background and model

2.1. The gµ � 2 anomaly
The anomalous magnetic moment of the muon is defined as aµ = (gµ � 2)/2, and has
been measured by the E821 and Fermilab Muon g � 2 experiments to be [1, 2]

aexpµ = 116 592 061(41) ⇥ 10�11. (1)

This result is in tension with the SM computation by the Muon g � 2 theory initiative,
which obtained a value of the muon anomalous magnetic moment of [3]

aSMµ = 116 591 810(43) ⇥ 10�11. (2)

The SM contributions to aµ may be broken down as

aSMµ = aQED

µ + aEWµ + ahad,LbLµ + ahad,VP

µ , (3)

where the superscript QED, EW, had,LbL and had,VP refer to the pure QED correc-
tion, the electroweak Higgs and gauge boson contributions, the light by light contribution
and the hadronic vacuum polarization effects. Of these contributions, the least well un-
derstood is the one coming from the hadronic vacuum polarization effects, ahad,VP

µ , which
is determined using a compilation of experimental data on �had. In this analysis, the
contribution from loop integrals containing insertions of HVP in the photon propagator
can be extracted from dispersion integrals over the cross section of a virtual photon
decaying to hadrons. In particular, the calculation in terms of �had is

(ahad,VP

µ )ee =
1

4⇡3

Z 1

m2
⇡0

ds K(s) �had(s) (4)

with a kernel K(s) ' m2

µ/(3s) for s � m2

µ. Based on the observed �had, one finds a
hadronic vacuum polarization contribution of

(ahad,VP

µ )ee = 6931(40) ⇥ 10�11. (5)

However, recent lattice calculations from the BMW collaboration have calculated the
hadronic vacuum polarization contribution to be [15]

(ahad,VP

µ )BMW = 7075(55) ⇥ 10�11. (6)

Thus, in addition to the tension between the experimentally-measured muon anoma-
lous magnetic moment and the SM prediction, there is also a tension between theory
predictions. In fact, while the measured value of aµ and the SM prediction derived from
�had are in tension at the 4.2 � level, there is disagreement at only 1.6 � level between
the experimental measurement and the BMW prediction. As such, one may be able to
resolve the g � 2 tension by modifying �had rather than directly enhancing aµ. To do
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so, one requires new physics that interferes with the SM contribution to �had in order to
suppress the observed rate.

In particular, we wish to source a shift in �had such that one obtains

�aHVP

µ = (ahad,VP

µ )BMW � (ahad,VP

µ )ee = 1.44 ⇥ 10�9 (7)

This implies that the observed hadronic cross section is smaller than the one expected by
the lattice hadronic vacuum polarization determination. A modification to the hadronic
cross section from new physics, denoted by ��had, will need to be subtracted off from
the computation of the HVP contribution to the muon magnetic moment, giving a shift
of

�aHVP

µ =
1

4⇡3

Z 1

m2
⇡0

dsK(s)(���had(s)) (8)

We will analyze the new physics which may give a destructive interference to the observed
�had, thus sourcing a positive shift in the expected aµ.

2.2. Model and parameter values
In this paper, we focus on the addition of a Z 0 with vector couplings to the electron and
first generation quarks, as proposed in Ref. [18]. We start with the interactions:

L � (geV ē�
µe+ guV ū�

µu+ gdV d̄�
µd)Z 0

µ (9)

Given the behavior of the kernel K(s), which goes approximately as 1/s, the greatest
contribution to aµ from �had comes from the

p
s . 1 GeV region, in which the dominant

process is e+e� ! ⇡+⇡�. This region of energies is also preferred by precision elec-
troweak measurements, since corrections to the hadronic cross section at higher energies
lead to sizable corrections to ↵(MZ), the electromagnetic structure constant at the MZ

scale [20, 21].
As such, the primary Z 0 process of interest for �ee

had
is the process e+e� ! Z 0

! ⇡+⇡�.
Given the above Lagrangian, the modification from an off-shell Z 0 to the SM cross section
for electron-positron annihilation to pions may be written as [18]

�SM+Z0
⇡⇡

�SM
⇡⇡

(s) =

����1 �
geV (g

u
V � gdV )

e2
s

s � m2

Z0 + imZ0�Z0

����
2

(10)

The width �Z0 has three main contributing decays: to ⇡+⇡�, e+e�, and µ+µ�. The
decay widths for the leptonic decays and the pion decay are given by

�(Z 0
! l+l�) =

1

3

(glV )
2

4⇡

s

1 � 4
m2

l

m2

Z0

✓
1 + 2

m2

l

m2

Z0

◆
(11a)

�(Z 0
! ⇡+⇡�) =

1

3

(gudV )2

4⇡

s

1 � 4
m2

µ

m2

Z0

✓
1 + 2

m2

µ

m2

Z0

◆
R(m2

Z0) (11b)
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µe+ guV ū�
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5

This implies that, if new physics causes the difference, it 

should reduce the cross section.

The relation between the hadronic cross section and 

the anomalous magnetic moment is given by

The lattice calculation leads to 
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Figure 1: Relevant Feynman diagram for �- and Z 0-mediated e+e� ! ⇡+⇡� scattering.
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where for convenience we have defined gudV ⌘ guV � gdV , and R(s) is defined as

R(s) =
�SM

e+e�!had

�SM

e+e�!µ+µ�
(s), (12)

where �SM

e+e�!had
is the SM cross section to hadrons; because the cross section to hadrons

is dominated by the e+e� ! ⇡+⇡� process within the range of energies we are inter-
ested in, we will refer to this quantity as �SM

⇡⇡ . We emphasize that in the absence of any
additional decay channels, the width �Z0 must be calculated from the couplings using
Eq. (11) and depends on the specific choices for geV and gudV .

6

New Contributions to the Hadronic Cross Section
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The simplest model that can induce such an effect is a new vector gauge

boson that couples to first generation 

so, one requires new physics that interferes with the SM contribution to �had in order to
suppress the observed rate.

In particular, we wish to source a shift in �had such that one obtains
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µ )ee = 1.44 ⇥ 10�9 (7)

This implies that the observed hadronic cross section is smaller than the one expected by
the lattice hadronic vacuum polarization determination. A modification to the hadronic
cross section from new physics, denoted by ��had, will need to be subtracted off from
the computation of the HVP contribution to the muon magnetic moment, giving a shift
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We will analyze the new physics which may give a destructive interference to the observed
�had, thus sourcing a positive shift in the expected aµ.
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where

R(s) =
�e+e�!had

�e+e�!µ+µ�
(s) (12)

and for convenience we have defined gudV ⌘ guV � gdV .

Let us define the effective coupling g̃ ⌘ �geV (g
u
V � gdV )/e

2, and denote the observed
cross section by �ee

had
. The resulting �ee

had
is given by:

�ee
had

(s) = �SM
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✓
1 +

g̃2s2 + 2g̃s(s � m2
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and thus the Z 0 modification to the observed cross section is given by

��NP
⇡⇡ (s) = �ee

had
(s) � �SM

⇡⇡ (s)

= �ee
had

(s)

✓
�(g̃, s)

1 + �(g̃, s)
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(14)

We can immediately see that the new physics contribution can interfere with the SM
depending on the relative signs of g̃ and s � m2

Z0 .
We interpolate the CMD-2 �(e+e� ! hadrons) data [22, 23] to obtain a curve for the

observed �ee
had

. By calculating the resulting shift �aµ using Eq. (6) for Z 0 masses of
about 0.8 GeV, and initially assuming a width of � ' 10�2, we find that one requires

g̃ ' �5 ⇥ 10�3 (15)

or, equivalently
geV g

ud
V ' �6 ⇥ 10�4. (16)

On the other hand, one may consider the lighter mass range of around 0.3 GeV; in this
case, one requires

g̃ = 1.25 ⇥ 10�2. (17)

Because of the larger required values of geV as well as the lighter Z 0 mass, the electron
g � 2 measurement becomes a highly constraining bound for the lighter Z 0 case, as we
will examine in the next section. We therefore concentrate on the heavier mass range in
the remaining analysis.

However, the width must be carefully taken into account using Eq. (11), and thus the
above results depend not simply on g̃, but also on the specific choices of geV and gudV .
In Fig 1 we show the required values of g̃ to obtain agreement between the low-energy
hadronic data and the lattice calculation for two cases, one in which � is fixed to 10�2,
and the other in which the width is calculated only from the leptonic and pion decays
with a value of gudV = 0.3. Notice that the width controls the height of the s = m2

Z0

peak: for larger width, the peak will be more suppressed and therefore more consistent
with existing data, which does not show an obvious feature similar to a Z 0 peak that

6
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From here, one can fit for the couplings and the mass of  the new

gauge boson. Observe that only this coupling combination is determined.

Light gauge bosons are highly restricted due to their contribution to the

electron g-2 and isospin violating constraints. For a mass of about 800 MeV
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Isospin Breaking Effects
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of the Z 0 on the pion mass splitting. In this approach, which is more reliable than the
previous estimates, we calculate the contribution from the Z 0 as [36]

�m2
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���
Z0

=
(gudV )

2

32⇡2

Z 1

0

ds
s

s+m2

Z0
(F V
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, (27)

where W =

p
1 + 4m2

⇡/s. We employ an approximate analytical expression for F V
⇡ (�s) =

(A⇢�/e)g⇢⇡/(s+m2

⇢) to evaluate the integral, where A⇢�, which will be discussed in more
detail in the ⇡+⇡� scattering analysis, parametrizes the mixing of the photon with the
⇢. While this expression for F V

⇡ is not normalized to F V
⇡ (0) = 1, it provides a decent

approximation of the integral as the infrared provides a subdominant contribution. We
find a bound of gudV . O(0.1), in general agreement with Ref [36].

While these calculations provide an estimate of the effect of the Z 0 isospin breaking
interactions on �m⇡ and the order of magnitude of the bounds on gudV , a lattice-QCD
calculation is in order to provide a more precise evaluation.

⇡+⇡� scattering: measurements of the cross section for ⇡+⇡�
! ⇡+⇡� scattering

place bounds on the allowed values of gudV . For the mass region we are interested in, we
compare with data from Refs. [60, 61]; within the center-of-mass energy range close to
the Z 0 mass, we expect the contribution from the Z 0 to induce a feature similar to that
induced in the e+e� ! ⇡+⇡� scattering. In this case, the contribution is not suppressed
by a factor of geV and is instead proportional to (gudV )

2, making this a particularly relevant
bound.

⇢

⇡�

⇡+ ⇡+

⇡�

⇢ Z 0 ⇢

⇡+

⇡� ⇡�

⇡+

� ! ⇢

e�

e+ ⇡�

⇡+

� ! ⇢ ! ⇢

e�

e+

⇡�

⇡+

e�

e+
�, Z 0

⇡�

⇡+

R

⇢

⇡�

⇡+ ⇡+

⇡�

⇢ Z 0 ⇢

⇡+

⇡� ⇡�

⇡+

� ! ⇢

e�

e+ ⇡�

⇡+

� ! ⇢ ! ⇢

e�

e+

⇡�

⇡+

e�

e+
�, Z 0

⇡�

⇡+

R

Figure 8.: Diagrams for ⇡+⇡�
! ⇡+⇡� scattering with a ⇢ mediator (left) and ⇡+⇡�

scattering with a single Z 0 insertion (right).

To gain a rough sense of the impact a Z 0 feature would have on the ⇡+⇡� scattering
cross section, we employ the following formalism, which is similar to that discussed in
Ref [62]. The propagator for the ⇢,

D(⇢) =
1

s � m2
⇢ + im⇢�⇢

, (28)
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gudV . 0.1

We therefore restrict the isospin breaking coupling to this range
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Figure 10.: Leading diagrams for e+e� ! ⇡+⇡� that include ! insertions.

In the examination of ⇡+⇡� scattering, we employed a formalism that accounted for
contributions from the Z 0 by modifying the the ⇢ propagator with insertions of ⇢ � Z 0

mixing. In this section, we discuss the way in which one may model the !-induced
feature in e+e� ! ⇡+⇡� in this formalism. We start by making the assumption that the
dominant contribution due to ! mixing will come from diagrams in which the ! mixes
with the photon, and subsequently the higher order insertions arise from mixing with
the ⇢. We show example diagrams in Fig. 10. The diagrams in which the ! does not
mix with the � require an additional insertion of mixing at leading order, and we thus
take the diagrams with � � ! mixing as the dominant contribution.

Figure 11.: Comparison of the predictions for R(s) from our formalism for m⇢ = 0.769
GeV (red dashed) and m⇢ = 0.765 GeV (blue) compared with the observed
R(s) from CMD-2 data (black points).

The expression for the propagator thus includes a new term proportional to the !

21

propagator, leading to

D(�)

✓
A⇢� + A�!D(!)A⇢!

1 � A2
⇢�D(�)D(⇢) � A2

⇢!D(!)D(⇢)

◆
D(⇢) (44)

where the denominator includes a resummation over high-order insertions of both � and
!. We compare this expression with R(s) as
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where the factor 1/4 arises from the difference in spin of the final state particles. In our
analysis, we employ the values m! = 782 MeV, �! = 8 MeV, and g2⇢⇡/4⇡ = 2.8. We
present the results for both the PDG average m⇢ = 769 MeV and for the case in which
we allow m⇢ to be a fit parameter, finding that the prediction best models the ⇢ � !
feature for m⇢ = 765 MeV. For m⇢ = 769 MeV, we find a best fit in the region of the ⇢
resonance for values around A⇢� = 0.0330 GeV2, A�! = 0.008 GeV2, and A⇢! = �0.006
GeV2; for m⇢ = 765 MeV, we find a best fit for A⇢� = 0.0334 GeV2, A�! = 0.009 GeV2,
and A⇢! = �0.006 GeV2. We show a comparison of our predictions with the data in
Fig. 11.
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Figure 2: New physics modifications to CMD-2 with geV = �3.3 ⇥ 10
�3 (left) and to

KLOE with geV = �2.6 ⇥ 10
�3 (right) for gudV = 0.1.

In calculating the impact of ��NP

⇡⇡ on the observed data and the resulting SM cross
section, we account for a resolution of 10�3

p
s in the CMD-2 experiment and a binning

of 0.01 GeV2 in the KLOE data. We find that the required benchmark parameters do
not depend strongly on the choice of data set. As we will discuss in Section 3, the choice
of such a suppressed lepton coupling relative to the hadronic coupling additionally arises
from requiring consistency with the strong constraints imposed by the BaBar experiment
as well as the electron anomalous magnetic moment ge � 2. We show the experimental
cross section data, ��NP, and inferred SM cross section for these benchmark points in
Fig. 2.

It should be noted in passing that this Z 0 mass is close to the ! meson mass, m! ⇠

782 MeV, and that the ⇢-! mixing is relevant to explain the observed features in the
hadronic cross section at these energies. In the next section, we discuss this consideration
in more detail.

2.3. Additional model considerations
As stressed previously, an examination of Fig. ?? suggests that some parameter choices
are more consistent with our understanding of SM photon physics than others: the shape
of the Z 0 peak means that there must be a complementary feature in the photon cross
section, as there is no obvious feature present in the observed cross section. A peak in
the photon spectrum below 1 GeV away from the ⇢ and ! resonances has no presently-
understood physical source. We note two cases in which an unreasonable feature in the
photon cross section is avoided.

In the first case, illustrated in Fig. 2, the Z 0 mass is close to the ⇢ and ! resonances
masses. In this case, the Z 0 peak enhances the strength of the ⇢ resonance. This en-
hancement would affect the fits of the ⇢ � ! mixing in the vector meson dominance
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We can immediately see that the new physics contribution can interfere destructively
with the SM depending on the relative signs of g̃ and s � m2

Z0 .

We interpolate the CMD-2 �(e+e� ! ⇡+⇡�
) data [30, 31] and the KLOE �(e+e� !

⇡+⇡��(�)) results [32] to obtain two different curves for the observed �obs

⇡⇡ . These two
data sets represent different types of experiments: CMD-2 is an energy scan experiment,
while KLOE uses initial-state radiation (ISR) to gather data for a range of energies.
These two experimental approaches have complementary advantages and disadvantages.
While energy scan experiments have high energy resolution, they operate at fixed center
of mass energies and therefore lack data for energy ranges between data points; ISR
experiments, on the other hand, have lower resolution due to binning, but yield a con-
tinuous measurement of the cross section. We employ both data sets to examine how a
Z 0 would affect each type of experiment.

Although the absence of a visible feature similar to a Z 0 peak in the cross section data
may be due to the low experimental resolution in certain energy regimes of these exper-
iments, in our work we will assume that these features may be observed and therefore
demand the absence of any unexplained compensating feature in the SM hadronic cross
section. One manner in which this may be achieved by an enhancement of the width by
taking larger gudV and a Z 0 mass near the ⇢ resonance mass of 770 MeV. As we will see
in Section 3, the pion mass difference places constraints on the values of gudV . Although
a full non-perturbative analysis is in order to determine the precise bounds, an estimate
based on the Cottingham method [33–36] leads to allowed values of order gudV . 0.1. We
find benchmark points of

gudV = 0.1

geV = �3.3 ⇥ 10
�3 (15)

mZ0 = 0.79 GeV

while for KLOE we find

gudV = 0.1

geV = �2.6 ⇥ 10
�3 (16)

mZ0 = 0.79 GeV
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(VMD) framework 1, as an enhancement in the ⇢ peak such as the one shown in Fig. 2
would require a greater ! interference to produce the sharp kink in the SM cross section.
As the primary data employed in these fits of the mixing is the �(e+e� ! hadrons) data
itself, it is not unreasonable to adjust the strength of the ⇢ resonance and the ⇢ � !
mixing. On the other hand, the shape shown in the right panel of Fig. ?? extends the !
feature beyond the ! mass region of 780 MeV and contains an additional sharp feature
at about 820 MeV, and thus presents a less likely scenario. We conclude that either the
experimental resolution is not precise enough to distinguish such a feature, or without
adding any additional decays for the Z 0 beyond those that are necessary to modify �obs

had
,

one requires the Z 0 mass to be near a mass of 770-800 MeV. As can be seen from Fig 2, in
the case where one takes lower values of gudV ' 0.1 the inferred feature becomes sharper,
and the allowed mass region is therefore more constrained.
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Figure 3: The observed cross section for e+e� ! ⇡+⇡� from CMD-2 (black), compared
to the change in cross section induced by a Z 0 (red) with mZ0 = 0.90 GeV,
gudV = 0.1, geV = �7.2 ⇥ 10

�3, and � = 5 ⇥ 10
�2. We also show the resulting

SM cross section (blue).

An alternative approach to the Z 0-induced feature is to increase the width of the Z 0,
thus suppressing the strength of the peak. For the choice of parameters presented above,
the value of �Z0 ⌘ �Z0/mZ0 is of order (1 � 2) ⇥ 10

�2 for gudV = 0.3 and (1 � 2) ⇥ 10
�3

for gudV = 0.1; a strong suppression of the Z 0-induced feature may be obtained for �Z0 on
the order of 5⇥ 10

�2, requiring at least a factor of 2 enhancement relative to the width
arising only from pion, electron, and muon decays. The enhancement of the width
is phenomenologically challenging and would demand, for instance, a new fermion or
scalar charged under Z 0 and with a mass below mZ0/2. In addition, such a new particle
should not predominantly decay purely leptonically or to invisible final states in order

1For an overview of VMD and ⇢ � ! mixing, see for example Ref. [37].
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the feature disappears.  Dark sector challenge.
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CMD-2 KLOE
Benchmark mZ0 (GeV) geV gudV mZ0 (GeV) geV gudV

1 0.80 �6.6 ⇥ 10
�3 0.10 0.80 �6.7 ⇥ 10

�3 0.10
2 0.80 �8.3 ⇥ 10

�3 0.08 0.80 �8.4 ⇥ 10
�3 0.08

3 0.90 �7.2 ⇥ 10
�3 0.10 0.90 �7.5 ⇥ 10

�3 0.10
4 0.90 �9.0 ⇥ 10

�3 0.08 0.90 �9.4 ⇥ 10
�3 0.08

Table 1: Example benchmark points with a fixed width of �Z0 = 5 ⇥ 10
�2.

to avoid experimental constraints such as the ones imposed by the BaBar experiment.
The suppression of the feature in this case allows for more flexibility in the choice of Z 0

mass and couplings; in Table 1, we show a few example benchmarks. In Fig. 3, we show
the cross sections for a choice of �Z0 = 5 ⇥ 10

�2, with mZ0 = 0.90 and gudV = 0.1; note
that because the increased width suppresses the strength of the peak near the Z 0 mass,
one requires larger values for |geV |.

3. Constraints
There are a number of experimental bounds that constrain this scenario, arising from
flavor physics, collider physics, and precision measurements. We provide a summary of
these constraints below, specifying the ways in which our model avoids them.

Electron g � 2: precision measurements of the electron anomalous magnetic mo-
ment [38], which will receive contributions from Z 0 loops. This places a mass-dependent
bound on the value of geV , and becomes particularly constraining for lighter Z 0 masses.
Taking, for example, mZ0 = 0.1 GeV and |geV | = 5 ⇥ 10

�3, one finds a modification to
the electron ae = (ge � 2)/2 of order 6 ⇥ 10

�12. Quite generally, we find that

�aZ
0,loop

e ⇠ (1.4 ⇥ 10
�14

)

✓
800 MeV

mZ0

◆2 ✓ geV
2 ⇥ 10�3

◆2

(17)

The current bound on ae depends on the comparison of the theoretical predictions [39,
40] and the most recent experimental determination [41], but is also affected by the
current uncertainty in the value of the electromagnetic structure constant [42, 43]. An
approximate bound may be set,

|�aZ
0,loop

e | . 10
�12. (18)

For light masses and the corresponding values of geV , the modification exceeds the cur-
rent precision on the measurement of the electron g � 2 [38], implying that the lighter
Z 0 mass regime is in tension with the current bounds. However, for a Z 0 mass of order
0.8 GeV and an electron coupling around geV ' (2 � 8) ⇥ 10

�3, the modification of the
ge�2 [44] is of the order of 10�14

�10
�13, and this bound is widely satisfied in the region

10

N. Coyle, C. W.  arXiv:2305.02354



Constraints

33

Electron g-2

CMD-2 KLOE
Benchmark mZ0 (GeV) geV gudV mZ0 (GeV) geV gudV

1 0.80 �6.6 ⇥ 10
�3 0.10 0.80 �6.7 ⇥ 10

�3 0.10
2 0.80 �8.3 ⇥ 10

�3 0.08 0.80 �8.4 ⇥ 10
�3 0.08

3 0.90 �7.2 ⇥ 10
�3 0.10 0.90 �7.5 ⇥ 10

�3 0.10
4 0.90 �9.0 ⇥ 10

�3 0.08 0.90 �9.4 ⇥ 10
�3 0.08

Table 1: Example benchmark points with a fixed width of �Z0 = 5 ⇥ 10
�2.

to avoid experimental constraints such as the ones imposed by the BaBar experiment.
The suppression of the feature in this case allows for more flexibility in the choice of Z 0

mass and couplings; in Table 1, we show a few example benchmarks. In Fig. 3, we show
the cross sections for a choice of �Z0 = 5 ⇥ 10

�2, with mZ0 = 0.90 and gudV = 0.1; note
that because the increased width suppresses the strength of the peak near the Z 0 mass,
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Electron g � 2: precision measurements of the electron anomalous magnetic mo-
ment [38], which will receive contributions from Z 0 loops. This places a mass-dependent
bound on the value of geV , and becomes particularly constraining for lighter Z 0 masses.
Taking, for example, mZ0 = 0.1 GeV and |geV | = 5 ⇥ 10
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40] and the most recent experimental determination [41], but is also affected by the
current uncertainty in the value of the electromagnetic structure constant [42, 43]. An
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|�aZ
0,loop
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�12. (18)

For light masses and the corresponding values of geV , the modification exceeds the cur-
rent precision on the measurement of the electron g � 2 [38], implying that the lighter
Z 0 mass regime is in tension with the current bounds. However, for a Z 0 mass of order
0.8 GeV and an electron coupling around geV ' (2 � 8) ⇥ 10

�3, the modification of the
ge�2 [44] is of the order of 10�14

�10
�13, and this bound is widely satisfied in the region
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to avoid experimental constraints such as the ones imposed by the BaBar experiment.
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the cross sections for a choice of �Z0 = 5 ⇥ 10

�2, with mZ0 = 0.90 and gudV = 0.1; note
that because the increased width suppresses the strength of the peak near the Z 0 mass,
one requires larger values for |geV |.

3. Constraints
There are a number of experimental bounds that constrain this scenario, arising from
flavor physics, collider physics, and precision measurements. We provide a summary of
these constraints below, specifying the ways in which our model avoids them.

Electron g � 2: precision measurements of the electron anomalous magnetic mo-
ment [38], which will receive contributions from Z 0 loops. This places a mass-dependent
bound on the value of geV , and becomes particularly constraining for lighter Z 0 masses.
Taking, for example, mZ0 = 0.1 GeV and |geV | = 5 ⇥ 10
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current uncertainty in the value of the electromagnetic structure constant [42, 43]. An
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For light masses and the corresponding values of geV , the modification exceeds the cur-
rent precision on the measurement of the electron g � 2 [38], implying that the lighter
Z 0 mass regime is in tension with the current bounds. However, for a Z 0 mass of order
0.8 GeV and an electron coupling around geV ' (2 � 8) ⇥ 10

�3, the modification of the
ge�2 [44] is of the order of 10�14
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�13, and this bound is widely satisfied in the region
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of parameters under consideration.

BaBar leptonic decay: seach for e+e� ! Z 0�, Z 0
! e+e� [45]. This places a bound

on the Z 0 coupling to geV ; because this bound depends on the respective branching
fractions of the Z 0 decays, the precise bound depends on the model interpretation.

The BaBar bound on the mixing of a dark photon A0 with the SM photon is approx-
imately ✏A0 . 10

�3. In the dark photon analysis presented in Ref. [45], the branching
ratios are calculated assuming that the A0 picks up charge-proportional couplings to the
quarks, electron, and muon through kinetic mixing. The branching ratio to e+e� at
mA0 ' 0.8 GeV is about 15%, with the branching ratio to pions at about 70%. The
bound on the mixing ✏ is calculated assuming these branching ratios; this translates to
a bound of approximately geV . 3.3 ⇥ 10

�4.
In the case examined here, the large hierarchy between the quark and lepton couplings

means that the branching ratio to pions is close to 100%, with the branching ratio to
electrons below 0.001%. As such, one must rescale the bound on (geV )

2 by the ratio of
the branching ratio to electrons in the two respective models, evaluating the inequality
(geV )

2 < (ge
lim

)
2
BRA0!ee/BRZ0!ee(geV , g

ud
V , �Z0). For |geV | ' 3⇥ 10

�3 this leads to a bound
on the production cross section associated with couplings of order |geV |prod . 9.5⇥ 10

�3,
while for |geV | ' 9 ⇥ 10

�3 and �Z0 = 5 ⇥ 10
�2 the bound is |geV |prod . 1.8 ⇥ 10

�2, which
is comfortably satisfied for the couplings considered in this work. More generally, one
finds that the bound is saturated for geV ' 5.3 ⇥ 10

�3 for gudV = 0.1 with unfixed width,
and for gudV ' 1.3 ⇥ 10

�2 for �Z0 = 5 ⇥ 10
�2.

BaBar invisible decay: search for e+e� ! Z 0�, Z 0
! invisible [46]. This process

places a bound on geV as long as the new boson has relevant invisible decays. In our
model, we do not include a coupling to neutrinos or to new invisible particles, so this
bound does not apply.

Belle-II: search for e+e� ! µ+µ�Z 0 with invisible Z 0 decays [47]. This is a similar
bound to that from BaBar, but also includes a bound on the coupling to the muon,
depending on whether Z 0 decays to an invisible final state. In our model, this bound
again becomes irrelevant due to the lack of invisible decays.

LEP2: measurement of e+e� ! qq̄ [48]. This places an effective bound on g̃, as
the process is sensitive to geV and gqV . This bound can be avoided for small enough
|geV g

q
V | [24]. Since the measurement does not distinguish between light quarks, one may

express this bound in a more precise way, by including all gauge boson contributions
and demanding that the variation of the cross section is smaller than about one percent,
which is the characteristic precision of the LEP2 hadronic cross section measurement.
Although all quarks, apart from the top quark, can be produced in pairs at LEP2, we
shall conservatively concentrate on the production of up and down quarks, which are
the ones that couple in a relevant way to the new gauge boson.

The LEP2 center of mass energies are high enough that the gauge boson mass mZ0 ,
as well as the gauge boson width effects, may be neglected in this analysis. Defining the
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Come mainly from the process

To avoid the constraint, one should reduce the 

coupling to electrons, compared to hadrons. 


This reduces the production cross section as well

as the branching ratio of the decay into electrons
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Fixed width �Z0 = 5⇥ 10�2 ! |geV | . 1.3⇥ 10�2
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of parameters under consideration.

BaBar leptonic decay: seach for e+e� ! Z 0�, Z 0
! e+e� [45]. This places a bound

on the Z 0 coupling to geV ; because this bound depends on the respective branching
fractions of the Z 0 decays, the precise bound depends on the model interpretation.

The BaBar bound on the mixing of a dark photon A0 with the SM photon is approx-
imately ✏A0 . 10

�3. In the dark photon analysis presented in Ref. [45], the branching
ratios are calculated assuming that the A0 picks up charge-proportional couplings to the
quarks, electron, and muon through kinetic mixing. The branching ratio to e+e� at
mA0 ' 0.8 GeV is about 15%, with the branching ratio to pions at about 70%. The
bound on the mixing ✏ is calculated assuming these branching ratios; this translates to
a bound of approximately geV . 3.3 ⇥ 10

�4.
In the case examined here, the large hierarchy between the quark and lepton couplings

means that the branching ratio to pions is close to 100%, with the branching ratio to
electrons below 0.001%. As such, one must rescale the bound on (geV )

2 by the ratio of
the branching ratio to electrons in the two respective models, evaluating the inequality
(geV )

2 < (ge
lim

)
2
BRA0!ee/BRZ0!ee(geV , g

ud
V , �Z0). For |geV | ' 3⇥ 10

�3 this leads to a bound
on the production cross section associated with couplings of order |geV |prod . 9.5⇥ 10

�3,
while for |geV | ' 9 ⇥ 10

�3 and �Z0 = 5 ⇥ 10
�2 the bound is |geV |prod . 1.8 ⇥ 10

�2, which
is comfortably satisfied for the couplings considered in this work. More generally, one
finds that the bound is saturated for geV ' 5.3 ⇥ 10

�3 for gudV = 0.1 with unfixed width,
and for gudV ' 1.3 ⇥ 10

�2 for �Z0 = 5 ⇥ 10
�2.

BaBar invisible decay: search for e+e� ! Z 0�, Z 0
! invisible [46]. This process

places a bound on geV as long as the new boson has relevant invisible decays. In our
model, we do not include a coupling to neutrinos or to new invisible particles, so this
bound does not apply.

Belle-II: search for e+e� ! µ+µ�Z 0 with invisible Z 0 decays [47]. This is a similar
bound to that from BaBar, but also includes a bound on the coupling to the muon,
depending on whether Z 0 decays to an invisible final state. In our model, this bound
again becomes irrelevant due to the lack of invisible decays.

LEP2: measurement of e+e� ! qq̄ [48]. This places an effective bound on g̃, as
the process is sensitive to geV and gqV . This bound can be avoided for small enough
|geV g

q
V | [24]. Since the measurement does not distinguish between light quarks, one may

express this bound in a more precise way, by including all gauge boson contributions
and demanding that the variation of the cross section is smaller than about one percent,
which is the characteristic precision of the LEP2 hadronic cross section measurement.
Although all quarks, apart from the top quark, can be produced in pairs at LEP2, we
shall conservatively concentrate on the production of up and down quarks, which are
the ones that couple in a relevant way to the new gauge boson.

The LEP2 center of mass energies are high enough that the gauge boson mass mZ0 ,
as well as the gauge boson width effects, may be neglected in this analysis. Defining the
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chiral coupling
Df =

g

cos ✓W
(T f

3
� Qf sin

2 ✓W ), (19)

and
fZ =

s

s � M2

Z

, (20)

where T f
3

and Qf are the chiral fermions weak isospin and electromagnetic charges, the
different hadronic cross section contributions are proportional to

�Z / 0.25f 2

Z(D
2

eL
+D2

eR
)

X

q=u,d

(D2

qL
+D2

qR
),

�� / e4Q2

e(Q
2

u +Q2

d),

�Z0 / (geV )
2
�
(guV )

2
+ (gdV )

2
�
,

�Z� / 0.5fZe
2Qe(DeL +DeR)

X

q=u,d

Qq(DqL +DqR),

�Z0Z / 0.5fZg
e
V (DeL +DeR)

X

q=u,d

gqV (DqL +DqR),

�Z0� / 2e2Qeg
e
V

X

q=u,d

Qqg
q
V . (21)

In the above, �Z , ��,�Z0 ,�Z�,�Z0Z and �Z0� represents the Z, � and Z 0 contributions as
well as the Z�, Z 0Z and Z 0� interference contributions, respectively. The phenomeno-
logical requirement may be expressed as

��

�
=

�Z0� + �Z0Z + �Z0

�Z + �Z� + ��
. 0.01. (22)

In Fig. 4 we plot the absolute value of the relative variation of the cross section for
benchmark scenarios gudV = 0.3, geV = �1.5⇥10

�3 (left) and gudV = 0.1, geV = �7.0⇥10
�3

(right), for values of guV = �gudV , 0, and gudV . As can be seen from this figure, the variation
becomes larger for larger values of guV , but stays at values lower than the LEP2 bound,
Eq. (22), for all choices of guV .

In order to understand qualitatively the behavior of ��/�, one can neglect the Z
contribution. In this case, and ignoring the small �Z0 contributions, the LEP2 bound
can be rewritten as

2|geV |
|QuguV +QdgdV |

e2(Q2
u +Q2

d)
. 0.01, (23)

or, equivalently ✓
|geV |

2 ⇥ 10�3

◆ ��guV + gudV
�� . 0.5. (24)

For the representative parameter values chosen above, |geV | = 0.0015, gudV = 0.3, and
taking |guV | . 0.35, this bound is satisfied. As can be seen from Eq. (24) and also shown
for the complete expression in Fig. 4, one can further relax this bound by relating the
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Figure 4: Relative variation of the hadron cross section at LEP2 due to the contribution
of the new gauge boson, as a function of the center of mass energy, for gudV = 0.3
(left) and gudV = 0.1 (right), and different values of guV . From bottom to top in
the left figure, guV = �0.3, 0.0, 0.3, while guV = �0.1, 0.0, 0.1 in the right figure.

up and down couplings such that the modifications to the individual up- and down-
quark production rates cancel one another. The Z contribution introduces an energy
dependence of ��/� that generically weakens the LEP2 bound for values of guV away
from the cancellation region gudV ⇡ �guV .

Observe that the couplings required to resolve the discrepancy between the BMW
lattice-QCD and data-driven calculations are close to the limit imposed by LEP2, mak-
ing this channel a potential method for probing such a Z 0. Future e+e� colliders such
as FCC-ee, which would provide improved precision on the e+e� ! qq̄ rate, present an
opportunity to search for this new physics.

Neutrino-electron scattering: observations of ⌫ee� ! ⌫ee�, and other neutral cur-
rent variations on this process, from Borexino [49], TEXONO [50, 51], and CHARM II
[52]. For a 0.8 GeV scale Z 0, this restricts the product geV g⌫V . 10

�6 (see e.g. Ref. [53]).
In our model, we do not induce a neutrino coupling, so these bounds are avoided.

Flavor changing meson decays: measurements of the flavor-changing decays of
mesons, including B ! K⌫̄⌫, B ! Ke+e� , K+

! ⇡+⌫̄⌫, and B ! K⇡+⇡� [54–56].
Since the quark couplings of the Z 0 are of order 0.3, meson decay bounds may be rele-
vant. In particular, one may have penguin diagrams where the initial bottom/strange
quark is converted to an up quark through a W loop, with the up then radiating a
Z 0. However, three considerations reduce the strength of these bounds for our model.
Firstly, the processes B ! K⌫̄⌫ and K+

! ⇡+⌫̄⌫ can probe new physics if the new
physics decays invisibly or is long-lived; with the choice of couplings included in this
model, the Z 0 decays visibly and is not long-lived. Secondly, the contribution to the
process B ! Ke+e� is suppressed by the small branching ratio of the Z 0 to leptons.

This leaves the B ! K⇡+⇡� processes as the final consideration. To evaluate the
contribution arising from Z 0 diagrams, we rescale the B ! K� branching ratio by the
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The coupling difference may be induced by the absence 

of tree-level lepton couplings.  They may be induced by mixinginteractions. Thus, interactions between the new Z 0 and the electron are induced at the

loop level and are suppressed relative to the quark couplings. Note that in this case, a
small coupling to the muon is also induced;

geV = gµV . (25)

It is then reasonable to ask whether this model under the above assumptions may
reconcile the lattice calculation with the experimental measurement. In particular, for
a mass mZ0 ' 0.8 GeV, the contribution from Z 0 loops gives a modification of [47]

�aZ
0,loop

µ = (0.55 ⇥ 10�9)

✓
geV

2 ⇥ 10�3

◆2

(26)

We can compare this to the discrepancy between the lattice BMW determination and
the experimentally-measured value of aµ, which is approximately �aBMW,exp

µ ' 1⇥ 10�9

to find that this model can both successfully reconcile the low-energy hadronic data with
the lattice calculation and further lessen the tension between the lattice calculation and
the experimental aµ result.

5. Conclusions
In this article we study the possibility of including new physics that affects the Standard
Model hadronic cross section �(e+e� ! hadrons) in order to reconcile the hadronic vac-
uum polarization contributions computed from dispersion relations and the one recently
obtained by the lattice BMW collaboration. This may be done by introducing a new
vector that interferes destructively with the photon-induced cross section. We showed
that a successful model may be found, but that such a model demands a large hierarchy
between the quark and lepton couplings. In view of this property, we assumed that
the lepton and higher generation quark couplings of the new vector boson are obtained
by kinetic mixing with the electromagnetic field. Interestingly enough, the coupling to
muons that is generated this way leads to a direct contribution to aµ that may further
reduce the small discrepancy between the value of aµ measured experimentally and the
one obtained from the corrected vacuum polarization contribution.

The model we described may be understood as a low energy effective theory. Rec-
onciling this effective theory with the electroweak interactions is challenging due to the
required isospin breaking couplings of the Z 0 to up and down quarks. For completeness,
in the Appendix we present an example of a gauge extension and explain the reasons for
its failure to describe the data. On the other hand, the properties of the gauge bosons we
inferred makes it apparent that the new gauge boson Z 0 should have similar properties
to a vector meson resonance. We intend to come back to these subjects in a future work.
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the experimentally-measured value of aµ, which is approximately �aBMW,exp

µ ' 1⇥ 10�9

to find that this model can both successfully reconcile the low-energy hadronic data with
the lattice calculation and further lessen the tension between the lattice calculation and
the experimental aµ result.

5. Conclusions
In this article we study the possibility of including new physics that affects the Standard
Model hadronic cross section �(e+e� ! hadrons) in order to reconcile the hadronic vac-
uum polarization contributions computed from dispersion relations and the one recently
obtained by the lattice BMW collaboration. This may be done by introducing a new
vector that interferes destructively with the photon-induced cross section. We showed
that a successful model may be found, but that such a model demands a large hierarchy
between the quark and lepton couplings. In view of this property, we assumed that
the lepton and higher generation quark couplings of the new vector boson are obtained
by kinetic mixing with the electromagnetic field. Interestingly enough, the coupling to
muons that is generated this way leads to a direct contribution to aµ that may further
reduce the small discrepancy between the value of aµ measured experimentally and the
one obtained from the corrected vacuum polarization contribution.

The model we described may be understood as a low energy effective theory. Rec-
onciling this effective theory with the electroweak interactions is challenging due to the
required isospin breaking couplings of the Z 0 to up and down quarks. For completeness,
in the Appendix we present an example of a gauge extension and explain the reasons for
its failure to describe the data. On the other hand, the properties of the gauge bosons we
inferred makes it apparent that the new gauge boson Z 0 should have similar properties
to a vector meson resonance. We intend to come back to these subjects in a future work.
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This muon coupling may further reduce the small remaining

tension between  theory and experiment.  The identification

of couplings fails in certain cases, leading to a too large 

one loop contribution
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Conclusions
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The measurement of g-2 has led to a puzzle.   


New physics BSM is necessary to explain the 4.2 sigma discrepancy. 

In this talk I explore some possible explanations and their 

phenomenological implications. I put emphasis on the SUSY solution.


Alternatively, we need to understand why the hadronic vacuum polarization 

obtained by data differs from the one obtained by lattice methods.   

Three possibilities remain


1. Large systematics in hadronic cross section 

2. Large systematics in lattice determination    

3. New physics that can explain the difference between 

two determinations.  In this talk, I analyzed an example of this.


The good news is that further experimental and theoretical work is 

in progress and we will hopefully know the answer soon.


