Goldstone Bosons, Convexity and Weak Gravity

Eran Palti

w/ Ofer Aharony 2108.04594

w/ Domenico Orlando 2303.02178

SUSY 2023, Southampton July 2023

The Weak Gravity Conjecture proposes a relation for any theory with a U(1) gauge symmetry:

$$\sqrt{2} g Q M_p \ge m$$

[Arkani-Hamed, Motl, Nicolis, Vafa '06]

Underlies much of the Swampland program, by appropriate generalisations

Evidence from string theory. But very few (none?) completely non-supersymmetric tests.

No clear underlying microscopic physics, only `motivating' arguments

Proofs / underlying microscopic physics for Swampland conjectures are likely most accessible in AdS space through holography: CFTs sharply defined

Propose a formulation of the WGC which is cleanly translatable to a CFT statement:

There must exists a particle with a positive self-binding energy

Positive binding:

$$\gamma = E_{Min}(2) - 2E_{Min}(1) \ge 0$$

AdS/CFT dictionary:

Particle state in bulk ϕ = Operator in CFT ϕ

Charge Q under U(1) gauge symmetry = Charge Q under U(1) Global symmetry

Energy of state = Dimension of operator in CFT

Charged operators convexity:

$$\gamma_{\phi^2} = \Delta(\phi^2) - 2\Delta(\phi) \ge 0$$

$$\gamma = \Delta(2Q) - 2\Delta(Q) \ge 0$$

Guiding example: O(2) model in $4 - \epsilon$ dimensions

$$\mathcal{L}=|\partial\phi|^2-rac{1}{4}g|\phi|^4$$
 Operator charge $Q:\phi^Q$ e.g. $\Delta(2n)-n~\Delta(2)\geq 0$

Using perturbative Feynman diagrams find:

$$\Delta(Q) = Q \left[1 + \frac{1}{2} \frac{g}{(4\pi)^2} (Q - 1) - \frac{1}{2} \left(\frac{g}{(4\pi)^2} \right)^2 (Q^2 - 4Q + 5) + \cdots \right]$$

[Badel, Cuomo, Monin, Rattazzi '19]

In weakly-coupled theories, is a remarkably simple statement about the one-loop correction – "Peskin+Schroeder physics"

Useful to write it as convexity:
$$\frac{\partial^2 \Delta(Q)}{\partial Q^2} > 0$$

Convexity in explicit examples where can be checked:

- ✓ U(1) and O(N) (quartic) model in 4ϵ dimensions
- ✓ U(1) and O(N) (sextic) model in 3ϵ dimensions:
- \checkmark O(N) (quartic) model in 3 dimensions (using large N)
- $\checkmark U(M) \times U(N)$ (quartic) model in 4ϵ dimensions

[Antipin, Bersini, Sannino, Wang, Zhang '21]

- \checkmark $U(1)_{\text{top}}$ in 3-dimensional $U(N_c)$ gauge theory with N_f fermions
- ✓ $U(1)_{\text{top}}$ in 3-dimensional $U(N_c)$ gauge theory with N_f scalars
- √ + quartic terms + Chern-Simons terms
- \checkmark O(2) model in 3 dimensions (lattice/bootstrap) experimentally realizable!
- √ Banks-Zaks in 4 dimensions (for Scalar+Fermionic Mesons)
 (Aharony, Breitstein '23)

State-Operators correspondence:

$$E(\mathbb{R} \times S^{d-1})R = \Delta(\mathbb{R}^d)$$

$$\phi = \frac{1}{\sqrt{2}} a e^{i\chi} \qquad \mathcal{L} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a + \frac{1}{2} a^2 \partial_{\mu} \chi \partial^{\mu} \chi - \frac{1}{2} \frac{a^2}{R^2} - \frac{1}{16} g a^4$$

Evaluate the energy of the theory on a homogeneous charged background

$$\chi = mt \qquad \langle a \rangle^2 = \frac{4(m^2 - 1/R^2)}{g} \qquad \mathcal{L}_{\text{eff}}(m) = \frac{(m^2 - 1/R^2)^2}{g}$$

If there is a semi-classical approximation, then can map this to the energy through a Legendre transform

$$Q \equiv \left(2\pi^{2}R^{3}\right) \frac{\partial \mathcal{L}_{\text{eff}}(m)}{\partial m} = \frac{8\pi^{2}R^{3}m\left(m^{2} - 1/R^{2}\right)}{g} \qquad mR = \frac{3^{\frac{1}{3}} + \left(9\frac{gQ}{(4\pi)^{2}} - \sqrt{81\left(\frac{gQ}{(4\pi)^{2}}\right)^{2} - 3}\right)^{\frac{2}{3}}}{3^{\frac{2}{3}}\left(9\frac{gQ}{(4\pi)^{2}} - \sqrt{81\left(\frac{gQ}{(4\pi)^{2}}\right)^{2} - 3}\right)^{\frac{1}{3}}}.$$

[Badel, Cuomo, Monin, Rattazzi '19]

$$\Delta(Q) = Q \left[1 + \frac{1}{2} \frac{gQ}{(4\pi)^2} - \frac{1}{2} \left(\frac{gQ}{(4\pi)^2} \right)^2 + \cdots \right]$$

$$\Delta(Q) = Q \left[1 + \frac{1}{2} \frac{gQ}{(4\pi)^2} \left(1 - \frac{1}{0} \right) - \frac{1}{2} \left(\frac{gQ}{(4\pi)^2} \right)^2 \left(1 - \frac{4}{0} + \frac{5}{0^2} \right) + \cdots \right]$$

Semi-classical description works as long as $Q \gg 1$. Why?!

Allows for a semi-classical handle on the convexity sign!

Understand generally in the language of Goldstone bosons

Consider charged scalar operators, dual to homogenous charged states, which break the symmetry group as (superfluid)

$$SO(1, d+1) \times U(1) \rightarrow SO(d) \times D'$$

(True if lowest energy state in a charge super-selection sector)

Combination of the symmetries left over is denoted by m (chemical potential)

The symmetry implies that if the U(1) acts on a field (operator) as

$$U(1): \Pi \to \Pi + \xi$$
,

then it must appear in the combination

$$\chi \equiv mt + \Pi$$

Convenient to work with the normalized field

$$\chi = mt + \frac{\pi}{f}$$

f is the scale of the symmetry breaking

For large f, we can think of π as a Goldstone boson

Large
$$f$$
 regime of CFTS: $f R^{\frac{d-2}{2}} \gg 1$

- Global effects (instantons) associated to the compact sphere are suppressed exponentially by f
- There is an expansion in powers of π to a leading quadratic (semi-classical) theory

$$Y_{\mu} = m\delta_{\mu t} + \frac{\partial_{\mu}\pi}{f} \qquad Y^{2} \equiv Y^{\mu}Y_{\mu} = m^{2}\left(1 + 2\frac{\dot{\pi}}{mf} + \frac{\partial_{\mu}\pi\partial^{\mu}\pi}{m^{2}f^{2}}\right)$$

Everything must be a function of Y^2 (and higher derivatives ∂Y)

In the O(2) model we have

	Small charge $gQ \ll 1$	Large charge $gQ \gg 1$
$fR^{\frac{d-2}{2}}$	\sqrt{Q}	$\frac{1}{\sqrt{g}} \left(gQ \right)^{\frac{1}{3}}$
mR	$1 + \mathcal{O}(gQ)$	$(gQ)^{\frac{1}{3}}$

Two large f regimes in the model.

This is why we can semi-classically calculate the operator dimensions

There are two scenarios: Goldstone with gap (from sphere scale), or without gap, to other fields

If there is a gap, can integrate out all the other fields, and have an expansion both in derivatives and in powers of π

$$\mathcal{L}_{\text{eff}}(m,\pi) = \mathcal{L}_{\text{eff}}(m,\pi)|_{\pi=0} + \frac{\partial \mathcal{L}_{\text{eff}}(m,\pi)}{\partial (\partial_{\mu}\pi)} \Big|_{\pi=0} (\partial_{\mu}\pi) + \frac{1}{2} \frac{\partial^{2} \mathcal{L}_{\text{eff}}(m,\pi)}{\partial (\partial_{\mu}\pi) \partial (\partial_{\nu}\pi)} \Big|_{\pi=0} (\partial_{\mu}\pi) (\partial_{\nu}\pi) + \dots$$

Yields:

$$\mathcal{L}_{\text{eff}}(m,\pi) = \mathcal{L}_{\text{eff}}(m) + \frac{1}{2} \frac{1}{f^2} \left[\frac{\partial^2 \mathcal{L}_{\text{eff}}(m)}{\partial m^2} \dot{\pi}^2 - \frac{Q}{m} (\partial_i \pi) (\partial_j \pi) g^{ij} \right], \qquad Q = \frac{\partial \mathcal{L}_{\text{eff}}(m)}{\partial m}$$

Positive kinetic terms and sub-luminality imply

$$\frac{\partial^2 \mathcal{L}_{\text{eff}}(m)}{\partial m^2} > 0 \qquad \qquad \frac{\partial^2 \mathcal{L}_{\text{eff}}(m)}{\partial m^2} \ge \frac{Q}{m}$$

We therefore find that Goldstone boson + Gap implies convexity of the Lagrangian in the chemical potential

Semi-classically, the chemical potential is the conjugate to the charge

Classical :
$$H(Q) = m Q - L(m)$$
 , $Q = \frac{\partial L(m)}{\partial m}$.

A Legendre transform preserves convexity (convex conjugate), and therefore

$$\frac{\partial^2 H(Q)}{\partial Q^2} > 0 \qquad \frac{\partial^2 \Delta(Q)}{\partial Q^2} > 0 \qquad \Delta((n+m)Q) > \Delta(nQ) + \Delta(mQ)$$

Summary

- The WGC can be mapped to certain convexity properties of CFTs
- Have shown that convexity of charged operators follows if:
 - 1. The theory is in a large f regime, so there is a Goldstone boson
 - 2. There is a set of operators/states, of lowest dimension for their charge, which share the same Goldstone boson (embedding into the CFT degrees of freedom). e.g. ϕ^n
- The CFT result matches very nicely the gravity side, in the sense that ϕ^n can be thought of as an n-particle state
- There exist examples where ϕ can have parametrically large charge

[Sharon, EP '22][Sharon, Watanabe '23]

• Bulk dual of the Goldstone boson?

Thank You