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The Weak Gravity Conjecture proposes a relation for any theory with a 
U(1) gauge symmetry:

[Arkani-Hamed, Motl, Nicolis, Vafa ’06 ]
2 𝑔 𝑄 𝑀! ≥ 𝑚

Evidence from string theory. But very few (none?) completely non-
supersymmetric tests.

No clear underlying microscopic physics, only `motivating’ arguments

Underlies much of the Swampland program, by appropriate generalisations



Proofs / underlying microscopic physics for Swampland conjectures are likely 
most accessible in AdS space through holography: CFTs sharply defined

Propose a formulation of the WGC which is cleanly translatable to a CFT 
statement:

m
2𝑔𝑞 Gauge

Gravity

There must exists a particle with a positive self-binding energy

[EP ’17] [Aharony, EP ‘21]



Charge Q under U(1) gauge symmetry = Charge Q under U(1) Global symmetry

𝛾 = 𝐸"#$ 2 − 2𝐸"#$(1) ≥ 0

Charged operators convexity:

𝛾%! = Δ 𝜙& − 2Δ 𝜙 ≥ 0

AdS/CFT dictionary:

Positive binding:

Particle state in bulk 𝜙 = Operator in CFT 𝜙

Energy of state = Dimension of operator in CFT

𝛾 = Δ 2𝑄 − 2Δ(𝑄) ≥ 0



Guiding example: 𝑂 2 model in 4 − 𝜖 dimensions  

Δ 𝑄 = 𝑄 1 +
1
2

𝑔
4𝜋 & 𝑄 − 1 −

1
2

𝑔
4𝜋 &

&
𝑄& − 4𝑄 + 5 +⋯

Using perturbative Feynman diagrams find:

[Badel, Cuomo, Monin, Rattazzi ‘19]

ℒ = 𝜕𝜙 & −
1
4
𝑔 𝜙 '

In weakly-coupled theories, is a remarkably simple statement about the one-
loop correction – “Peskin+Schroeder physics”

Useful to write it as convexity: 𝜕&Δ(𝑄)
𝜕𝑄&

> 0

Operator charge 𝑄 : 𝜙(

e.g. Δ 2𝑛 − 𝑛 Δ 2 ≥ 0



𝑈 1 and 𝑂 𝑁 (quartic) model in 4 − 𝜖 dimensions 

𝑈 1 and 𝑂 𝑁 (sextic) model in 3 − 𝜖 dimensions: 

✓
✓
✓ 𝑂 𝑁 (quartic) model in 3 dimensions (using large N) 

𝑈 𝑀 ×𝑈 𝑁 (quartic) model in 4 − 𝜖 dimensions 

✓

[Antipin, Bersini, Sannino, Wang, Zhang ‘21]

𝑈 1 )*+ in 3-dimensional 𝑈(𝑁,) gauge theory with 𝑁- fermions

𝑈 1 )*+ in 3-dimensional 𝑈(𝑁,) gauge theory with 𝑁- scalars

+ quartic terms + Chern-Simons terms

✓

✓

✓
𝑂 2 model in 3 dimensions (lattice/bootstrap) – experimentally realizable! ✓
Banks-Zaks in 4 dimensions (for Scalar+Fermionic Mesons)  
(Aharony , Breitstein ‘23)

✓

Convexity in explicit examples where can be checked:



State-Operators correspondence: 𝐸 ℝ ×𝑆./0 𝑅 = Δ(ℝ.)

Evaluate the energy of the theory on a homogeneous charged background

29]

gN =
8 (4π)2

N2
+O

(
1/N

3
)
, (4.3)

or the critical point of the SO(N) NJL model in d = 3 dimensions at large N ,

where [30]

gN =
8 (4π)2

κ60N
2

+O
(
1/N

3
)
, κ60 = 2.98119 . . . (4.4)

Note that in the last two cases, the theory is strongly coupled near the fixed point

(and the NJL model is actually a fermionic model), but the physics around the

fixed-charge state is written in terms the of the bosonic field χ which is effectively

weakly-coupled at large N . Similarly, we expect matrix-type theories to be controlled

by the appropriate ’t Hooft coupling.
13

The theory has two large f regimes, described in table 1. In the regime gQ ≫
1, the large charge regime, the radial mode a becomes very massive and can be

integrated out to yield an effective theory as in section 2.2.1. The other large f

regime is gQ ≪ 1 and Q ≫ 1. In that case, there is no gap to the radial mode mass

and we are in the scenario of section 2.2.2. We consider these two settings in turn.

First, there is some analysis which can done irrespective of the charge regime.

For simplicity, we restrict to the d = 4 case, which sets R = 6/R
2
and V = 2π2

R
3
.

In this case the action is

L =
1

2
∂µa∂

µ
a+

1

2
a
2∂µχ∂

µχ− 1

2

a
2

R2
− 1

16
g a

4
. (4.5)

We are looking for a saddle, so a solution to the equations of motion, where a is a

constant in spacetime, and χ takes the form

χ = mt . (4.6)

The classical equations of motion for the field a give

〈a〉2 =
4
(
m

2 − 1/R
2
)

g
. (4.7)

Note that this only makes sense over the domain

m
2
R

2 ≥ 1 . (4.8)

Substituting the solution for a, so evaluating the action on the saddle, yields the

effective Lagrangian

Leff(m) =

(
m

2 − 1/R
2
)2

g
. (4.9)

13A simple example is the asymptotically safe theory of [31], which has a matrix scalar sector
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We note that it is indeed convex. More precisely,

∂2

∂m2
Leff(m) =

4

g

(
3m2 − 1/R2

)
, (4.10)

and therefore it is convex over the domain,

Convex domain: m2R2 >
1

3
, (4.11)

which is automatically implied by (4.8).

We are interested in the domain Q ≥ 0, with the charge Q defined as

Q ≡
(
2π2R3

) ∂Leff(m)

∂m
=

8π2R3m
(
m2 − 1/R2

)

g
. (4.12)

We see that the domain Q ≥ 0 is also implied by (4.8), and the restriction m ≥ 0.

Inverting (4.12) we have

mR =

3
1
3 +

+
9 gQ

(4π)2
−

/
81

&
gQ

(4π)2

'2
− 3

, 2
3

3
2
3

+
9 gQ

(4π)2
−

/
81

&
gQ

(4π)2

'2
− 3

, 1
3

. (4.13)

We can now study the two large f regimes separately.

4.1 Large f regime with gQ ≫ 1

In the gQ ≫ 1 regime, we have that (4.13) is approximated as

mR ≃
!
gQ

8π2

" 1
3

. (4.14)

In terms of the Goldstone boson, we can read off f as

f2 = 〈a〉2 ≃ 4

gR2

!
gQ

8π2

" 2
3

. (4.15)

So we see that we are in the large f regime.

The other parameter we are interested in is the radial mode mass. Indeed, it is

informative to obtain the effective theory for the homogenous Goldstone boson π0

and radial r0 modes. Note that the homogenous Goldstone zero mode only sources

the homogenous radial mode, so it is consistent to restrict to them. We set R = 1

which is controlled by $/N2
f with $ = Nf/Nc − 11/2 [32].
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If there is a semi-classical approximation, then can map this to the energy 
through a Legendre transform

be lower energy states, with a different Goldstone embedding, at the same charge.

One may wonder if that allows for the instability, and therefore also the spectrum

within one Goldstone embedding family of operators can be non-convex. There

are strong reasons to state that this cannot be. First, in the case when there is a

mass hierarchy, the non-convexity was mapped to wrong sign kinetic terms, which

is a more substantial inconsistency than an instability. Second, from figure 1 for

example, we see that there are many charges along the spectrum of operators of the

higher dimension family where operators in that family are still the lowest dimension

(any charges which are not a multiple of three). We must still have convexity in all

those operators, which would strongly suggest convexity in the whole family. The

strongest reason to see why the spectrum must be convex is that the instability found

in section 2 is within a quadratic, so free, theory. The instability in a scenario such

as here, would be due to interactions, and so cannot be identified with it.
12

4 Example: the O(2) model

In this section we study an example model. The example we consider is actually a

general class of theories, where we assume that after integrating out heavy modes,

one is left with a single complex scalar which realises the U(1) symmetry as a phase

rotation. It is a generalisation of the O(2) model studied in [26], and technically the

calculation is the same as the one in [26].

Consider a weakly-coupled model for a cft, written in terms of a complex field

φ =
1√
2
ae

iχ
that transforms linearly under a U(1) symmetry. If a ∕= 0, we can write

the (Minkowski signature) Lagrangian in an (approximately) scale-invariant form as

an expansion in the coupling

L =
1

2
∂µa∂

µ
a+

1

2
a
2∂µχ∂

µχ− (d− 2)R

8(d− 1)
a
2 − d− 2

8d
g a

2d
d−2 + sub-leading in g, (4.1)

where g is a perturbative coupling. We consider the theory on R × S
d−1

, where

the sphere has an associated radius R, and a curvature R which contributes to the

Lagrangian through a quadratic term in a.

The simplest examples are the Wilson–Fisher point for the O(2) model in d = 4−.

dimensions where

g4−* =
(4π)2 .

5
+O

(
.2
)
, (4.2)

the critical point of the O(N) vector model in d = 3 dimensions at large N where [27–

12
In fact, we always expect some instability on a compact space, due to global effects implying

that the lowest energy state is the sum over all the states related by the Goldstone boson. However,

this is exponentially suppressed by f , and so certainly cannot be associated to the instability found

in section 2.
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Δ 𝑄 = 𝑄 1 +
1
2
𝑔𝑄
4𝜋 & 1 −

1
𝑄

−
1
2

𝑔𝑄
4𝜋 &

&

1 −
4
𝑄
+
5
𝑄&

+⋯

[Badel, Cuomo, Monin, Rattazzi ‘19]

Δ 𝑄 = 𝑄 1 +
1
2
𝑔𝑄
4𝜋 & −

1
2

𝑔𝑄
4𝜋 &

&

+⋯

𝑔 𝑄 ≪ 1 ∶

Semi-classical description works as long as 𝑄 ≫ 1. Why?!

Allows for a semi-classical handle on the convexity sign! 



Understand generally in the language of Goldstone bosons

Consider charged scalar operators, dual to homogenous charged states, 
which break the symmetry group as (superfluid) pattern [23], denoted as

SO(1, d+ 1)× U(1) → SO(d)×D′ , (2.1)

where D′ is a combination of the original dilatation symmetry D, and the U(1)

symmetry. The specific combination is labelled by a parameter m, and this is what

we call the chemical potential. In terms of operators, it means that the state is an

eigenstate of the combination of operators Ĥ −mQ̂, with Ĥ being the Hamiltonian

and Q̂ the charge operator. On the Lagrangian side, it is a statement about the

fields in the theory. Specifically, if the U(1) acts on a field Π non-linearly, so

U(1) : Π → Π+ ξ , (2.2)

with ξ being a constant, then in the Lagrangian the field may only appear through

the combination

χ ≡ mt+Π . (2.3)

Here t denotes time, and χ is defined as this specific combination. It is informative

to state the dimensions: here χ, Π are dimensionless, and m has dimension one.

2.1.1 The large f regime

Because we have a U(1) symmetry, the constant ξ in (2.2) must be periodic. This

periodicity is associated to a dimensionful quantity f which parameterises the scale of

the symmetry breaking by the charged state. The field Π should then be normalised

to have unit periodicity by this scale. We therefore write (2.3) as

χ = mt+
π

f
, (2.4)

where now f and π have dimensions d−2
2 . We refer to π as the Goldstone boson, and

work with it throughout the paper. In fact, since time t cannot appear explicitly in

the Lagrangian, the combination which appears is

Yµ = mδµt +
∂µπ

f
, (2.5)

from which one can construct relativistic invariants, such as

Y 2 ≡ Y µYµ = m2

!
1 + 2

π̇

mf
+

∂µπ∂
µπ

m2f2

"
. (2.6)

2Note that we work in signature ηµν = [ diag (+1,−1,−1, ...,−1) ]µν .

4

(True if lowest energy state in a charge super-selection sector)

Combination of the symmetries left over is denoted by 𝑚 (chemical potential)



The symmetry implies that if the U(1) acts on a field (operator) as
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𝑓 is the scale of the symmetry breaking



For large 𝑓, we can think of 𝜋 as a Goldstone boson 

• Global effects (instantons) associated to the compact sphere are 
suppressed exponentially by 𝑓

• There is an expansion in powers of 𝜋 to a leading quadratic (semi-
classical) theory
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and Q̂ the charge operator. On the Lagrangian side, it is a statement about the

fields in the theory. Specifically, if the U(1) acts on a field Π non-linearly, so

U(1) : Π → Π+ ξ , (2.2)

with ξ being a constant, then in the Lagrangian the field may only appear through

the combination

χ ≡ mt+Π . (2.3)

Here t denotes time, and χ is defined as this specific combination. It is informative

to state the dimensions: here χ, Π are dimensionless, and m has dimension one.

2.1.1 The large f regime

Because we have a U(1) symmetry, the constant ξ in (2.2) must be periodic. This

periodicity is associated to a dimensionful quantity f which parameterises the scale of

the symmetry breaking by the charged state. The field Π should then be normalised

to have unit periodicity by this scale. We therefore write (2.3) as

χ = mt+
π

f
, (2.4)

where now f and π have dimensions d−2
2 . We refer to π as the Goldstone boson, and

work with it throughout the paper. In fact, since time t cannot appear explicitly in

the Lagrangian, the combination which appears is

Yµ = mδµt +
∂µπ

f
, (2.5)

from which one can construct relativistic invariants, such as

Y 2 ≡ Y µYµ = m2

!
1 + 2

π̇

mf
+

∂µπ∂
µπ

m2f2

"
. (2.6)

2Note that we work in signature ηµν = [ diag (+1,−1,−1, ...,−1) ]µν .

4

Everything must be a function of 𝑌& (and higher derivatives 𝜕𝑌)

Large 𝑓 regime of CFTS: 𝑓 𝑅
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In the O(2) model we have

Small charge gQ ≪ 1 Large charge gQ ≫ 1

fR
d−2
2

√
Q

1√
g (gQ)

1
3

mR 1 +O(gQ) (gQ)
1
3

Table 1: Table showing the behaviour of f and m with g and Q in the two charge

regimes of the O(2)-model in d = 4. The results are derived in section 4. The large f

regime requires Q ≫ 1 in the small charge regime, while for the large charge regime

it is automatically satisfied because g ≪ 1.

Here, and henceforth, π̇ denotes the time derivative ∂tπ.
2

We are interested in

performing a general analysis of the Goldstone boson π about the charged states. In

order to do this we introduce the large f expansion. We work approaching the limit

Large f limit : fR
d−2
2 → ∞ . (2.7)

It may be informative to have an example in mind for how the large f limit can

be realised. In section 4 we study such an example in detail: the O(2)-model. The

theory is weakly-coupled, with a coupling g. Let us denote the charge of the state

about which we are working as Q. There are two regimes of the theory of interest:

the small charge regime gQ ≪ 1 and the large charge regime gQ ≫ 1. The former

regime can be studied using perturbation theory, and the latter using the large charge

expansion [1]. In table 1 we show how the parameters m and f behave in these two

regimes. We see that both of the regimes are at large f . The large charge regime

is automatically a large f one, while the small charge regime requires an additional

condition Q ≫ 1. So the large f regime can be thought of as a medium charge

regime in this model.

The large f regime is defined such that it allows for an expansion in powers of

π. We can see this from (2.6). Since π is canonically normalised, its momentum

modes on the sphere are quantised in units of
1
R , which means order one in our

units. We see then that the last two terms in (2.6) are small.
3
Note that this allows

for an expansion in π, and π only appears through its derivatives, but this is not

always a derivative expansion in general. We may have terms that are higher order

in derivatives, but with the same powers of π, that are important.

2.1.2 Goldstone bosons on a compact space

We are considering charged states, dual to the charged operators. The natural ex-

pectation is then that they break the global U(1) symmetry spontaneously, and by

3Note that, because the dimension of charged operators is bounded for below in d > 2 by unitarity,

5

Two large 𝑓 regimes in the model. 

This is why we can semi-classically calculate the operator dimensions 



There are two scenarios: Goldstone with gap (from sphere scale), or without 
gap, to other fields

If there is a gap, can integrate out all the other fields, and have an expansion 
both in derivatives and in powers of 𝜋large f regime, we have a derivative expansion of Leff (m,π). We can expand as

Leff (m,π) = Leff (m,π)|π=0 +
∂Leff (m,π)

∂ (∂µπ)

####
π=0

(∂µπ)

+
1

2

∂2Leff (m,π)

∂ (∂µπ) ∂ (∂νπ)

####
π=0

(∂µπ) (∂νπ) + ... . (2.9)

The second term in (2.9) vanishes due to the equations of motion for π. Recalling

that Leff (m,π) is only a function of the combination Y 2
in (2.6), we can write the

differential operators acting on it as

1

2

∂2Leff (m,π)

∂ (∂µπ) ∂ (∂νπ)

####
π=0

=
1

2

1

f2

$
gµν

m

∂Leff (m)

∂m
+ δµ0δν0

!
∂2Leff (m)

∂m2
− 1

m

∂Leff (m)

∂m

"%
.(2.10)

Where we have written the metric on R×Sd−1
as gµν . We also decompose the indices

µ = 0, i, and note that g00 = 1 and g0i = 0. Using (2.10) in (2.9) then yields

Leff (m,π) = Leff (m) +
1

2

1

f2

$
∂2Leff (m)

∂m2
π̇2 − Q

m
(∂iπ) (∂jπ) g

ij

%
, (2.11)

Here we have utilised a relation

Q =
∂Leff (m)

∂m
. (2.12)

This relation arises from the fact that the charge is the (Legendre) dual coordinate

to the chemical potential. We discuss this in section 3.

The terms in (2.11) are the leading derivative terms for the Goldstone field. The

important point is that the coefficient of the time derivative is given by
∂2Leff(m)

∂m2 . For

the theory to be well-behaved, we need this coefficient to be positive. We therefore

recover

∂2Leff (m)

∂m2
> 0 . (2.13)

Positivity of the second derivative, for a differentiable function, is equivalent to

convexity. We therefore recover the result that the effective Lagrangian, in which

the dependence on the chemical potential m is manifested fully explicitly, must be

convex in the chemical potential.
4

It is worth discussing in more detail why we would expect the coefficient in front

of the time derivative to be positive. This is quite standard, theories with negative

kinetic terms are notoriously difficult to make sense of. Nonetheless, this is an

effective theory, and it could be that such seemingly pathological behaviour may be

4Note that because the state is homogeneous we can exchange convexity in the Lagrangian density
L for convexity in the Lagrangian L.
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way, in appendix B. In particular, this way one recovers again also the constraint

(2.16).

3 Convexity in charge

The results of section 2.2 can be summarised concisely: in the large f regime (2.7),

we have an effective theory for a Goldstone boson π about a charged state, with

chemical potential m. Consistency of this theory, specifically positive kinetic terms

and stability, requires that the Lagrangian must be a convex function of m, so

∂2Leff (m)

∂m2
> 0 . (3.1)

Here, Leff (m) denotes the Lagrangian in which all the m dependence has been made

explicit, by integrating out the relevant fields.

We are interested in the spectrum of the dimensions of charged operators ∆(Q).

By the state-operator correspondence, this is given by the energies of the dual states

∆ (Q) = E (Q)R . (3.2)

Here, by E(Q), we denote the expectation value of the Hamiltonian operator Ĥ on

a charge eigenstate of charge Q, so

E(Q) = 〈Q|Ĥ|Q〉 . (3.3)

In particular, we are interested in the dimensions of the lowest dimension operators

of charge Q, and so the energy is that of the lowest energy state of charge Q.

Classically, the Lagrangian as a function of m is the Legendre dual of the Hamil-

tonian as a function of charge Q. So we have

Classical : H (Q) = m Q− L(m) , Q =
∂L (m)

∂m
. (3.4)

A Legendre transform preserves convexity, indeed the Legendre dual is sometimes

referred to as the convex conjugate.
7
Therefore, convexity of L(m) in m, as in (3.1),

implies convexity of H(Q) in Q, and therefore also of ∆(Q) in Q. This is the required

result.

There are a number of subtleties with this argument. The first is that since our

analysis in section 2 restricted to homogeneous states, we are therefore restricted to

7
It is worth noting a subtlety at this point, which is that the Legendre transform (3.4) is not well-

defined if there are multiple values of m which give the same Q. However, this does not happen if the

convexity condition (3.1) is satisfied. This is because we are restricting to positive charges Q > 0, and

so both the first and second derivatives of L (m) are positive and therefore it is a monotonic function.

13

Semi-classically, the chemical potential is the conjugate to the charge

A Legendre transform preserves convexity (convex conjugate), and therefore

𝜕&𝐻(𝑄)
𝜕𝑄&

> 0
𝜕&Δ(𝑄)
𝜕𝑄&

> 0 Δ 𝑛 +𝑚 𝑄 > Δ 𝑛𝑄 + Δ(𝑚𝑄)

Positive kinetic terms and sub-luminality imply
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effective theory, and it could be that such seemingly pathological behaviour may be

4Note that because the state is homogeneous we can exchange convexity in the Lagrangian density
L for convexity in the Lagrangian L.
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permitted within the momentum range where the theory holds. This seems to us

very unlikely. However, it would be nice to prove a sharp contradiction which can be

seen in the deep infrared. One way to do this is to consider the dispersion relation

for the Goldstone modes. An expansion in eigenfunctions of the laplacian on the

cylinder, which are the product of a plane wave and a hyperspherical harmonic

π ∼ eiωtYℓm(Ω) , (2.14)

gives the dispersion relation

ω2 =

!
∂2Leff (m)

∂m2

"−1
Q

mVd−1

ℓ(ℓ+ d− 2)

R2
, (2.15)

where Vd−1 is the volume of the d−1 sphere. Since Q > 0 and m > 0, if the spectrum

is not convex, ∂2Leff(m)
∂m2 < 0, then ω obtains an imaginary component. An imaginary

component in the dispersion relation implies an instability of the state, it is decaying

in time. This is not consistent if the state is the minimal energy state within a given

superselection (charge) sector.5 We therefore conclude that the Lagrangian density

must be convex in m at least around any Minimal Energy Charged State (mecs).

Though we strongly expect that the result holds around any state.

Finally, we note that we actually obtain another constraint from requiring that

the speed of sound associated to the dispersion relation is subluminal. This gives

∂2Leff (m)

∂m2
≥ Q

m
. (2.16)

We therefore find not only convexity, but one which grows with charge.

2.2.2 Goldstone boson with light states

The two-derivative analysis performed in section 2.2.1 holds as long as there is a mass

gap between the lowest momentum modes of the Goldstone boson and the lightest

massive fields in the theory. In this section we consider the case when there is no

such gap.

Let us recall that the Goldstone mode appears only through the combination

∂µ

&
mt+ π

f

'
, and that we are working in the f → ∞ limit. We are therefore per-

forming an expansion in ∂π
f . Since the field π is canonically normalised, its momen-

tum modes are quantised in units of the (inverse) sphere radius 1
R . There are some

possibilities where such as expansion is not valid. A necessary condition is that there

are additional fields that are as light as the radius scale 1
R , in which case we do not

5Due to global instanton effects, on a compact space, the state which supports ssb is not of the
lowest energy, but rather the lowest energy one is the sum over all such states. But this decay is
exponentially small in f , and so is not what is being manifested here.

9

We therefore find that Goldstone boson + Gap implies convexity of the 
Lagrangian in the chemical potential



Summary

• The CFT result matches very nicely the gravity side, in the sense that 𝜙$ can 
be thought of as an n-particle state

• Have shown that convexity of charged operators follows if:

1. The theory is in a large 𝑓 regime, so there is a Goldstone boson

2. There is a set of operators/states, of lowest dimension for 
their charge, which share the same Goldstone boson (embedding 
into the CFT degrees of freedom). e.g. 𝜙$

• There exist examples where 𝜙 can have parametrically large charge

• Bulk dual of the Goldstone boson?
[Sharon, Watanabe ‘23][Sharon, EP ‘22]

• The WGC can be mapped to certain convexity properties of CFTs
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