SUSY 2023 University of Southampton July, 17-21, 2023

A Road map for Model Building in IIB/F-theory

 ${\it George~K.~Leontaris}$

University of Ioannina $I\omega\alpha\nu\nu\nu\alpha$ \mathcal{GREECE}

Outline of the Talk

- ▲ Introductory remarks
- \triangle \mathcal{F} -Theory basics
- ▲ Building *F*-Theory GUTs
- \blacktriangle Minimal $\mathcal{F}lipped \mathcal{F}\text{-}SU(5)$
- ▲ Concluding Remarks

A few remarks

F-theory is an exciting reformulation of String Theory in a twelve dimensional space

It involves a number of beautiful mathematical subjects including: Topology, Algebraic Geometry and Elliptic Fibrations.

Here, our principal task is to describe the methodology in building effective unified theories (GUTs) with predictive power

F-GUTs vs Ordinary GUTs

I loid uncor, do I b	Field	theory	GUTs
----------------------	-------	--------	------

Predictions

- ▲ Gauge Coupling Unification
- ▲ Charge Quantisation
- ▲ Fermions "assembled" in simple GUT representations

<u>Issues</u>

- ▲ Origin of fermions, mass hierarchy and mixing?
- A Rapid proton decay due to insufficiently constrained \mathcal{L}_Y

F-theory GUTs

New ingredients and features

▲ Magnetised Fluxes

induce chirality

break gauge groups

▲ Topological properties:

fermion generations

New U(1) symmetries:

 \triangle Put additional constraints on \mathcal{L}_Y

Protect baryon number etc \rightarrow

Robust model building framework

 \mathcal{B}

★ F-theory and Elliptic Fibration★
C. Vafa, hep-th/9602022

& reviews:

F. Denef hep-th/0803.1194; T. Weigand 1806.01854

F-theory

(Defining Features)

i) Non-perturbative formulation of Type II-B string compactifications

ii) Presence of 7-branes which backreact on the geometry

in particular

iii) D7 branes are magnetic sources for the RR axion C_0 .

iv) Inherits $SL(2, \mathbb{Z})$ invariance from Type II-B

$SL(2, \mathbb{Z})$ -invariance

1. The dilaton ϕ determines the *string coupling*:

$$g_{IIB} = e^{\phi}$$

2. The RR axion C_0 , and the dilaton ϕ are combined to one modulus, the axio-dilaton field:

$$\tau = C_0 + i e^{-\phi} \to C_0 + \frac{i}{g_{IIB}}$$

3. The importance of τ is that it can be used to write the type IIB action in an $SL(2, \mathbb{Z})$ invariant way

$$S_{IIB} \propto \int d^{10}x \sqrt{-g} \left(R - \frac{1}{2} \frac{\partial_{\mu} \boldsymbol{\tau} \partial^{\mu} \bar{\boldsymbol{\tau}}}{(\operatorname{Im} \boldsymbol{\tau})^{2}} - \frac{1}{2} \frac{|G_{3}|^{2}}{\operatorname{Im} \boldsymbol{\tau}} - \frac{1}{4} |F_{5}|^{2} \right)$$
$$-\frac{i}{4} \int \frac{1}{\operatorname{Im} \boldsymbol{\tau}} C_{4} + G_{3} \wedge \tilde{G}_{3}$$

4. Indeed, it can be checked that this action in invariant under the transformations:

$$au o rac{a au + b}{c au + d}$$

- 5. Due to $SL(2, \mathbb{Z})$ invariace, the modulus τ can vary accordingly, while leaving the action invariant.
- 6. Notice also that the imaginary part is

$$\text{Im}_{\boldsymbol{\tau}} = \frac{1}{g_{_{IIB}}}$$

which implies that there exist values of τ leading to strongly coupled regions.

A few words about

Elliptic Curves & Elliptic Fibration

An extremely important implication of the variation of the axio-dilaton τ is that it gives rise to an elliptic fibration over the physical space-time. In order to see this, let's start with II-B theory which is defined in 10-d space described by: $\mathcal{R}^{3,1} \times \mathcal{B}_3$

- \wedge $\mathcal{R}^{3,1}$ is the usual 4-d space-time
- \triangle \mathcal{B}_3 Calabi-Yau (CY) manifold of 3 complex dimensions (3-fold)

▲ F-theory is compactified on an elliptically fibered manifold where \mathcal{B}_3 is the base of the fibration.

Fibration is implemented by the axio-dilaton modulus $\tau = C_0 + i e^{-\phi} \text{ which can be thought as describing a torus}$

More precisely, we make a continuous mapping of τ to the points of the base B_3 . We say that:

 \wedge F-theory is defined on $\mathbb{R}^{3,1} \times \mathcal{X} \wedge$

where \mathcal{X} , elliptically fibered CY 4-fold over the base B_3 This is depicted below where τ -tori are associated with points of B_3 . Red points correspond to possible geometric singularities of the fiber

Mathematically, the Elliptic Fibration is described by the vanishing locus of the Weierstraß \mathcal{E} quation

$$y^2 = x^3 + f(z)xw^4 + g(z)w^6$$

- 1. $f(z), g(z) \rightarrow 8^{th}$ and 12^{th} degree polynomials.
- 2. Equivalence relations of homogeneous (projective) coordinates $(x, y, w, z) \simeq (\lambda^2 x, \lambda^3 y, \lambda w, z)$ and $(x, y, z, w) \simeq (\lambda^4 x, \lambda^6 y, \lambda z, w)$
- 3. The zero section σ_0 is described by the intersection w = 0 which marks the point $[x : y : w] \rightarrow [1 : 1 : 0]$.
- 4. The elliptic fibration is CY, as long as f(z) and g(z) are holomorphic sections of line bundles^a $\mathcal{O}(K_B^{-4})$ and $\mathcal{O}(K_B^{-6})$ respectively.

 $^{{}^{\}mathbf{a}}K_{B}$ is the canonical class of the base B_{3} .

Two important quantities characterise the fibration:

These are

 \triangle The discriminant: $(24^{th}$ -degree in z)

$$\Delta(z) = 4 f(z)^3 + 27g(z)^2$$

and

 \triangle the *j*-invariant:

$$j(\tau) = \frac{4(24f(z))^3}{\Delta(z)}$$

▲ The zeros of the discriminant determine the fiber singularities:

$$\Delta = \prod_{i=1}^{24} (z - z_i) = 0 \implies 24 \text{ roots } z_i$$

▲▲ In addition, the *j*-invariant provides a relation between the modulus τ and the *coordinate* z:

$$j(\tau(z)) = 4 \frac{(24f(z))^3}{\Delta(z)} \propto e^{-2\pi i \tau} + \cdots$$
 (1)

Its solution determines the axio-dilaton τ around the zeros z_i of Δ :

$$au pprox rac{1}{2\pi i} \log(z - z_i)$$

Encircling a root z_i , due to the multivalued log function, τ shifts:

$$\tau \to \tau + 1 \implies C_0 \to C_0 + 1 \to$$

In other words, τ , C_0 undergo Monodromy.

$$a_{j}(\tau) \sim e^{-2\pi i \tau} + 744 + \mathcal{O}(e^{2\pi i \tau}) \sim e^{2\pi/g_s} e^{-2\pi i C_0} + 744 + \mathcal{O}(e^{-2\pi/g_s}).$$

The Interpretation of this picture is that at the root $z = z_i$ there is a source of RR-flux which is associated with a D7-brane perpendicular to the "tangent plane" \Rightarrow D7 branes are magnetic sources for the RR axion C_0

Figure 1: Moving around z_i , $\log(z) \to \log|z| + i(2\pi + \theta)$ and $\tau \to \tau + 1$

Observation

This monodromic behaviour can be further understood by noting that it can fit into the more general $SL(2, \mathbb{Z})$ invariance of IIB string theory.

Indeed this shift can be obtained by the following $SL(2, \mathbb{Z})$ element:

$$M_{[0,1]} = \left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight) \, \Rightarrow \, M_{[0,1]} \left(egin{array}{c} au \ 1 \end{array}
ight) = \left(egin{array}{c} au + 1 \ 1 \end{array}
ight)$$

We denote a D7-brane with [1,0] on which a (1,0) string ends.

We note in passing that

this motivates the generalisation to 7-branes of the type [p,q] a

^aTo be distinguised from a (p,q) string being a BPS bound state of p fundamental strings and q D1-strings.

Geometric Singularities

Summarising the analysis so far, the elliptic fibration is represented by the Weierstraß equation (fixing $\mathbf{w} = 1$):

$$y^2 = x^3 + f(z)x + g(z)$$

- At the points where the discriminant $\Delta = 27g^2 + 4f^3$ vanishes, the elliptic fiber degenerates.
- The type of Manifold **singularity** is specified by the vanishing order of Δ and the polynomials f(z), g(z) of Weierstraß eqn
- It was shown (in '60s) by Kodaira that these **geometric** singularities are classified in terms of $\mathcal{A} \mathcal{D} \mathcal{E}$ Lie groups.

In F-theory these singularities are interpreted as:

 CY_4 -Singularities \rightleftharpoons gauge symmetries

▲ The above description concerns the non-abelian part of the effective theory which according to \mathcal{ADE} classification will result to an effective model with one of the following gauge groups (in standard notation)

$$Non Abelian \ Gauge Groups$$
 $\Rightarrow \begin{cases} SU(n) \ SO(m) \ \mathcal{E}_n \end{cases}$

▲ Note: There are also Abelian symmetries associated with the elliptic fibers of CY_4 and will be discussed shortly

 \mathcal{C}

The Non Abelian Sector

Rôle of Geometric Singularities on EFTs

Kodaira classified the type of singularities in terms of the vanishing order of f(z), g(z) and $\Delta(z) = 4f(z)^3 + 27g(z)^2$. (see details in Morrison, Vafa hep-th/9603161)

$\operatorname{ord}(f(z))$	$\operatorname{ord}(g(z))$	$\operatorname{ord}(\Delta(z))$	fiber type	Singularity
0	0	n	I_n	A_{n-1}
≥ 1	1	$\mid 2$	II	none
1	≥ 2	3	III	A_1
≥ 2	2	$\mid 4$	$\mid IV$	A_2
2	≥ 3	n+6	$\mid I_n^* \mid$	D_{n+4}
≥ 2	3	n+6	$\mid I_n^* \mid$	D_{n+4} D_{n+4}
≥ 3	4	8	$ IV^* $	\mathcal{E}_6
3	≥ 5	9	III^*	\mathcal{E}_7
≥ 4	5	10	II^*	\mathcal{E}_8

Perhaps, a more pheno-friendly approach is **Tate's Algorithm**

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

$$a_n = \sum_{\ell = \frac{k}{2}} a_{n,\ell} z^{\ell}$$

Table: Geometric Singularities w.r.t. vanishing order of a_i and Δ

Group	a_1	a_2	a_3	a_4	a_6	Δ
SU(2n)	0	1	n	n	2n	2n
SU(2n+1)	0	1	n	n+1	2n + 1	2n+1
SU(5)	0	1	2	3	5	5
SO(10)	1	1	2	3	5	7
\mathcal{E}_6	1	2	3	3	5	8
\mathcal{E}_7	1	2	3	3	5	9
\mathcal{E}_8	1	2	3	4	5	10

$\mathcal{E}X\mathcal{AMPLE}$

Defining $b_k = b_{k,0} + b_{k,1}z + \cdots$, $(b_{k,0} \neq 0)$ we choose a_i to be:

$$a_1 = -b_5, \ a_2 = b_4 z, \ a_3 = -b_3 z^2, \ a_4 = b_2 z^3, \ a_6 = b_0 z^5$$

Then, the vanishing orders of each a_n is:

Vanishing	a_1	a_2	a_3	a_4	a_6	Δ	
order	_	z^1	z^2	z^3	z^5	z^{5}	$ ightarrow \mathbf{SU(5)}$

 \Rightarrow Weierstraß' equation for the SU(5) singularity

$$y^{2} = x^{3} + b_{0}z^{5} + b_{2}xz^{3} + b_{3}yz^{2} + b_{4}x^{2}z + b_{5}xy$$
 (2)

* A useful notion for local model building is the spectral cover obtained by defining homogeneous coordinates $z \to U$, $x \to V^2$, $y \to V^3$ and affine parameter $s = \frac{U}{V}$, so that (2) implies:

$$C_5: 0 = b_0 s^5 + b_2 s^3 + b_3 s^2 + b_4 s + b_5$$

 ${\mathcal D}$

The Abelian Sector

Our interest in continuous Abelian Groups (and other discrete symmetries) arises from phenomenological considerations, in particular the necessity to constrain the Yukawa Lagrangian

In F-theory such symmetries appear naturally

Recall that F-theory is defined on elliptically fibred fourfold.

Hence,

Elliptic Curves are fundamental in F-theory constructions.

In particular the Rational Points on the Elliptic Curves are associated with the Abelian Sector of the theory

First, let's start with coefficients $\in \mathbb{R}$.

The rational points ^a on Elliptic Curves form a Group

The addition law: Given two rational points P, Q, we define P + Q as in the left plot which is rational. (\mathcal{O} the <u>neutral element</u>). The opposite of P is defined by $P + (-P) = \mathcal{O}$ (right plot)

^aA point is said to be rational if its coordinates are rational. A rational curve is defined by an equation with rational coefficients.

Mordell Theorem

The Rational Points on Elliptic Curves constitute an Abelian Group which is generated by a finite number of elements.

It is called:

Mordell - Weil Group

Returning now to the case of the elliptic fibration:

The Rational Points are 'promoted' to Rational Sections

★ As a consequence, a new class of Abelian symmetries -associated with Rational Sections - appear in the effective theory

$$\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \mathcal{G}$$

Here, r is the rank of the abelian group and \mathcal{G} is the Torsion part:^a

$$\mathcal{G} = \begin{cases} \mathbb{Z}_n & n = 1, 2, \dots, 10, 12 \\ \mathbb{Z}_k \times \mathbb{Z}_2 & k = 2, 4, 6, 8 \end{cases}$$

^aD.S. Kubert: Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc., third series, 33 (1976) 193-237. For relations to Tate-Shafarevich group see Braun et.al 1401.7844, Cvetic et.al 1502.06953

To wrap things up:

In \mathcal{F} -Theory, Abelian gauge symmetries (other than those embedded in E_8) are encoded in rational sections of the Elliptic Fibration and constitute the so called Mordell-Weil group.

Simplest (and perhaps most viable) Case:

Rank-1 Mordell-Weil

References:

Morrison-Park: 1208.2695, Cvetic et al: 1210.6094; Mayhofer et al, 1211.6742; Borchmann et al 1307.2902; Antoniadis, GKL: 1404.6720; Mayhofer, Palti, Weigand: 1410.7814; Krippendorf et al: 1401.7844, GKL: 1501.06499; Cvetic and Lin: 1809.00012

 \mathcal{E}

F-theory Model Building

(Original papers: Beasley, Heckman, Vafa: 0802.3391, 0806.0102 Donagi et al 0808.2223, 0904.1218)

Early reviews: 1001.0577, 1203.6277, 1212.0555

Recent: 1806.01854; 2212.07443

A Class of 'semi-local' constructions

The final effective (GUT) model depends on the choice of:

1) Manifold 2) Fluxes 3) Monodromies Let's examine the role of each one of them

▲ The role of the manifold: **▲**

▲ The candidate GUT is embedded in \mathcal{E}_8 which is the maximal exceptional group in elliptic fibration.

So, we suppose that there is a divisor, accommodating our choice while the rest is the symmetry commutant to it.

$$\mathcal{E}_8 o \mathbf{G_{GUT}} imes \mathcal{C}$$

Example: Assuming a Manifold with SU(5) divisor:

$$\mathcal{E}_8 \rightarrow SU(5) \times SU(5)_{\perp}$$

$$\rightarrow SU(5) \times U(1)_{\perp}^4$$

Matter descends from the \mathcal{E}_8 -Adjoint which decomposes as:

$$248 \rightarrow (24,1) + (1,24) + (10,5) + (\overline{5},10) + (\overline{10},\overline{5}) + (5,\overline{10})$$

In F-theory, matter is localised along intersections with other 7-branes.

When 7-branes intersect S, the discriminant vanishes, $\Delta = 0$, and therefore along a matter curve Σ the gauge symmetry is enhanced

When branes intersect, the singularity increases and the **gauge symmetry** is further **enhanced**. Yukawa couplings are formed at tripple intersections . For example, in the SU(5) case:^a

$$\lambda_b 10 \cdot \overline{5} \cdot \overline{5} \in \mathbf{SO(12)}, \ \lambda_t 10 \cdot 10 \cdot 5 \in \mathbf{E_6}$$

^aHere we assume that there is a Z_2 monodromy so that λ_t exists.

▲ The role of fluxes: ▲

Three important implications

- ightharpoonup determine SU(5) chirality
- ightharpoonup trigger SU(5) Symmetry Breaking

(fluxes act as the surrogate of the Higgs vev)

ightharpoonup Split the SU(5)-representations

There are two distinct sets of fluxes with discrete roles:

- \triangle i) The integers M_{10}, M_5 : are associated with $U(1)_{\perp}$ fluxes and determine the chirality $\#(10-\overline{10})$ and $\#(5-\overline{5})$ of SU(5)
- \wedge ii) The hypercharge flux N_Y , turned on along $U(1)_Y \in SU(5)$, breaks SU(5) and splits the SU(5)-representations

SU(5) chirality from perpendicular $U(1)_{\perp}$ Flux

 $U(1)_{\perp}$ -Flux on \in **10**'s:

$$\#10 - \#\overline{10} = M_{10}$$

 $U(1)_{\perp}$ - Flux on \in 5's:

$$\#5 - \#\overline{5} = M_5$$

SM chirality form Hypercharge Flux

 $U(1)_Y$ -**Flux**-splitting of **10**'s:

$$n_{(3,2)_{\frac{1}{6}}} - n_{(\bar{3},2)_{-\frac{1}{6}}} = M_{10}$$

$$n_{(\bar{3},1)_{-\frac{2}{3}}} - n_{(3,1)_{\frac{2}{3}}} = M_{10} - N_{Y_{10}}$$

$$n_{(1,1)_{1}} - n_{(1,1)_{-1}} = M_{10} + N_{Y_{10}}$$

 $U(1)_Y$ - Flux-splitting of 5's:

$$n_{(3,1)_{-\frac{1}{3}}} - n_{(\bar{3},1)_{\frac{1}{3}}} = M_5$$

$$n_{(1,2)_{\frac{1}{2}}} - n_{(1,2)_{-\frac{1}{2}}} = M_5 + N_{Y_5}$$

Splitting $5/\bar{5}$ Higgses with the Hypercharge Flux

For the Higgs 'curve' in particular choose: $M_5 = 0$, $N_{Y_5} = \pm 1$. $U(1)_Y$ – Flux-splitting of $\mathbf{5}_{\mathbf{H_u}}$:

$$n_{(3,1)_{-\frac{1}{3}}} - n_{(\bar{3},1)_{\frac{1}{3}}} = M_5 = 0$$

$$n_{(1,2)_{\frac{1}{2}}} - n_{(1,2)_{-\frac{1}{2}}} = M_5 + N_{Y_5} = 0 + 1 = 1 \ (H_u)$$

 $U(1)_Y$ - Flux-splitting of $\overline{\bf 5}_{H_d} \rightarrow :$

$$n_{(3,1)_{-\frac{1}{3}}} - n_{(\bar{3},1)_{\frac{1}{3}}} = M_5 = 0$$

$$n_{(1,2)_{\frac{1}{2}}} - n_{(1,2)_{-\frac{1}{2}}} = M_5 + N_{Y_5} = 0 - 1 = -1 \left(\frac{H_d}{M_d} \right)$$

This is the analogue of the Doublet-Triplet splitting

Fermion mass hierarchy (rank-1 mass matrices)

- ▼ If families are distributed on different matter curves: Implementation of Froggatt-Nielsen mechanism in F-models: Dudas and Palti, 0912.0853, 1007.1297, Camara et al, 1110.2206 SF King, GKL and G.G. Ross, 1005.1025, 1009.6000
- ▼ If all three families are on the same matter curve, masses to lighter families can be generated by:
- i) non-commutative fluxes Cecotti et al, 0910.0477
- ii) non-perturbative effects, Aparicio et al, 1104.2609
- \vee Higher rank mass matrices, (global models) Cvetic, M et al hep-th/1906.10119

Flipped SU(5) from F-theory

(with V. Basiouris, Eur.Phys.J.C 82 (2022) 11, 1041)

It follows according to the following breaking pattern:

$$E_8 \supset SO(10) \times SU(4)_{\perp} \supset [SU(5) \times U(1)_{\chi}] \times SU(4)_{\perp}$$
, (3)

MONODROMIES

focusing on $SU(4)_{\perp} \rightarrow locally described by Cartan roots:$

$$t_i = SU(4)_{\perp} - \text{roots} \rightarrow \sum_{i=1}^{4} t_i = 0$$

 $SU(5)_{GUT}$ representations in Effective Theory transform according to:

$$(10,4) \to 10_{t_i} \quad (\overline{5},6) \to \overline{5}_{t_i+t_j}$$

roots t_i obey a 4th-degree polynomial (SU(4) spectral cover)

$$\sum_{k=0}^{4} b_k t^{4-k} = 0$$

with b_k 'conveying' topological properties to the effective model

Solving for $t_i = t_i(b_k) \Rightarrow$ possible branchcuts: \rightarrow Monodromies Minimum case :

$$Z_2: t_1 \leftrightarrow t_2 \Rightarrow U(1)^3_{\perp} \to U(1)^2_{\perp}$$

A few remarks

- ▲ Flipped SU(5) needs only $10 + \overline{10}$ for symmetry breaking.
 - \land No need to turn on $U(1)_{Y_0} \in SU(5)$ flux which requires special conditions to keep $U(1)_{Y_0}$ -boson massless. Under these assumptions:
- \triangle "Flipped" SU(5) one of the few possible viable choices!

$$10_{t_1} \to F_i, \ \bar{5}_{t_1} \to \bar{f}_i, \ 1_{t_1} \to e_j^c,$$
 (4)

$$\mathbf{5_{-t_1-t_4}} \to \mathbf{h}, \ \mathbf{\bar{5}_{t_3+t_4}} \to \mathbf{\bar{h}} \ .$$
 (5)

$$10_{t_3} \to H, \, \overline{10}_{-t_4} \to \overline{H}, \tag{6}$$

$$1_{t_3} \to E_m^c, \ 1_{-t_4} \to \bar{E}_n^c,$$
 (7)

The model predictes the existence of singlets

$$1_{t_i-t_j} \to \theta_{ij}, i, j = 1, 2, 3, 4$$

(modulo the \mathbb{Z}_2 monodromy $t_1 \leftrightarrow t_2$), dubbed here:

$$\theta_{12} \equiv \theta_{21} = S, \ \theta_{13} = \chi, \ \theta_{31} = \bar{\chi},$$

$$\theta_{14} \rightarrow \psi, \; \theta_{41} = \bar{\psi}, \; \theta_{34} \rightarrow \zeta, \; \theta_{43} \rightarrow \bar{\zeta}$$

The Z_2 monodromy allows a tree-level top-Yukawa coupling. Superpotential terms:

$$\mathcal{W} = \lambda_{ij}^{u} F_{i} \bar{f}_{j} \bar{h} + \lambda_{ij}^{d} F_{i} F_{j} h \, \bar{\psi} + \lambda_{ij}^{e} e_{i}^{c} \bar{f}_{j} h \, \bar{\psi} + \kappa_{i} \overline{H} F_{i} S \, \bar{\psi}$$
$$+ \lambda_{\bar{H}} \overline{H} H \bar{h} \bar{\zeta} + \lambda_{H} H H h \bar{\zeta} (\chi + \bar{\zeta} \psi) + \lambda_{\mu} (\chi + \lambda' \bar{\zeta} \psi) \bar{h} \, h$$

Mass terms

$$\lambda_{ij}^{u} F_{i} \bar{f}_{j} \bar{h} \to Q u^{c} h_{u} + \ell \nu^{c} h_{u} \to m_{D}^{T} = m_{u} \propto \lambda^{u} \langle h_{u} \rangle$$
$$\lambda_{ij}^{d} F_{i} F_{j} h \bar{\psi} \to m_{d} = \lambda^{d} \langle h_{d} \rangle$$
$$HHh + \bar{H} \bar{H} \bar{h} \to \langle H \rangle d_{H}^{c} D + \langle \bar{H} \rangle \bar{d}_{H}^{c} \bar{D}$$

see-saw with extra (sterile) 'neutrino' S:

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & m_{\nu_D} & 0 \\ m_{\nu_D}^T & 0 & M_{\nu^c S} \\ 0 & M_{\nu^c S}^T & M_S \end{pmatrix} \tag{8}$$

A prediction

The extra vector-like pair (E_n^c, \bar{E}_n^c) acts as a source for $g_{\mu}-2$ enhancement ^a

Feynman diagram for the (E_n^c, \bar{E}_n^c) contribution to $g_{\mu} - 2$

^aSee yesterday's talk by Carlos E.M. Wagner

Future Perspectives

- \bigstar Exploit SL(2,Z) invariance \to fermion mass hierarchy \bigstar
- ▲▼ Examine the implications on superpotental W assuming that the various matter fields, and the Yukawa couplings are transformed under the appropriate congruence group of the modular group. (V. Basiouris, M. Crispim-Romão, S.F. King, GKL to appear) ^a
 - ★ Generalised Fluxes and the Superpotential ★
- △ Viable phenomenological models must be free of massless moduli
- ▲ The standard geometric fluxes imply $W \sim \int (F_3 \tau H_3) \wedge \Omega_3$ which is usually not adequate to fix all kinds of moduli.
- \blacktriangle However, we may use T and S-dualities, to extend \mathcal{W} by including non-geometric fluxes.
- (P. Shukla 1603.01290 and PS & GKL to appear...)

^aFor modular fermions in Heterotic String see H.P. Nilles talk.

To summarise:

In F-theory \exists interesting connections between

- GUT Symmetry and elliptically fibred CY Manifold
 - Abelian Symmetries and Rational sections
 - Topological properties of internal manifold \Rightarrow robust predictions of *Effective F-Theory Models*

★ Thank you for your attention ★