SUSY 2023
University of Southampton
July, 17-21, 2023

A Road map for Model Building in IIB/F-theory
\mathcal{G} eorge \mathcal{K}. Leontaris

University of Ioannina
$I \omega \alpha \nu \nu \iota \nu \alpha$
$\mathcal{G R E E C E}$

Outline of the Talk

© Introductory remarks
© \mathcal{F}-Theory basics
© Building \mathcal{F}-Theory GUTs
© Minimal \mathcal{F} lipped \mathcal{F}-SU(5)
© Concluding Remarks

A few remarks
F-theory is an exciting reformulation of String Theory in a twelve dimensional space

It involves a number of beautiful mathematical subjects including : Topology, Algebraic Geometry and Elliptic Fibrations.

Here, our principal task is to describe the methodology in building effective unified theories (GUTs) with predictive power

F-GUTs vs Ordinary GUTs

Field theory GUTs	F-theory GUTs
Predictions	New ingredients and features
Δ Gauge Coupling Unification	$\Delta \underline{\text { Magnetised Fluxes }}$
Δ Charge Quantisation	induce chirality
Δ Fermions "assembled" in	break gauge groups
simple GUT representations	$\Delta \underline{\text { Topological properties: }}$
$\underline{\text { Issues }}$	$\#$ fermion generations
Δ Origin of fermions,	$\underline{\text { New } U(1) \text { symmetries: }}$
mass hierarchy and mixing ?	Δ Put additional constraints on \mathcal{L}_{Y}
Δ Rapid proton decay due to	Protect baryon number etc \rightarrow
insufficiently constrained \mathcal{L}_{Y}	$\underline{\text { Robust model building framework }}$

\star F-theory and Elliptic Fibration \star
C. Vafa, hep-th/9602022
\& reviews:
F. Denef hep-th/0803.1194; T. Weigand 1806.01854

F-theory (Defining Features)

i) Non-perturbative formulation of Type II-B string compactifications
ii) Presence of 7-branes which backreact on the geometry
in particular
iii) D 7 branes are magnetic sources for the RR axion C_{0}.
iv) Inherits $S L(2, Z)$ invariance from Type II-B

$S L(2, Z)$-invariance

1. The dilaton ϕ determines the string coupling:

$$
g_{I I B}=e^{\phi}
$$

2. The $R R$ axion C_{0}, and the dilaton ϕ are combined to one modulus, the axio-dilaton field:

$$
\tau=C_{0}+i e^{-\phi} \rightarrow C_{0}+\frac{i}{g_{I I B}}
$$

3. The importance of τ is that it can be used to write the type IIB action in an $S L(2, Z)$ invariant way

$$
\begin{aligned}
S_{I I B} \propto & \int d^{10} x \sqrt{-g}\left(R-\frac{1}{2} \frac{\partial_{\mu} \tau \partial^{\mu} \bar{\tau}}{(\operatorname{Im} \tau)^{2}}-\frac{1}{2} \frac{\left|G_{3}\right|^{2}}{\operatorname{Im} \tau}-\frac{1}{4}\left|F_{5}\right|^{2}\right) \\
& -\frac{i}{4} \int \frac{1}{\operatorname{Im} \tau} C_{4}+G_{3} \wedge \tilde{G}_{3}
\end{aligned}
$$

4. Indeed, it can be checked that this action in invariant under the trasformations:

$$
\tau \rightarrow \frac{a \tau+b}{c \tau+d}
$$

5. Due to $S L(2, Z)$ invariace, the modulus τ can vary accordingly, while leaving the action invariant.
6. Notice also that the imaginary part is

$$
\operatorname{Im} \tau=\frac{1}{g_{I I B}}
$$

which implies that there exist values of τ leading to strongly coupled regions.

A few words about

Elliptic Curves \& Elliptic Fibration

An extremely important implication of the variation of the axio-dilaton τ is that it gives rise to an elliptic fibration over the physical space-time. In order to see this, let's start with II-B theory which is defined in 10-d space described by: $\mathcal{R}^{3,1} \times \mathcal{B}_{3}$

$\Delta \mathcal{R}^{3,1}$ is the usual 4-d space-time
$\Delta \mathcal{B}_{3}$ Calabi-Yau (CY) manifold of 3 complex dimensions (3-fold)
$\Delta \Delta F$-theory is compactified on an elliptically fibered manifold where \mathcal{B}_{3} is the base of the fibration.

Fibration is implemented by the axio-dilaton modulus $\tau=C_{0}+\imath e^{-\phi}$ which can be thought as describing a torus

More precisely, we make a continuous mapping of τ to the points of the base B_{3}. We say that:
\triangle F-theory is defined on $\mathcal{R}^{3,1} \times \mathcal{X}$
where \mathcal{X}, elliptically fibered $\mathbf{C Y} 4$-fold over the base B_{3}
This is depicted below where τ-tori are associated with points of B_{3}. Red points correspond to possible geometric singularities of the fiber

Mathematically, the Elliptic Fibration is described by the vanishing locus of the \mathcal{W} eierstraß \mathcal{E} quation

$$
y^{2}=x^{3}+f(z) x w^{4}+g(z) w^{6}
$$

1. $f(z), g(z) \rightarrow 8^{t h}$ and $12^{\text {th }}$ degree polynomials.
2. Equivalence relations of homogeneous (projective) coordinates $(x, y, w, z) \simeq\left(\lambda^{2} x, \lambda^{3} y, \lambda w, z\right)$ and $(x, y, z, w) \simeq\left(\lambda^{4} x, \lambda^{6} y, \lambda z, w\right)$
3. The zero section σ_{0} is described by the intersection $w=0$ which marks the point $[x: y: w] \rightarrow[1: 1: 0]$.
4. The elliptic fibration is CY, as long as $f(z)$ and $g(z)$ are holomorphic sections of line bundles ${ }^{\mathrm{a}} \mathcal{O}\left(K_{B}^{-4}\right)$ and $\mathcal{O}\left(K_{B}^{-6}\right)$ respectively.
[^0]
Two important quantities characterise the fibration:

These are
© The discriminant: $\left(24^{\text {th }}\right.$-degree in $\left.z\right)$

$$
\begin{gathered}
\Delta(z)=4 f(z)^{3}+27 g(z)^{2} \\
\text { and }
\end{gathered}
$$

© \triangle the j-invariant:

$$
j(\tau)=\frac{4(24 f(z))^{3}}{\Delta(z)}
$$

Δ The zeros of the discriminant determine the fiber singularities:

$$
\Delta=\prod_{i=1}^{24}\left(z-z_{i}\right)=0 \Rightarrow 24 \text { roots } z_{i}
$$

$\Delta \Delta$ In addition, the j-invariant provides a relation between the modulus τ and the coordinate $z:^{\text {a }}$

$$
\begin{equation*}
j(\tau(z))=4 \frac{(24 f(z))^{3}}{\Delta(z)} \propto e^{-2 \pi i \tau}+\cdots \tag{1}
\end{equation*}
$$

Its solution determines the axio-dilaton τ around the zeros z_{i} of Δ :

$$
\tau \approx \frac{1}{2 \pi i} \log \left(z-z_{i}\right)
$$

Encircling a root z_{i}, due to the multivalued \log function, τ shifts:

$$
\tau \rightarrow \tau+1 \Rightarrow C_{0} \rightarrow C_{0}+1 \rightarrow
$$

In other words, τ, C_{0} undergo Monodromy.

$$
\mathrm{a}^{\mathrm{a}}(\tau) \sim e^{-2 \pi i \tau}+744+\mathcal{O}\left(e^{2} \pi i \tau\right) \sim e^{2 \pi / g_{s}} e^{-2 \pi i C_{0}}+744+\mathcal{O}\left(e^{-2 \pi / g_{s}}\right)
$$

The Interpretation of this picture is that at the root $z=z_{i}$ there is a source of RR-flux which is associated with a $D 7$-brane perpendicular to the "tangent plane" \Rightarrow $D 7$ branes are magnetic sources for the RR axion C_{0}

Figure 1: Moving around $z_{i}, \log (z) \rightarrow \log |z|+i(2 \pi+\theta)$ and $\tau \rightarrow \tau+1$

Observation

This monodromic behaviour can be further understood by noting that it can fit into the more general $S L(2, Z)$ invariance of IIB string theory.
Indeed this shift can be obtained by the following $S L(2, Z)$ element:

$$
M_{[0,1]}=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right) \Rightarrow M_{[0,1]}\binom{\tau}{1}=\binom{\tau+1}{1}
$$

We denote a $D 7$-brane with $[1,0]$ on which a $(1,0)$ string ends.
We note in passing that this motivates the generalisation to 7-branes of the type $[p, q]$ a
${ }^{\text {a }}$ To be distinguised from a (p, q) string being a BPS bound state of p fundamental strings and q D1-strings.

Geometric Singularities

Summarising the analysis so far, the elliptic fibration is represented by the Weierstraß equation (fixing $w=1$):

$$
y^{2}=x^{3}+f(z) x+g(z)
$$

- At the points where the discriminant $\Delta=27 g^{2}+4 f^{3}$ vanishes, the elliptic fiber degenerates.
- The type of Manifold singularity is specified by the vanishing order of Δ and the polynomials $f(z), g(z)$ of Weierstraß eqn
- It was shown (in '60s) by Kodaira that these geometric singularities are classified in terms of $\mathcal{A D} \mathcal{E}$ Lie groups.

In F-theory these singularities are interpreted as:

$C Y_{4}$-Singularities \rightleftarrows gauge symmetries			

Δ The above description concerns the non-abelian part of the effective theory which according to $\mathcal{A D} \mathcal{E}$ classification will result to an effective model with one of the following gauge groups (in standard notation)

$\Delta \Delta$ Note: There are also Abelian symmetries associated with the elliptic fibers of $C Y_{4}$ and will be discussed shortly

The Non Abelian Sector

Rôle of Geometric Singularities on EFTs

Kodaira classified the type of singularities in terms of the vanishing order of $f(z), g(z)$ and $\Delta(z)=4 f(z)^{3}+27 g(z)^{2}$. (see details in Morrison, Vafa hep-th/9603161)

$\operatorname{ord}(f(z))$	$\operatorname{ord}(g(z))$	$\operatorname{ord}(\Delta(z))$	fiber type	Singularity
0	0	n	I_{n}	A_{n-1}
≥ 1	1	2	$I I$	none
1	≥ 2	3	$I I I$	A_{1}
≥ 2	2	4	$I V$	A_{2}
2	≥ 3	$n+6$	I_{n}^{*}	D_{n+4}
≥ 2	3	$n+6$	I_{n}^{*}	D_{n+4}
≥ 3	4	8	$I V^{*}$	\mathcal{E}_{6}
3	≥ 5	9	$I I I^{*}$	\mathcal{E}_{7}
≥ 4	5	10	$I I^{*}$	\mathcal{E}_{8}

Perhaps, a more pheno-friendly approach is Tate's Algorithm

$$
\begin{gathered}
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \\
a_{n}=\sum_{\ell=k \geq 0} a_{n, \ell} z^{\ell}
\end{gathered}
$$

Table: Geometric Singularities w.r.t. vanishing order of a_{i} and Δ

Group	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Δ
$S U(2 n)$	0	1	n	n	$2 n$	$2 n$
$S U(2 n+1)$	0	1	n	$n+1$	$2 n+1$	$2 n+1$
$S U(5)$	0	1	2	3	5	5
$S O(10)$	1	1	2	3	5	7
\mathcal{E}_{6}	1	2	3	3	5	8
\mathcal{E}_{7}	1	2	3	3	5	9
\mathcal{E}_{8}	1	2	3	4	5	10

$\mathcal{E X} \mathcal{A M P} \mathcal{L E}$

Defining $b_{k}=b_{k, 0}+b_{k, 1} z+\cdots,\left(b_{k, 0} \neq 0\right)$ we choose a_{i} to be:

$$
a_{1}=-b_{5}, a_{2}=b_{4} z, a_{3}=-b_{3} z^{2}, a_{4}=b_{2} z^{3}, a_{6}=b_{0} z^{5}
$$

Then, the vanishing orders of each a_{n} is:

Vanishing	a_{1}	a_{2}	a_{3}	a_{4}	a_{6}	Δ	
order	-	z^{1}	z^{2}	z^{3}	z^{5}	z^{5}	$\rightarrow \mathbf{S U}(\mathbf{5})$

\Rightarrow Weierstraß' equation for the $S U(5)$ singularity

$$
\begin{equation*}
y^{2}=x^{3}+b_{0} z^{5}+b_{2} x z^{3}+b_{3} y z^{2}+b_{4} x^{2} z+b_{5} x y \tag{2}
\end{equation*}
$$

* A useful notion for local model building is the spectral cover obtained by defining homogeneous coordinates $z \rightarrow U, x \rightarrow V^{2}$, $y \rightarrow V^{3}$ and affine parameter $s=\frac{U}{V}$, so that (2) implies:

$$
\mathcal{C}_{5}: 0=b_{0} s^{5}+b_{2} s^{3}+b_{3} s^{2}+b_{4} s+b_{5}
$$

D

The Abelian Sector

Our interest in continuous Abelian Groups (and other discrete symmetries) arises from phenomenological considerations, in particular the necessity to constrain the Yukawa Lagrangian In F-theory such symmetries appear naturally

Recall that F-theory is defined on elliptically fibred fourfold. Hence,
Elliptic Curves are fundamental in F-theory constructions. In particular the Rational Points on the Elliptic Curves are associated with the Abelian Sector of the theory

First, let's start with coefficients $\in \mathbb{R}$.
The rational points ${ }^{\text {a }}$ on Elliptic Curves form a Group

The addition law: Given two rational points P, Q, we define $P+Q$ as in the left plot which is rational. (\mathcal{O} the neutral element). The opposite of P is defined by $P+(-P)=\mathcal{O}$ (right plot)
${ }^{a}$ A point is said to be rational if its coordinates are rational. A rational curve is defined by an equation with rational coefficients.

Mordell Theorem

\Downarrow
The Rational Points on Elliptic Curves constitute an Abelian Group which is generated by a finite number of elements. It is called: \Downarrow

Mordell - Weil Group

Returning now to the case of the elliptic fibration:

The Rational Points are 'promoted' to Rational Sections
\star As a consequence, a new class of Abelian symmetries-associated with Rational Sections - appear in the effective theory

$$
\underbrace{\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}}_{r} \oplus \mathcal{G}
$$

Here, r is the rank of the abelian group and \mathcal{G} is the Torsion part: ${ }^{\text {a }}$

$$
\mathcal{G}= \begin{cases}\mathbb{Z}_{n} & n=1,2, \ldots, 10,12 \\ \mathbb{Z}_{k} \times \mathbb{Z}_{2} & k=2,4,6,8\end{cases}
$$

${ }^{\text {a }}$ D.S. Kubert: Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc., third series, 33 (1976) 193-237. For relations to TateShafarevich group see Braun et.al 1401.7844, Cvetic et.al 1502.06953

To wrap things up:
In \mathcal{F}-Theory, Abelian gauge symmetries (other than those embedded in E_{8}) are encoded in rational sections of the Elliptic

Fibration and constitute the so called
Mordell-Weil group.

> Simplest (and perhaps most viable) Case: Rank-1 Mordell-Weil

References:

Morrison-Park: 1208.2695, Cvetic et al: 1210.6094; Mayhofer et al, 1211.6742; Borchmann et al 1307.2902; Antoniadis, GKL: 1404.6720; Mayhofer,Palti, Weigand: 1410.7814; Krippendorf et al: 1401.7844, GKL: 1501.06499; Cvetic and Lin: 1809.00012
F-theory Model Building
(Original papers: Beasley, Heckman, Vafa : 0802.3391, 0806.0102
Donagi et al 0808.2223, 0904.1218)
Early reviews: 1001.0577, 1203.6277, 1212.0555
Recent: 1806.01854; 2212.07443

A Class of 'semi-local' constructions

The final effective (GUT) model depends on the choice of:

$$
\Downarrow
$$

1) Manifold 2) Fluxes 3) Monodromies

Let's examine the role of each one of them
Δ The role of the manifold:
© The candidate GUT is embedded in \mathcal{E}_{8} which is the maximal exceptional group in elliptic fibration.
So, we suppose that there is a divisor, accommodating our choice while the rest is the symmetry commutant to it.

$$
\mathcal{E}_{8} \rightarrow \mathbf{G}_{\mathrm{GUT}} \times \mathcal{C}
$$

Example: Assuming a Manifold with $S U(5)$ divisor:

$$
\begin{aligned}
\mathcal{E}_{8} & \rightarrow S U(5) \times S U(5)_{\perp} \\
& \rightarrow S U(5) \times U(1)_{\perp}^{4}
\end{aligned}
$$

Matter descends from the \mathcal{E}_{8}-Adjoint which decomposes as:

$$
248 \rightarrow(24,1)+(1,24)+(10,5)+(\overline{5}, 10)+(\overline{10}, \overline{5})+(5, \overline{10})
$$

Matter curve

In F-theory, matter is localised along intersections with other 7-branes.
When 7-branes intersect S, the discriminant vanishes, $\Delta=0$, and therefore along a matter curve Σ the gauge symmetry is enhanced

When branes intersect, the singularity increases and the gauge symmetry is further enhanced. Yukawa couplings are formed at tripple intersections. For example, in the $\mathbf{S U (5)}$ case: ${ }^{\text {a }}$

$$
\lambda_{b} 10 \cdot \overline{5} \cdot \overline{5} \in \mathbf{S O}(\mathbf{1 2}), \lambda_{t} 10 \cdot 10 \cdot 5 \in \mathbf{E}_{6}
$$

[^1]Δ The role of fluxes:
Three important implications
Δ determine $S U(5)$ chirality
\triangle trigger $S U(5)$ Symmetry Breaking
(fluxes act as the surrogate of the Higgs vev)
Δ Split the $S U(5)$-representations
There are two distinct sets of fluxes with discrete roles:
Δ i) The integers M_{10}, M_{5} : are associated with $U(1)_{\perp}$ fluxes and determine the chirality $\#(10-\overline{10})$ and $\#(5-\overline{5})$ of $S U(5)$
Δ ii) The hypercharge flux N_{Y}, turned on along $U(1)_{Y} \in S U(5)$, breaks $S U(5)$ and splits the $S U(5)$-representations
$S U(5)$ chirality from perpendicular $U(1)_{\perp}$ Flux $U(1)_{\perp}$-Flux on \in 10's:
$$
\# 10-\# \overline{10}=M_{10}
$$
$U(1)_{\perp}$ - Flux on $\in \mathbf{5}$'s:
$$
\# 5-\# \overline{5}=M_{5}
$$

SM chirality form Hypercharge Flux

$U(1)_{Y}$-Flux-splitting of $\mathbf{1 0}$'s:

$$
\begin{aligned}
n_{(3,2)_{\frac{1}{6}}}-n_{(\overline{3}, 2)_{-\frac{1}{6}}} & =M_{10} \\
n_{(\overline{3}, 1)_{-\frac{2}{3}}}-n_{(3,1)_{\frac{2}{3}}} & =M_{10}-N_{Y_{10}} \\
n_{(1,1)_{1}}-n_{(1,1)_{-1}} & =M_{10}+N_{Y_{10}}
\end{aligned}
$$

$U(1)_{Y}-$ Flux-splitting of 5 's:

$$
\begin{aligned}
& n_{(3,1)_{-\frac{1}{3}}}-n_{(\overline{3}, 1)_{\frac{1}{3}}}=M_{5} \\
& n_{(1,2)_{\frac{1}{2}}}-n_{(1,2)_{-\frac{1}{2}}}=M_{5}+N_{Y_{5}}
\end{aligned}
$$

Splitting $5 / \overline{5}$ Higgses with the Hypercharge Flux

For the Higgs 'curve' in particular choose: $M_{5}=0, N_{Y_{5}}= \pm 1$. $U(1)_{Y}-$ Flux-splitting of $\mathbf{5}_{\mathbf{H}_{\mathbf{u}}}$:

$$
\begin{aligned}
& n_{(3,1)_{-\frac{1}{3}}}-n_{(\overline{3}, 1)_{\frac{1}{3}}}=M_{5}=0 \\
& n_{(1,2)_{\frac{1}{2}}}-n_{(1,2)_{-\frac{1}{2}}}=M_{5}+N_{Y_{5}}=0+1=1\left(H_{u}\right)
\end{aligned}
$$

$U(1)_{Y}-$ Flux-splitting of $\overline{\mathbf{5}}_{\mathbf{H}_{\mathbf{d}}} \rightarrow$:

$$
\begin{aligned}
& n_{(3,1)_{-\frac{1}{3}}}-n_{(\overline{3}, 1)_{\frac{1}{3}}}=M_{5}=0 \\
& n_{(1,2)_{\frac{1}{2}}}-n_{(1,2)_{-\frac{1}{2}}}=M_{5}+N_{Y_{5}}=0-1=-1\left(H_{d}\right)
\end{aligned}
$$

This is the analogue of the Doublet-Triplet splitting

Fermion mass hierarchy (rank-1 mass matrices)
$\boldsymbol{\nabla}$ If families are distributed on different matter curves:
Implementation of Froggatt-Nielsen mechanism in F-models:
Dudas and Palti, 0912.0853, 1007.1297, Camara et al, 1110.2206 SF King, GKL and G.G. Ross, 1005.1025, 1009.6000

V If all three families are on the same matter curve, masses to lighter families can be generated by:
i) non-commutative fluxes Cecotti et al, 0910.0477
ii) non-perturbative effects, Aparicio et al, 1104.2609
\checkmark Higher rank mass matrices, (global models) Cvetic, M et al hep-th/1906.10119

Flipped SU(5) from F-theory

(with V. Basiouris, Eur.Phys.J.C 82 (2022) 11, 1041)

It follows according to the following breaking pattern:

$$
\begin{equation*}
E_{8} \supset S O(10) \times S U(4)_{\perp} \supset\left[S U(5) \times U(1)_{\chi}\right] \times S U(4)_{\perp}, \tag{3}
\end{equation*}
$$

focusing on $S U(4)_{\perp} \rightarrow$ locally described by Cartan roots:

$$
t_{i}=S U(4)_{\perp}-\text { roots } \rightarrow \sum_{i=1}^{4} t_{i}=0
$$

$S U(5)_{G U T}$ representations in Effective Theory transform according to:

$$
(10,4) \rightarrow 10_{t_{i}} \quad(\overline{5}, 6) \rightarrow \overline{5}_{t_{i}+t_{j}}
$$

roots t_{i} obey a $4^{\text {th }}$-degree polynomial $(S U(4)$ spectral cover $)$

$$
\sum_{k=0}^{4} b_{k} t^{4-k}=0
$$

with b_{k} 'conveying' topological properties to the effective model
Solving for $t_{i}=t_{i}\left(b_{k}\right) \Rightarrow$ possible branchcuts: \rightarrow Monodromies Minimum case :

$$
Z_{2}: t_{1} \leftrightarrow t_{2} \Rightarrow U(1)_{\perp}^{3} \rightarrow U(1)_{\perp}^{2}
$$

A few remarks
Δ Flipped $S U(5)$ needs only $10+\overline{10}$ for symmetry breaking.
Δ No need to turn on $U(1)_{Y_{0}} \in S U(5)$ flux which requires special conditions to keep $U(1)_{Y_{0}}$-boson massless. Under these assumptions:
^"Flipped" $S U(5)$ one of the few possible viable choices!

$$
\begin{gather*}
10_{t_{1}} \rightarrow F_{i}, \overline{5}_{t_{1}} \rightarrow \bar{f}_{i}, 1_{t_{1}} \rightarrow e_{j}^{c} \tag{4}\\
5_{-\mathrm{t}_{1}-\mathrm{t}_{4}} \rightarrow \mathrm{~h}, \overline{5}_{\mathrm{t}_{3}+\mathrm{t}_{4}} \rightarrow \overline{\mathrm{~h}} \tag{5}\\
10_{t_{3}} \rightarrow H, \overline{10}_{-t_{4}} \rightarrow \bar{H} \tag{6}\\
1_{t_{3}} \rightarrow E_{m}^{c}, 1_{-t_{4}} \rightarrow \bar{E}_{n}^{c} \tag{7}
\end{gather*}
$$

The model predictes the existence of singlets

$$
1_{t_{i}-t_{j}} \rightarrow \theta_{i j}, i, j=1,2,3,4
$$

(modulo the $Z_{2} \underline{\text { monodromy }} t_{1} \leftrightarrow t_{2}$), dubbed here:

$$
\begin{gathered}
\theta_{12} \equiv \theta_{21}=S, \theta_{13}=\chi, \theta_{31}=\bar{\chi} \\
\theta_{14} \rightarrow \psi, \theta_{41}=\bar{\psi}, \theta_{34} \rightarrow \zeta, \theta_{43} \rightarrow \bar{\zeta}
\end{gathered}
$$

The Z_{2} monodromy allows a tree-level top-Yukawa coupling. Superpotential terms:

$$
\begin{aligned}
\mathcal{W}= & \lambda_{i j}^{u} F_{i} \bar{f}_{j} \bar{h}+\lambda_{i j}^{d} F_{i} F_{j} h \bar{\psi}+\lambda_{i j}^{e} e_{i}^{c} \bar{f}_{j} h \bar{\psi}+\kappa_{i} \bar{H} F_{i} S \bar{\psi} \\
& +\lambda_{\bar{H}} \overline{H H} \bar{h} \bar{\zeta}+\lambda_{H} H H h \bar{\zeta}(\chi+\bar{\zeta} \psi)+\lambda_{\mu}\left(\chi+\lambda^{\prime} \bar{\zeta} \psi\right) \bar{h} h
\end{aligned}
$$

Mass terms

$$
\begin{aligned}
\lambda_{i j}^{u} F_{i} \bar{f}_{j} \bar{h} & \rightarrow Q u^{c} h_{u}+\ell \nu^{c} h_{u} \rightarrow m_{D}^{T}=m_{u} \propto \lambda^{u}\left\langle h_{u}\right\rangle \\
\lambda_{i j}^{d} F_{i} F_{j} h \bar{\psi} & \rightarrow m_{d}=\lambda^{d}\left\langle h_{d}\right\rangle \\
H H h+\bar{H} \bar{H} \bar{h} & \rightarrow\langle H\rangle d_{H}^{c} D+\langle\bar{H}\rangle \bar{d}_{H}^{c} \bar{D}
\end{aligned}
$$

see-saw with extra (sterile) 'neutrino' S :

$$
\mathcal{M}_{\nu}=\left(\begin{array}{ccc}
0 & m_{\nu_{D}} & 0 \tag{8}\\
m_{\nu_{D}}^{T} & 0 & M_{\nu^{c} S} \\
0 & M_{\nu^{c} S}^{T} & M_{S}
\end{array}\right)
$$

A prediction

The extra vector-like pair $\left(E_{n}^{c}, \bar{E}_{n}^{c}\right)$ acts as a source for $g_{\mu}-2$ enhancement ${ }^{\text {a }}$

Feynman diagram for the $\left(E_{n}^{c}, \bar{E}_{n}^{c}\right)$ contribution to $g_{\mu}-2$

[^2]
Future Perspectives

\star Exploit $S L(2, Z)$ invariance \rightarrow fermion mass hierarchy
$\Delta \nabla$ Examine the implications on superpotental \mathcal{W} assuming that the various matter fields, and the Yukawa couplings are transformed under the appropriate congruence group of the modular group. (V. Basiouris, M. Crispim-Romão, S.F. King, GKL to appear) a

\star Generalised Fluxes and the Superpotential \star

Δ Viable phenomenological models must be free of massless moduli
Δ The standard geometric fluxes imply $\mathcal{W} \sim \int\left(F_{3}-\tau H_{3}\right) \wedge \Omega_{3}$ which is usually not adequate to fix all kinds of moduli.
Δ However, we may use T and S-dualities, to extend \mathcal{W} by including non-geometric fluxes.
(P. Shukla 1603.01290 and PS \& GKL to appear...)

[^3]
To summarise:

In F-theory \exists interesting connections between

- GUT Symmetry and elliptically fibred CY Manifold
- Abelian Symmetries and Rational sections
- Topological properties of internal manifold \Rightarrow robust predictions of Effective F-Theory Models
\star Thank you for your attention \star

[^0]: ${ }^{\mathrm{a}} K_{B}$ is the canonical class of the base B_{3}.

[^1]: ${ }^{\text {a }}$ Here we assume that there is a Z_{2} monodromy so that λ_{t} exists.

[^2]: ${ }^{\text {a }}$ See yesterday's talk by Carlos E.M. Wagner

[^3]: ${ }^{\text {a For modular fermions in Heterotic String see H.P. Nilles talk. }}$

