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The ALICE experiment
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• ALICE (A Large Ion Collider Experiment) is a detector
at the Larger Hadron Collider (LHC), CERN

• Study of quark-gluon plasma (QGP) in heavy-ion 
collisions
➢ Up to O(10k) particles to be tracked in a single 

bunch crossing
• Reconstruction of charm and beauty hadrons

➢ Precise vertexing and tracking capabilities needed
• Interest in low momentum (≤ 1 GeV/c) particle 

reconstruction
➢ Low material budget required



The current ALICE Inner Tracking System
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147 cm

Outer Barrel

Inner Barrel

• ALICE Inner Tracking System 2 (ITS2)
➢ Installed during LHC Long Shutdown 2, replacing previous ITS
➢ Taking data since September 2021
➢ Fully based on Monolithic Active Pixel Sensors (MAPS),  ̴10 m2 of silicon,  ̴24k chips

• Inner Barrel
➢ 3 layers, placed at   ̴22-42 mm from the interaction point, 0.35% X0 per layer

• Outer Barrel
➢ 4 layers, placed at   ̴194-395 mm from the interaction point, 1.1% X0 per layer

Beam Pipe

Technical Design Report:

doi:10.1088/0954-3899/41/8/087002

https://iopscience.iop.org/article/10.1088/0954-3899/41/8/087002


The ALICE Inner Tracking System 3
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• Inner Tracking System 3 (ITS3): replacement of the 
innermost 3 layers of the tracker

• Planned to be installed during LHC Long Shutdown 3 
(2026-2028)

➢ 300 mm wafer-scale MAPS sensors produced with
the stitching technique

➢ Thinned down to 50 µm or below
➢ Bent in a truly cylindrical shape

▪ First layer moved closer to the interaction point
(23 mm → 18 mm)

➢ Material budget: 0.05% X0 per layer (0.35% X0 for ITS2)
➢ Sensors implemented in Tower Partners Semiconductor 

Co (TPSCo) 65 nm CMOS process

ALICE ITS3 Letter of Intent 

Cylindrical support 
structure

Half-layer 
sensor

Beam pipe

Innermost layer 18 mm 
from the interaction point

https://cds.cern.ch/record/2703140/files/LHCC-I-034.pdf


65 nm CMOS imaging process
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• Combined effort of CERN EP R&D and ALICE ITS3
• First exploratory chip submission MLR1 in the Tower 

Partners Semiconductor Co (TPSCo) 65 nm CMOS process
• 55 different test structures
• Added value of 65 nm process:

➢ Increase in-pixel circuitry density
➢ Decrease pixel size
➢ Lower power consumption
➢ Potentially better radiation hardness
➢ Larger wafers of 300 mm (instead of 200 mm) 

available

MLR1 reticle



65 nm CMOS imaging process: sensor design and optimization
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• Standard process
➢ Small n-well collection electrode on high-resistivity 

p-type epitaxial layer
➢ Reverse substrate bias applied to increase depleted 

zone
➢ Sensitive epitaxial layer partially depleted
➢ Part of signal charge collected from the non-

depleted layer via diffusion
➢ Operational up to 500 krad TID and 

1.7 × 1013 1 MeV neq cm-2  NIEL doses

Optimization of 65 nm CMOS process: 
doi:10.22323/1.420.0083

• Sensor design optimization started as ALICE “offspring” development with TowerJazz 180 nm
CMOS technology

• Development further taken on by other groups outside ALICE
• Same principles now applied to 65 nm CMOS technology

https://pos.sissa.it/420/083/pdf


65 nm CMOS imaging process: sensor design and optimization
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More details in doi:10.1016/j.nima.2017.07.046

• Modified process
➢ Addition of a low-dose n-implant below the 

electrode
➢ Extends the junction to fully deplete the epitaxial 

layer
➢ Weak lateral electric field at pixel edges and corners

• Sensor design optimization started as ALICE “offspring” development with TowerJazz 180 nm 
CMOS technology

• Development further taken on by other groups outside ALICE
• Same principles now applied to 65 nm CMOS technology

Optimization of 65 nm CMOS process: 
doi:10.22323/1.420.0083

https://www.sciencedirect.com/science/article/pii/S016890021730791X
https://pos.sissa.it/420/083/pdf


65 nm CMOS imaging process: sensor design and optimization
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More details in doi:10.1088/1748-0221/14/05/C05013

• Modified with gap process
➢ Gap in the n-implant at the pixel borders
➢ Improves lateral field near the pixel boundary
➢ Accelerates the charge collection to the electrode 

and improves the radiation hardness 

• Sensor design optimization started as ALICE “offspring” development with TowerJazz 180 nm 
CMOS technology

• Development further taken on by other groups outside ALICE
• Same principles now applied to 65 nm CMOS technology

Optimization of 65 nm CMOS process: 
doi:10.22323/1.420.0083

https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013
https://pos.sissa.it/420/083/pdf


Analog Pixel Test Structure (APTS)
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Pixel matrix and output buffer
• 6 × 6 pixel matrix
• Central 4 × 4 pixels directly read with analogue

readout
• Pixel pitch: 10, 15, 20, 25 µm
• Pixel output buffer variants:

➢ Source follower (SF)
➢ Operational amplifier (OPAMP)

APTS SF APTS OPAMP



Analog Pixel Test Structure (APTS)
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̴̴10 µm

̴̴10 µm

̴̴10 µm

Charge 
sharing

Charge 
collection 
efficiency 
and speed

Pixel matrix and output buffer
• 6 × 6 pixel matrix
• Central 4 × 4 pixels directly read with analogue

readout
• Pixel pitch: 10, 15, 20, 25 µm
• Pixel output buffer variants:

➢ Source follower (SF)
➢ Operational amplifier (OPAMP)

Sensor features
• Implemented in all three TPSCo 65 nm CMOS process 

variants
•  ̴ 10 µm high-resistivity p-type epitaxial layer
• R&D chip of general interest, for applications even 

beyond ITS3
• Aim: qualification of the charge collection and 

timing properties of the new technology



Readout system
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4 × 4 pixel 
matrix

Keysight Infiniium MXR404A
4 GHz – 4 × 16 GSa/s

DAQ board Proximity 
board

Chip board

• DAQ board
▪ Single board to operate all the test structures

• Proximity board
▪ Specific to the chip to be operated
▪ DACs and ADCs

• Chip board
▪ Provides 4 direct analog SMA outputs to the central pixels

of the matrix
▪ Other 12 pixels are readout via ADCs – 4 MSa/s sampling frequency



Characterisation measurements
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Laboratory:
• Tuning operation parameters
• Test pulses and noise measurements
• Measurements with 55Fe radioactive source:

▪ Signal calibration
▪ Charge collection efficiency

Beam test facilities:
• Sensor performance evaluated with MIPs (e-, π)
• Tracks reconstructed with beam telescope
• Tracks associated with DUT clusters

▪ Signal, SNR, detection efficiency
▪ Spatial and timing resolution

Beam

55Fe 
source



Waveform anatomy
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• Baseline: pixel reference voltage level
• Amplitude: difference between baseline and 

minimum signal voltage level
• Fall time: Time difference between 10% and 

90% of signal amplitude

Baseline

Fall time

Amplitude



55Fe measurement
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Partial charge 
collection

Charge shared 
between pixels

Charge collection 
by seed pixel

• Standard process
▪ Larger absolute signal

• Modified with gap process
▪ Less charge sharing
▪ Higher probability of 

single pixel cluster
• Sensor signal calibration 

based on Mn-Kα (1640 e-) 
and Mn-Kβ (1800 e-) peaks



55Fe measurement
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• Clusters of various sizes show 
distinct time and charge 
distributions

• Modified with gap variant 
shows more events with high 
signal amplitude and low fall 
time

➢ Suppression of charge sharing 
among neighbor pixels

➢ Faster charge collection



Beam test setup
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• Goal: Timing resolution measurement with MIPs
• Beam: SPS, CERN – 120 GeV/c hadron beam
• Setup

➢ Beam telescope
▪ ALPIDE telescope

➢ DUT
▪ 2 APTS OPAMP modified with gap variant 

(OPAMP0 and OPAMP1)
➢ Oscilloscope

▪ Teledyne LeCroy Wavemaster 820Zi-B
▪ 13 GHz, 4 × 40 GSa/s
▪ 2 channels for OPAMP0, 2 channels for 

OPAMP1



Beam test setup
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ALPIDEs ALPIDEs

APTS SF 
(Trigger)

APTS SF

APTS OA

APTS sensors 
not to scale

Beam

• Planes
▪ 3 ALPIDE planes – 3 cm × 1.38 cm, 2.5 cm spaced
▪ APTS Source Follower (Trigger) – 60 µm × 60 µm 
▪ APTS OPAMP – 40 µm × 40 µm
▪ APTS OPAMP – 40 µm × 40 µm
▪ APTS Source Follower  – 60 µm × 60 µm
▪ 3 ALPIDE planes – 3 cm × 1.38 cm, 2.5 cm spaced

• APTS SF (Trigger) and APTSs OPAMP mounted on µm-precision moving stages
• Tracking resolution on the DUT of the order of 1.8 µm with APTSs SF included 

in the track reconstruction

5 cm spaced



Beam test: measurement and alignment
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Measurement strategy
➢ Time residuals Δt distribution of tracks associated to the 

pixels of both DUT measured with the oscilloscope

DUT alignment
➢ Challenging alignment of < 5 µm accuracy
➢ Online analysis of alignment runs and position adjusted 

with moving stages



Beam test: tracking and waveform analysis
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Track reconstruction
➢ Offline track reconstruction and association to DUTs

with Corryvreckan framework
➢ Reconstructed tracks filtered depending on the 

interpolated intercept on the DUT plane
➢ Accepted only tracks associated to the two pixels read 

out with the oscilloscope for each DUT

Map of the pixels connected 
to the oscilloscope for one of 
the DUTs

Corryvreckan: doi:10.1088/1748-0221/16/03/P03008

https://gitlab.cern.ch/corryvreckan/corryvreckan
https://iopscience.iop.org/article/10.1088/1748-0221/16/03/P03008


Beam test: tracking and waveform analysis
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Waveform analysis
➢ Selected waveforms with amplitude above 5.5 mV (  ̴ 150 e-)
➢ Valid event for timing resolution measurement must have the associated track to 

one of the two pixels measured with the oscilloscope of both the DUT planes
➢ Constant Fraction Discrimination (CFD) analysis of the waveforms
➢ Measured time residuals distributions at different CFD times (10% to 90%)

Baseline

Amplitude

Time at 10% of 
signal amplitude

Top: not valid event for timing resolution measurement/
Bottom: valid event



Beam test: timing resolution
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• Presented time residuals 
distribution at 10% of signal 
amplitude fraction
➢ Δt = t1

10%CFD – t0
10%CFD

• DUTs operated at – 2.4 V reverse 
bias

• Efficiency of both DUTs of the order 
of 99%

• Time residuals distribution fitted 
with a gaussian function within 
± 1.6 σ range (solid line)

• Timing resolution of 77 ± 5 ps 
without jitter/time walk correction



Summary & outlook
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• CERN EP R&D and ALICE ITS3 developments:
➢ Wafer-scale, bent MAPS
➢ TPSCo 65 nm CMOS process

• APTS OPAMP to study the charge collection and the timing 
performance of the new technology

• 55Fe source measurements:
➢ reduced charge sharing and improved charge collection 

speed of modified with gap CMOS process
• Beam test measurement:

➢ Timing resolution of 77 ± 5 ps at   ̴99% detection efficiency

▪ Ongoing studies and future plans:
➢ Measurements at different operation conditions
➢ In-pixel frontend jitter
➢ Modified CMOS process variant with 55Fe source
➢ Characterization of irradiated samples
➢ In-pixel position dependence of timing resolution



Additional slides



APTS OPAMP pixel analog frontend
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Test structures for the ALICE ITS3 upgrade
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APTS
Analogue Pixel Test Structure

CE65
Circuit Exploratoire 65 nm

DPTS
Digital Pixel Test Structure

Matrix: 6 × 6 pixels
Readout: analogue readout 
of central 4 × 4 pixels
Pitch: 10, 15, 20, 25 µm
Process: all 3 flavours
Variants: pixel buffers

• Source follower 
(SF)

• Operational 
amplifier (OPAMP)

Matrix: 64 × 32/ 48 × 32 pixels
Readout: rolling shutter (50 µs 
integration time)
Pitch: 15, 20, 25 µm
Process: all 3 flavours
Variants: in-pixel architectures

• Source follower
• AC-coupled amplifier
• DC-coupled amplifier

Matrix: 32 × 32 pixels
Readout: Asynchronous digital 
readout
Pitch: 15 µm
Process: Modified with gap only
First results published: 
doi:10.48550/arXiv.2212.08621

1
.5
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https://doi.org/10.48550/arXiv.2212.08621


65 nm CMOS process – Radiation hardness
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Detection efficiency and fake-hit rate (FHR)

DPTS, 15 µm pixel pitch @ 20°C

ITS3 requirements



65 nm CMOS process – Radiation hardness
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Spatial resolution and cluster size

DPTS, 15 µm pixel pitch @ 20°C

ITS3 requirements



65 nm CMOS process – Timing resolution
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Sensor + full digital frontend

DPTS, 15 µm pixel pitch

 ̴ 6 ns timing resolution
(  ̴ 30 ns not corrected)

Power consumption:
 ̴ 120 nW in-pixel



Perspectives for fast timing detectors
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• R&D activities to explore new technologies for applications even 
beyond ITS3 needs

• New ALICE detector under design for data taking after 
LHC Run 4 (2034 and beyond)

• Full silicon-based vertex, tracker and Time of Flight (TOF) 
detectors
▪ Silicon timing sensors requirements for TOF

➢ Timing resolution of 20 ps
➢ Material budget: 1-3% X/X0

➢ Power consumption below 50 mW/cm2



The ALICE Inner Tracking System: sensor
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• ALice PIxel DEtector (ALPIDE) developed for the ITS2
• 1024 × 512 pixel matrix, 29 µm × 27 µm pixel size
• MAPS implemented in TowerJazz 180 nm CMOS process
• Thinned to 50 µm
• Detection efficiency >> 99%
• Spatial resolution of 5 µm

ALPIDE



ALPIDE, the ALICE Pixel Detector
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• TowerJazz 180 nm CMOS Standard Imaging Process 
pixel sensor:
➢ High-resistivity (> 1 kΩ∙cm) p-type epitaxial layer 

(25 µm) on p-type substrate
➢ 2 µm diameter n-well electrode, ~ 5 fF input 

capacitance
➢ 50 µm overall sensor thickness

• Monolithic design:
➢ In pixel amplification, discrimination, 3 hit 

storage registers
• Ultra-low power consumption:

➢ 40 nW/pixel
➢ 20 mW/cm2

• High hit rate transmission:
➢ ~6 MHz/cm2 hit rate chip output data transfer



ALPIDE performance figures
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• Measured with 6 GeV/c pion beam
• At 100 e- of operation threshold and Vbb = -3 V:

➢ Detection efficiency above 99.99%
➢ Fake hit rate < 2 × 10-11 pixel hits/event
➢ Irradiated chips performance is comparable with not-irradiated chips

Vbb = -3V



ALPIDE performance figures
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• Measured with 6 GeV/c pion beam
• At 100 e- of operation threshold and Vbb = -3 V:

➢ Spatial resolution below 5 µm
• Not irradiated and TID/NIEL chips show similar performance

Vbb = -3V



Flexibility and bending of silicon sensors
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• Full mock-up of the final ITS3 has been measured 
under charged particle beam
➢ Realized with 6 bent ALPIDEs
➢ Uniform spatial resolution among different 

radii
➢ Efficiency and spatial resolution consistent 

with flat ALPIDEs

Inefficiency

More results in doi:10.1016/j.nima.2021.166280

https://doi.org/10.1016/j.nima.2021.166280


A wafer-scale sensor
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• CMOS sensor size is limited by manufacturing process (“reticle size”)
• Typical sizes of the order of few cm2

→ How to produce a 300 mm wafer-scale sensor?
➢ Stitching: merging multiple design structures on a wafer during the 

lithographic process 
➢ A 300 mm wafer can house a sensor to equip a full half-layer
➢ First sensors to test expected soon

1 prototype sensor 
= 10 units

1 unit



How to improve the ITS2 performance?
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• Get closer to the interaction point
• Reduce the material budget

Material budget distribution of the innermost layer of the tracker

mean X = 0.35% X0

• Circuit board 

• Water cooling 

• Mechanical support 



How to improve the ITS2 performance?
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• Get closer to the interaction point
• Reduce the material budget

• Circuit board
➢ Can be removed if power and data 

transmission are integrated into the chip 

• Water cooling
➢ Air cooling is enough if the chip power 

consumption is below 20 mW/cm2

• Mechanical support
➢ Not required if the detector has a self-

supporting curved structure  

Material budget distribution of the innermost layer of the tracker



How to improve the ITS2 performance?
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• Get closer to the interaction point
• Reduce the material budget

Material budget distribution of the innermost layer of the 
tracker

mean X = 0.05% X0

Ultra-light tracking detector!
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