2% Fermilab

Developments of 4D-trackers for
future colliders

Artur Apresyan
13th workshop on picosecond timing detectors, Elba
May 29, 2023



The grand challenges

Many fundamental questions remain in SM
— Higgs boson: "unnatural” mass

— Dark matter: no candidate particle

— Non-zero neutrino masses

— Oirigins of the dark energy

— Baryon asymmetry

CMS Experiment at the LHC, CERN
‘ Data recorded: 2016-Oct-09 22:33:24.645376 GMT

Run / Event / LS: 282735 / 1316770314 / 669
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Transformative Physics Discoveries

« Explore nature at the frontier of detection-technology
— New fundamental principles
— Enable discoveries
— New directions in science

Holmdel Horn Antenna
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Future trackers need timing

« 4D-trackers will play a key role at future machines
— Reduce backgrounds, track reconstruction, Level-1 triggering
— New capabilities: PID and LLP reconstruction
— All of these pose unique challenges and opportunities to detector design

Measurement Technical requirement

Granularity: 25x50 um? pixels

Tracking for ete 5 um single hit resolution

Per track resolution of 10 ps

Generally the same as e*e

Tracking for 100
TeV pp

Radiation toleran up to 8x101/
n/cm?

Per track resolution of 5 ps

Technical requirements for future trackers:
from DOE’s HEP BRN
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&4 Future collider: >1000 bileup, 100 TeV Es
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HL-LHC: pileup ~ 200, 14 TeV

Muon collider
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https://science.osti.gov/-/media/hep/pdf/Reports/2020/DOE_Basic_Research_Needs_Study_on_High_Energy_Physics.pdf?la=en&hash=A5C00A96314706A0379368466710593A1A5C4482

Technologies for precision timing detectors

« Active area of R&D for future collider experiments

— One of the priority areas highlighted in DOE BRN, European Strategy
for Particle Physics, and Snowmass

« Optimized solutions for various applications
— Trackers: high granularity and low mass
— Calorimeters: dense volume interspersed with fast detecting medium
— Muon detectors: fast gas detectors with low mass
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A common challenge in future experiments
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Precision timing

» Traditionally in collider experiments we measure very well
— Position, charge and energy of particles

 CMS and ATLAS are building first-generation of 4D-detectors
— Next-gen detectors will have high granularity also in time domain
— At the tracker, calorimeter, muon detectors, and L1 trigger
» Future detectors moving towards full 5D Particle Flow
— Active R&D to achieve required performance for future experiments
— Sensors, ASIC, front-end electronics developments

EC LARG
Cryostat
Outer rin, 2

X towards center of LHC ring
+2: anicockise LHC.
beam diection.
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Pileup rejection

Number of pileup tracks / PV

50 CMS Phase-2 Simulation (14 TeV)
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Time-aware primary vertex reconstruction reduces incorrect association of
tracks from nearby pileup interactions by a factor of 2:

— Fully offsets the impact of the transition from 140->200 PU running
— Brings per-vertex track purity close to typical current LHC running conditions
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Time-of-flight Particle ID

« Time-of-flight particle identification: 20 /K separation up to

s )
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p~2 GeV and K/p up to p~4 GeV 1 ()T ety
— New handle for CMS for heavy flavor physics p .
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Physics impact: TOF Particle ID

« Competitive momentum coverage #CMS Phase2 PP 3t (55TeV OIS Phase2  pbPb 3" (55T
F Simulation pracemmaasmr r  Simulation provemrmaasro ﬁ
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— Significantly suppressed : o . IR
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Technologies for precision timing detectors

« Complex systems need to be developed and implemented
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Rad-hard detecting sensor capable of high precision timing
High precision, rad-hard, and low-power readout electronics
Low noise detector system with high fidelity precision clock
Integration into trigger and event reconstruction
Continuous monitoring and calibration

1 Fermilab
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Time resolution components

« Optimize detector timing resolution

— Increase Signal/Noise to minimize jitter

— Fast rise time to reduce impact of electronic noise: thinner sensor
* Non uniform charge deposition:

— Landau fluctuations: cause fluctuations in signal shape and amplitude
— Effect is reduced in thinner sensors

« Thinner sensor means small signal: can we add Gain?

Oy N tr
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Timing resolution

» Putting together various components

2__ 2 2 2 2 2
Ot = OLandautOtimewalk  Ojitter Y"OTDC Oclock

 |deal detector components
— Fast signals with large S/N (Ojiyer = t1ise/(S/N))
— Thin sensors to minimize 0 3ngau
— Stable and uniform signals across sensor area
— Optimized electronics to reduce time-walk and clock jitter
— Electronics with low power consumption

» Radiation damage complicates things, so all these need to be also
resilient to high fluences in hadron colliders

s, | 2% Fermilab
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Low Gain Avalanche Diode (LGAD) detectors

* Increase the initial signal : Ramo’s theorem: increase the Ej 4

« Could increase by doing:

— Increase bias voltage

— @Gain everywhere in the bulk

— Add a specific gain layer

« Turns out only the solution with gain layer provides a stable sensor
— Key breakthrough in sensor design in the past decade!

— High field in the gain region around 300 kV/cm, causes avalanche

— High gain = high signal - faster rise - smaller ”jitter”

s )
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Crystals + Fast PMT

s )
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LYSO with dual-end SiPM readout
« Signal properties

— Large signal from LYSO (40,000 photons per MeV) + SiPM gain ~ 10°
— Fast rise time O(100 ps), decay time ~40 ns
Silicon Photomultipliers as photo-sensors
— Compact, insensitive to magnetic fields, fast

— High dynamic range, rad tolerant
— Photo Detection efficiency : 20-40%

5/29/23

radiation-hard bright scintillator

solid state photon detector
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Precision timing for CMS in HL-LHC

« CMS Phase 2 upgrade aims to achieve high precision timing measurements

s, |
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In ECAL barrel: new electronics to achieve ~30 ps resolution for photon/electron

In HGCal: design to achieve ~50 ps timing resolution per layer in EM showers,
multiple layers can be combined
MIP timing detector: cover up to Inl<3.0 to time stamp charged particles in the
event: ~30 psec timing resolution

« LYSO + SiPM layer in the barrel,

* Low Gain Avalanche Detector (LGAD) layer in the endcap

Fermilab
5/29




Barrel Timing Layer (BTL) design
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LYSO crystals as scintillator with an excellent radiation tolerance and fast
rise and decay times.

— 332k channels, organized in 6 Readout Units per tray.

Small SiPM cells: fast readout, robust vs. magnetic field/radiation and low
power consumption.

Time resolution of 35 ps at the beginning of lifetime and 60 ps by the end.
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Endcap Timing Layer (ETL) design

e Sensitive element are LGAD sensors

» Time resolution 30 ps at the beginning of life, 40 ps by the end

 Total silicon surface area of ~14 m? for the two Z-sides
— Two hits for most tracks to improve per track efficiency and resolution

1105 % Split 1 pre-rad o Split 1, 8el14 ¢ Split1, 1.5e15
1005 % Split 2 pre-rad ¢ Split 2, 8e14 ¢ Split2, 1.5e15
H f Split 3 pre-rad o Split 3, 8e14 ¢ Split3, 1.5e15
905 % Split 4 pre-rad ¢ Split 4, 8e14 ¢ Split 4, 1.5e15‘

Time resolution, LGAD only [ps]

100 200 300 400 500 600 700
Bias voltage [V]

Time resolution for different fluences

CMS Endcap Timing Layer
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Calorimeters with timing

. ECAL with PbWO,

EM shower propagation  Scintillation light propagation

3:t cs<c
— High Light Yield ~100 photons MeV VM7 4
— Readout by fast APD NNANAN—> t,

— New electronics for HL-LHC to take
advantage of the fast signals to
achieve <50 ps time resolution

o
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iming

Calorimeters with t

* First Particle Flow calorimeter in experiment

— Hexagonal modules based on Si sensors in high-radiation regions

— Scintillating tiles with SiPM readout in low-radiation regions
Huge signals from showers: timing for all cells with Q > 12 {C
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AC-coupled LGADs

« Improve 4D-trackers to achieve 100% fill factor, and high
position resolution

* Active R&D at different manufacturers (FBK, BNL, HPK, etc)
— 100% fill factor, and fast timing information at a per-pixel level
— Signal is still generated by drift of multiplied holes into the substrate and
AC-coupled through dielectric

— Electrons collect at the resistive n+ and then slowly flow to an ohmic

contact at the edge.
Diagram credit: CNM
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/ L s e e kA
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9 PStop JTE P-type Multiplication Layer = 1 \ N JTE S
. CStop Guard pstop -5

High p Ring p-type Multiplication Layer

p-type FZ | p-type FZ wafer

w

Low p b= g
p-typeCZ [ 5 low p p-type CZ wafer ¥

‘ Metal
B ?C-LGAD s AC-LGAD 2% Fermilab
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AC-LGAD sensors prototypes

« Several rounds manufactured over the last few years
— R&D benefiting from developments for HL-LHC
— Optimization for AC-LGAD sensors has unique challenges
— Can optimize position resolution, timing resolution, fill-factor, ...
« Extensive characterization and design studies
— Optimize the geometry of readout, and sensor design for performance

Lo

HPK pads AC-LGAD
2& Fermilab
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JINST 17 (2022) P05001

Strip-sensor AC-LGADs (short sensors)

« Excellent performance from several strip prototypes
— 100% particle detection efficiency across sensor surface
— Signal shared between neighbors: measure position based on signal ratio
— Well-tuned signal sharing - uniform 5-10 um resolution

FNAL 120 GeV proton beam BNL2020, 220V
FNAL 120 GeV proton beam BNL2020, 220V geTIAL 120 GeV profom beam'______ BNL2020, 220V 7 Op T B R L
- T —— — - 3 F B
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S f —Strip4 —Strip5 —Strip6 1 £ F——— 1 3 f i i

1.2 4 3 [ ° r Multi-channel timestamp ]
C —— At least two strips 9 25F 4 8 so- -
1 S f 1 e F .
. S 2of — — - Binary readout ] E 40 -
0.8 2 1 B ]
F o u —— Two-strip reconstruction ] E ]
C 15— - 30 =
0.6 r ] C i
0.4: 10:— — 20:— -]
0.2_ 5:_ - 10:_ ]
e PN ] £y I Lo 1] DRI [ I I I e

0.4 0.6 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
Track X position [mm] Track x position [mm] Track x position [mm]

* First demonstration of simultaneous ~5 pm, ~30 ps resolutions in
a test beam: technology for 4D-trackers!

s, | £& Fermilab
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Studies of long AC-LGAD strip sensors

 First studies of large AC-LGAD sensors
— Technology demonstrator for 4D-tracking and detectors for EIC
— Multiple sensors, geometries and designs studied

« Key insights for larger sensors
— Metal vs. pitch size is important for position reconstruction

e, e Space-based 4D tracking

acker Calorimeter

Duranti et al, Instruments 2021, 5(2), 20

= Space-based sensors: power constraints
EIC experiments: TOF PID and tracking require minimizing number of channels
4 Fermilab
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arXiv:2211.09698

Gain uniformity over large surfaces

New challenge with large area sensors: sensitivity to non-
uniformity in gain layer
— Stripe patterns of gain observed in most sensors of the first production

— High gain regions limit operating voltage - other regions remain under-
biased _ BNL _50um_1cm_400um_W3051, 160V 100

g |
1 cm strips, 200 um metal width E |
L e e e e e L B A B e 100 — > 4 90
E " : :
% i " g i 80
F 3 o
o E I 70
/ ; 8 0 60
e = -
Gain doubled in} / i 50
hot spot 45 —2r
: i 40
3 Second round of \
30

production

4L ~

—25215105005115225
X [mm]

« Improved uniformity in second production
— Uniform 2x2 cm?2 LGADs for ATLAS/CMS have been demonstrated

2% Fermilab
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arXiv:2211.09698

Long AC-LGAD strip sensors performance

* Position reconstruction with ratio of amplitudes
— Sensor provides 100% efficiency
— Achieve 15-20 um resolution for 2-strip events in all 5-10 mm strips
* Time resolution 30-35 ps for 1 cm strips
— Combining 2 channels & correcting for position-dependent delays
— High gain regions— achieve 30-35 ps for 5 to 10 mm strips
— The 2.5 cm long sensor had lower gain = improve in next round

Reconstruction efficiency Performance for 1 cm strips, 100 um metal Time resolution
. [NAL120GeVprotombeam ___ BNL10-100,220V mte0f - ror ooy Broenbeam  BRL 100 F207
e 1.4:— One or more strips reconstruction —: = ... _ ... _____ &= B N ; . -
é ; 2:_ Exactly one strip reconstruction ; .é 140; """ Pitch / V12 ] Name ngh galn
HE Two strip reconstruction § 120~ ¢ Exactly one strip observed - Unit ps
1= . o 100: ----- Two strip expected ]
C < 100 ]
- 9 C — Two strip observed ] .
1 21 | BNL5-200 30+ 1
C ] & 80 ]
0.6:_ _: soi ¢ ¢ + ¢ & j BNL 10_100 35 :t 1
oaf. e 1 BNL 10-200 321
02 e 1 BNL10-300 36 + 1
o- 1 205 o0 05 - BE - ot L:_1 NS Y-S —— BNL 25-200 51+1
Track x position [mm] Track x position [mm] # Fermllab
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Towards better time resolution

 How do you get better time resolution?
— Thinner sensors to decrease Landau contribution

* AC-LGAD from HPK with 20, 30, 50 um thickness

— Almost fully metallized, optimized for timing performance

— Can not use signal sharing for position reconstruction
« Uniform time resolution across full sensor area

C. Madrid in TREDI 2023

— 25 ps for 30 um thick sensor, 20 ps for 20 um thick sensor

HPK 2x2, 500x500 um? pixel size
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R. Lipton, Snowmass 2021

Double Sided LGAD

Low Gain Avalanche Diode with fine pixels cathodes
on the hole-collecting side E

— Anode can provide timing with coarse pitch
— Cathode subdivided into small pixels
« Records “primary” hole collection, then

holes from gain region — double peak that
reflects charge deposition pattern

— Lower power due to large signal from
the gain layer
* Resulting current pattern can be used to
measure angle and position.

« Detector can be optimized to measure
angle or charge deposit location

2% Fermilab
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R. Lipton, Snowmass 2021

Double Sided LGAD Simulation
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T. Yang: 40th RD50 Workshop

LGADS With SiC Sensors P. Gaggl: 41st RD50 Workshop

C. Haber: CPAD 2022

« Wide Band Gap Materials offer potential advantages

— Enhanced radiation resistance
— Reduced cooling requirements - reduced detector material mass

— Increased commercial interest in wide band gap materials for power
applications, HEP can benefit from these developments

« Several prototype runs recently produced
— Early results look promising! Several new rounds of productions coming up

100 pm 4H-SiC PIN for MIPs (measurement)  3p 4H-SiC Detector for MIPs (simulation)
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Electronics needs

* The developments of the current CMS and ATLAS detectors
are demonstrating the challenges of the electronics designs
— For HL-LHC: pixel size is 1.3x1.3 mm?, ~2 mW/pixel

— Going to small pixels for muon colliders, e.g. 50x50 um?2: need to
reduce power consumption per pixel by ~x680 to stay within cooling
budgets similar to CMS/ATLAS timing detectors.

 Significant advancements will be needed:

— More power/cooling budget,

— Larger pixel size: AC-LGAD is one potential way to get precision
position resolution with relatively large pixel sizes

— Advanced detector concepts, new materials, AI/ML processing on chip
— Advanced technology nodes (e.g. 28 nm) to reduce power consumption

s, | 2% Fermilab
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Electronics for MTD and HGTD

Number of events

ERREEN

BTL TOFHIR

— minimize impact of DCR noise and pileup on time resolution
— cope with very high rate of low energy hits per channel

— Inverted and delayed pulse subtract from the input pulse
» Restores baseline at the rising edge of the pulse.

— Improves time resolution by about a factor 2 at EOL

ETROC and ALTIROC

— bump-bonded to LGAD, with 1.3 mm x 1.3 mm pads

— Requirement: ASIC contribution to time resolution < 40ps
— Deal with small signal size (~6fC, at end of operation)

— Power consumption < 1W/chip

From preliminary analysis of the data from
Fet, ongoing beam test at FNAL, the time
resolution of each LGAD+ETROCI1 layer
has reached:

tt, 173
O, = 64 pa F o

0 = JO.S . (a,-zj + a} —aﬁ() ~ 42 - 46 ps

(with LGAD HV=230V for all three channels)
This d time lution includes all four contributions in the table
46

greer T g etgpsipaspa e pipaeg g T T Eretiushplraey
174, (ns) 1,4, (ns) Ted Liu ETL \vo'kgug,\.‘)
For more details, see ETROCI testing results by Zhenyu Ye

Prototypes performance validated in test beam
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ALTIROC for ATLAS
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Timing ASIC with CFD

T. Zimmerman: TWEPP 2021

* A novel ASIC based on CFD for LGAD fast timing readout

— Expect better performance for low S/N after irradiation, no need for time-walk
correction, stability, simplicity of operation,

« The IC form an attenuated and a delayed version of the
amplified input pulse
— These two signals then directly feed a fast differential amplifier.

— The single-ended output of the differential amplifier feeds a very simple output
comparator that compares it to an internal DC threshold voltage

| 33
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FCFDO chip mounted to LGAD

FCFDvO Chip - Beta Source
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JINST 17 (2022) P10040

Monolithic sensors

* Monolithic sensors with embedded readout
— Take advantage of electronics on top layer, good signal-to-noise
* Promise to be paradigm-shifting for next-gen detectors
— MONOLITH project: several prototypes produced over last few years
— Continuous and deep gain layer, high pixel granularity and full fill factor
— Time resolution from ~13 ps at the center to ~25 ps at the edge

Time resolution

PicoAD proof-of-concept prototype (2022)

PicoAD Proof-Of-Concept Prototype (2021)
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Possibilities

« Advanced integration of technologies on the
front-end

— AI/ML on-chip to extract features for fast tracking
and L1 triggering, on chip clustering to readout
reduce data volume

— Wireless communication between chips/layers of
trackers to form tracks/stubs/vertices

— Novel materials to design more power-efficient date
processing on the front-end
» Extensive 3D integration

— Very fine pitch possible, multiple layers of
electronics for sophisticated signal processing,
vertically integrated

— Possible to integrate different technologies, each
optimized for separate tasks

Majority Logic
Cell design

R ASEE
|
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Each tier
~tracking layer
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Summary

s )
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Timing is an enabling technology for future experiments
— The last dimension to be used in collider experiments!

— Will bring improvements in event reconstruction, triggering, and new
handles in searches for new physics!

Future tracking detectors will likely be required to have significant
timing precision: both lepton and hadron colliders

— Timing precision of 20-30 ps achieved with several Si-based
technologies

— Collaborative efforts are a key for the progress in many challenging
directions

Many new disruptive new technologies are emerging

2% Fermilab



