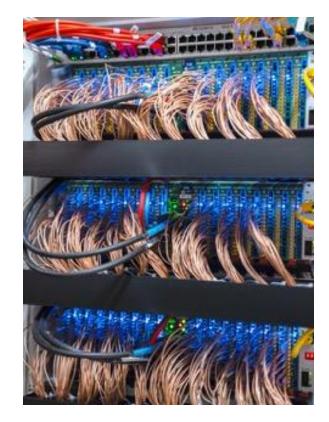
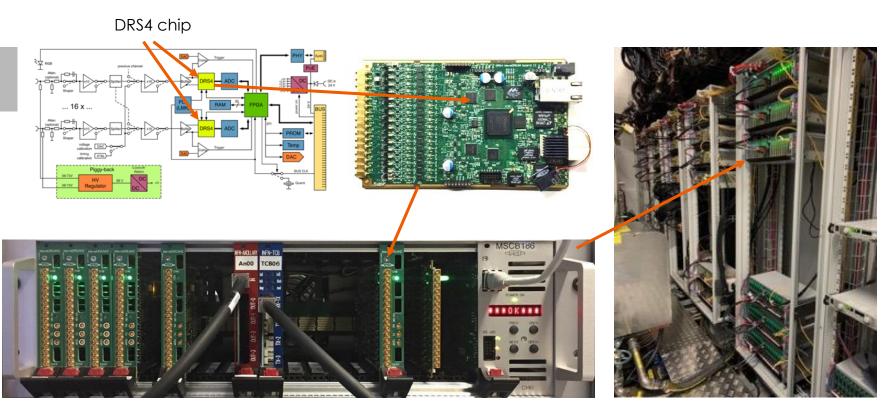


Stefan Ritt :: Head of Muon Physics Group :: Paul Scherrer Institut

Experiences with picosecond level timing in large systems

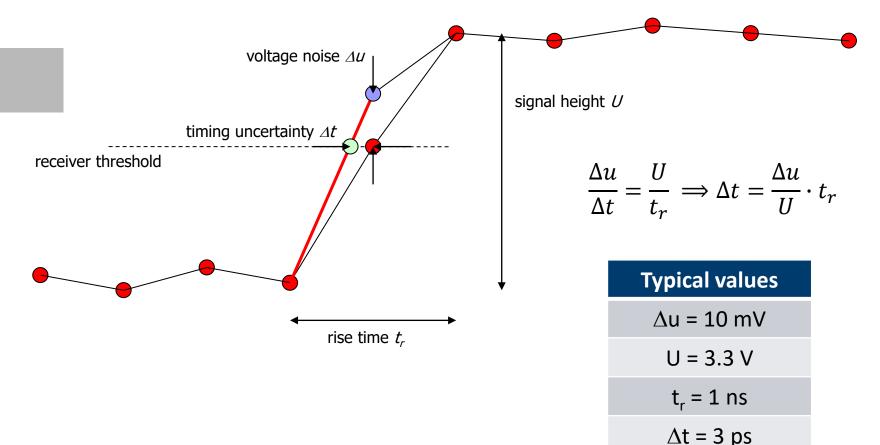

FAST2023, Elba, May 30, 2023

Scope of this talk

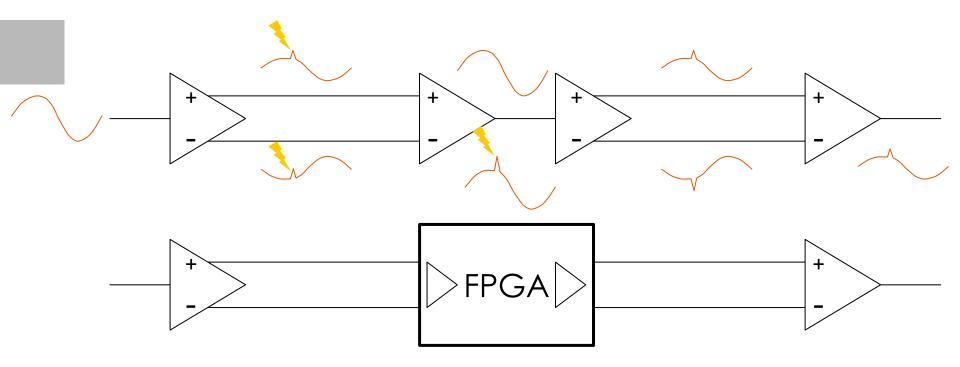

Prototype

Full system

WaveDAQ system for MEG II @ PSI


9000+ channels 5 GSPS / 12 bit

- Switched Capacitor Array chips (SCA recap)
- Sources of timing jitter: Single ended lines, **PLL jitter**
- Noise reduction strategies
- Lessons learned with the MEG II system (9000+ channels)

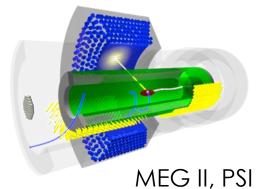


Jitter caused by voltage noise



Differential Signals e.g. LVDS

Do not send low-jitter clocks through FPGAs!

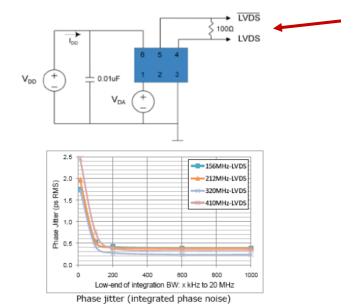

Careful with optical clock distribution!

Clock stability

- GPS clock for measurements far apart
- Atomic clock for long term measurements
- Particle physics: Measurement periods
 O(100 ns)
- Excellent low-jitter clock distribution to all detector channels

Aging

Low-jitter quartz



Common Key Electrical S	Specification	is - CMOS, LV	PECL, LVD	S, and HCSL			
Parameters		Minimum	Typical	Maximum	Units	Notes	
	CMOS	2.3000*		170.0000		-20 ~ +70°C -40 ~ +85°C	
	CMOS	3.3000*		170.0000		-40 ~ +105 °C -55 ~ +125 °C	
Frequency Range	LVPECL	2.3000*	2.3000* 460.0000 MHz		MHz	Commercial, Industrial temp. range	
	LVDS	2.3000*		460.0000		Commercial, Industrial temp. range	
	HCSL	2.3000*		460.0000		Commercial, Industrial temp. range	
Operating Temperature		-20		+70 °C		See options	
Storage Temperature		-55		+150	°C		
Overall Frequency Stability		-50		+50	ppm	See options	
Supply Voltage (Vdd)		+2.25		+3.6	V		
Startup Time				5	ms		
Enable Time				20	ns	STD (Tri-state)	
				5	ms	PD option (Power Down)	
Disable Time			5		ns		
Disable Current			20		mA	STD (Tri-state)	
		0.		0.095	IIIA	PD option (Power Down)	
Tri-state Function (Standby/Disable)		"1" (VIH≥0.75*Vdd) or Open: Oscillation "0" (VIL<0.25*Vdd) : Hi Z			v	40kΩ pull-up resister embedded	

-5.0

Key Electrical Specifications - LVDS

Parameters	Minimum	Typical	Maximum	Units	Notes	
Supply Current (I _{dd})			29	32	mA	RL=100Ω
Output Offset Voltage (Vos)		1.125		1.4	1.4 V RL=100Ω d	
Delta Offset Voltage (ΔVos)				50	mV	
Peak to Peak Output Swing (V	po)		350		mV	Single ended
Rise Time	Tr		200			RL=50Ω, CL=2pF
Fall Time Tf			200		ps	20% to 80%
Duty Cycle		48		52	%	Differential
			0.28	2		200kHz ~ 20MHz @156.25MHz
Integrated Phase Jitter (JPH)			0.40	2	ps	100kHz ~ 20MHz @156.25MHz
		1.70	2		12kHz ~ 20MHz @156.25MHz	
Period Jitter RMS (JPER)			2.5		ps	

2 May 2023

ppm First year

+5.0

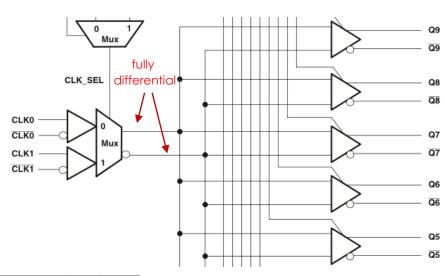
LVDS clock distribution

CDCLVD110A

SCAS841D - FEBRUARY 2007-REVISED DECEMBER 2016

CDCLVD110A Programmable Low-Voltage 1:10 LVDS Clock Driver

1 Features

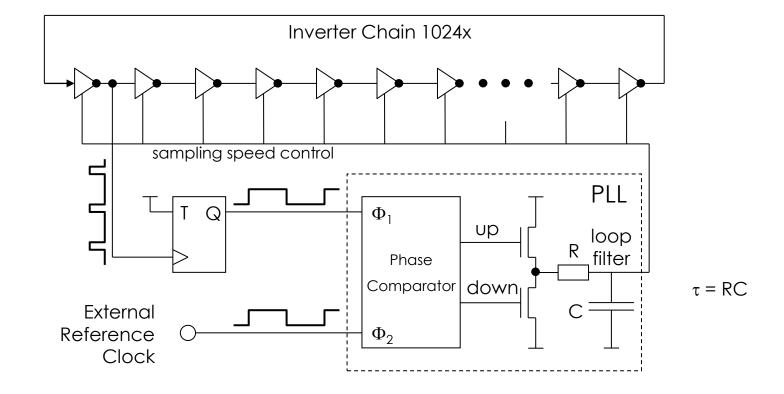

- Low-Output Skew <30 ps (Typical) for Clock-Distribution Applications
- Distributes One Differential Clock Input to 10 LVDS Differential Clock Outputs
- V_{CC} Range: 2.5 V ±5%
- Typical Signaling Rate Capability of Up to 1.1 GHz
- Configurable Register (SI/CK) Individually Enables Disables Outputs, Selectable CLK0, CLK0 or CLK1, CLK1 Inputs
- · Full Rail-to-Rail Common-Mode Input Range
- · Receiver Input Threshold: ±100 mV
- · Available in 32-Pin LQFP and VQFN Package
- Fail-Safe I/O-Pins for V_{DD} = 0 V (Power Down)

3 Description

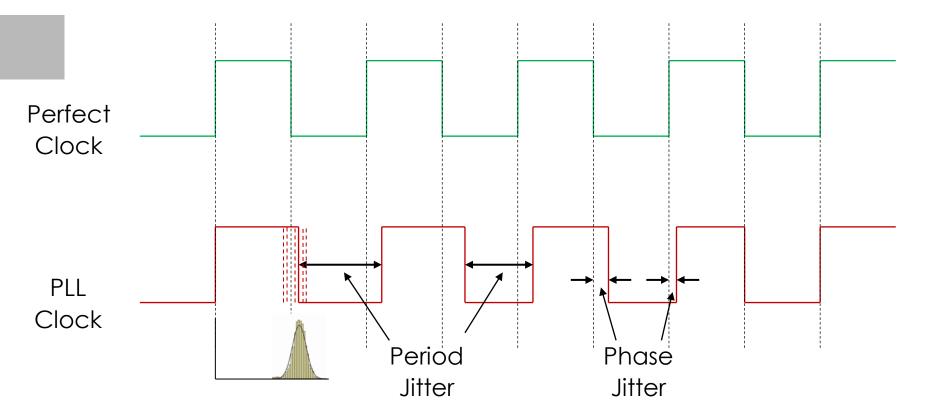
The CDCLVD110A clock driver distributes one pair of differential LVDS clock inputs (either CLK0 or CLK1) to 10 pairs of differential clock outputs (Q0 to Q9) with minimum skew for clock distribution. The CDCLVD110A is specifically designed to drive $50\text{-}\Omega$ transmission lines.

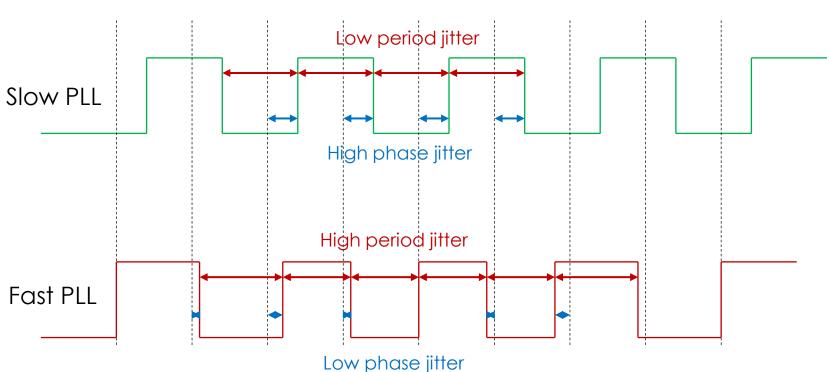
When the control enable is high (EN = 1), the 10 differential outputs are programmable in that each output can be individually enabled or disabled (3-stated) according to the first 10 bits loaded into the shift register. Once the shift register is loaded, the last bit selects either CLK0 or CLK1 as the clock input. However, when EN = 0, the outputs are not programmable and all outputs are enabled.

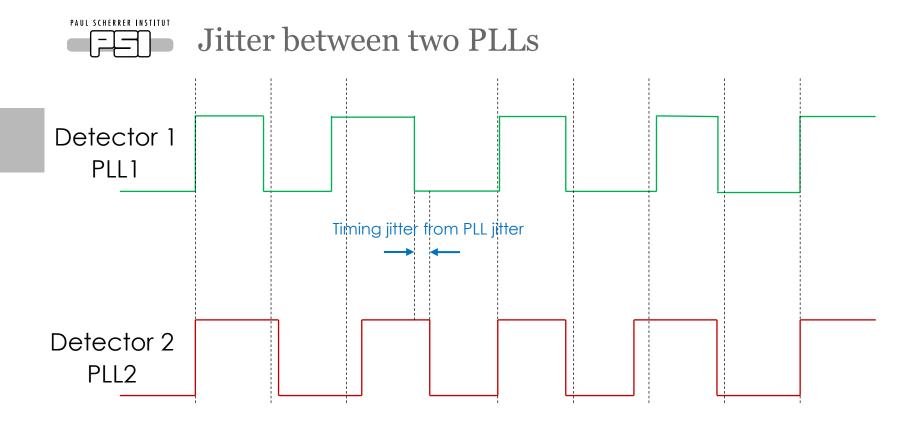
The CDCLVD110A has an improved start-up circuit that minimizes enabling time in AC- and DC-coupled evetages

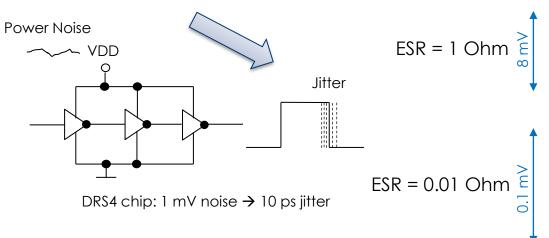

6.7 Jitter Characteristics

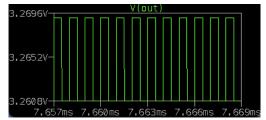
characterized with CDCLVD110 performance EVM, V_{DD} = 3.3 V, outputs not under test are tell otherwise noted)

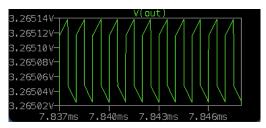

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Additive phase jitter from input to	12 kHz to 5 MHz, f _{out} = 30.72 MHz		281		fo ma
^I jitterLVDS	LVDS output Q3 and $\overline{\text{Q3}}$	12 kHz to 20 MHz, f _{out} = 125 MHz		111		fs rms

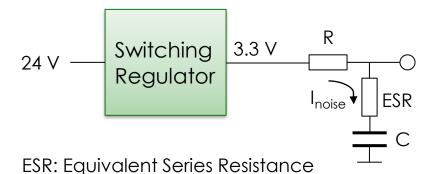

DRS4 Phase Locked Loop

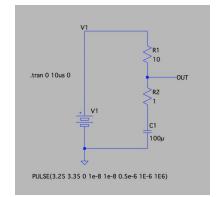


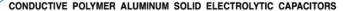

Low pridse jiriei




To achieve minimal timing jitter, PLL phase jitter must be minimized




PLL jitter from power supply noise



Use low-ESR capacitors for power supply filtering

Used filter components

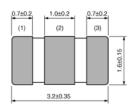
nichicon

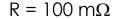
- Series

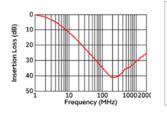
 For SMD High Ripsis Law Impedance For High Current

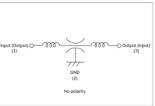
 Firequancy Feature
 Feature
- Ultra-low ESR, Higher Capacitance, High ripple current.
 Load life of 2000 hours at 105°C.
- SMD type : Lead free reflow soldering condition at 260°C peak
- Compliant to the RoHS directive (2002/95/EC).

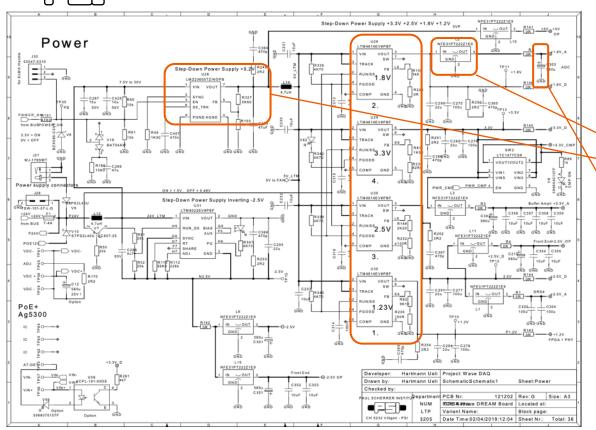
■Standard Ratings

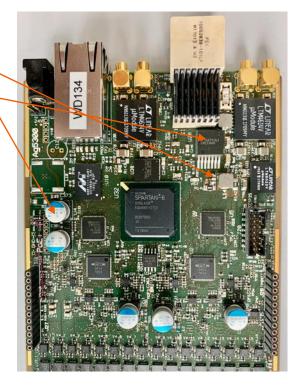

Rated Voltage (V)(code)	Surge Voltage (V)	Rated Capacitance (μF)	Case Size	tan õ	Leakage Current (μA)	ESR (mΩ) (at 100kHz 20°C)	Rated Ripple (mArms)	Part Number
		390	6.3 × 6	0.12	293	10	3900	PCK0E391MCO1GS
		560	8 × 7	0.12	420	9	4500	PCK0E561MCO1GS
2.5 (0E) 2.8	680	8 × 7	0.12	510	9	4500	PCK0E681MCO1GS	
	1200	10 × 8	0.12	900	9	5000	PCK0E122MCO1GS	
		2200	10 × 10	0.12	1650	8	6000	PCK0E222MCO1GS


 $560~\mu F$ / $9~m\Omega$


LC combines EMI Suppressor Filter NFE31PT222Z1E9



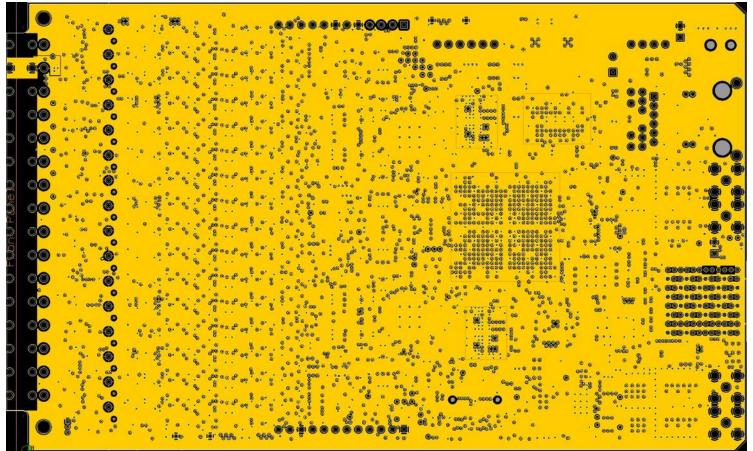

Insertion Loss Characteristics


Equivalent Circuit

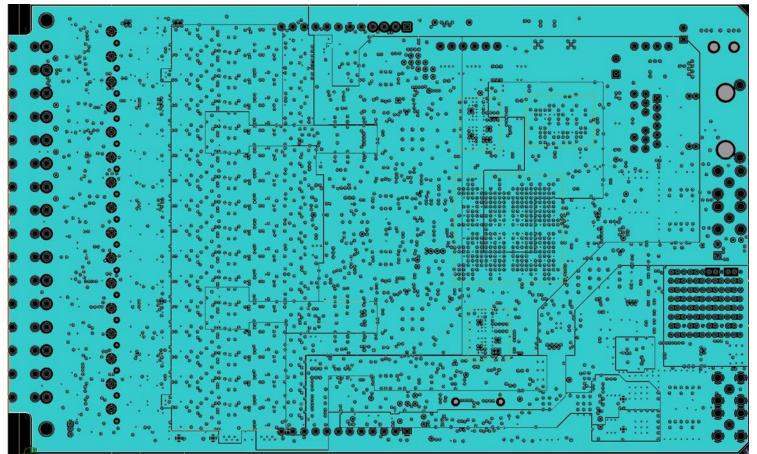
2 May 2023

PAUL SCHERRER INSTITUT

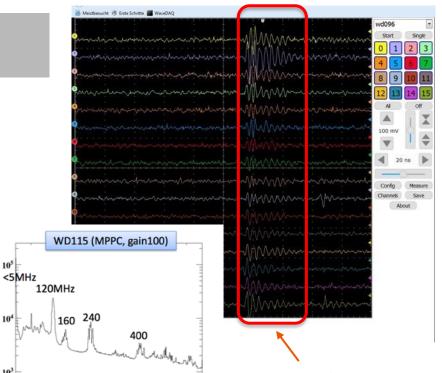
Power section WaveDREAM board



2 May 2023

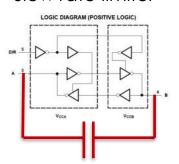


Ground Layer



Power layer (1 out of 3)

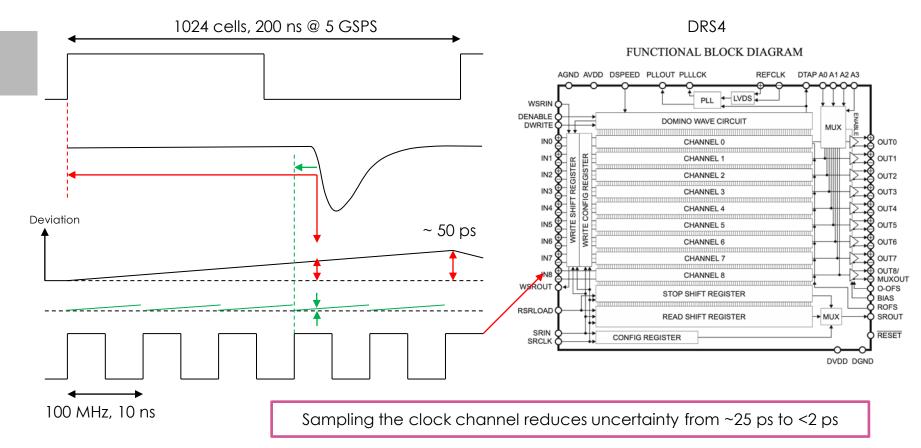
Electromagnetic Interference (EMI)



Frequency [MHz]

Shielding

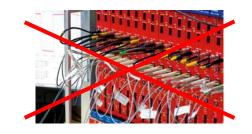
Slew rate limiter

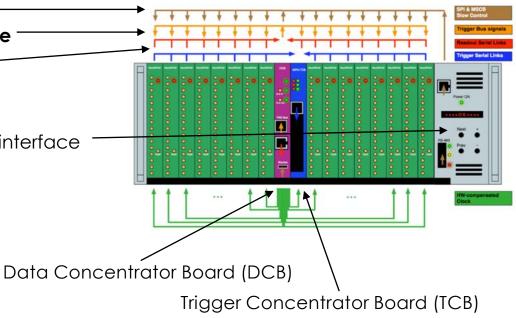


EMI pulse from switching converter

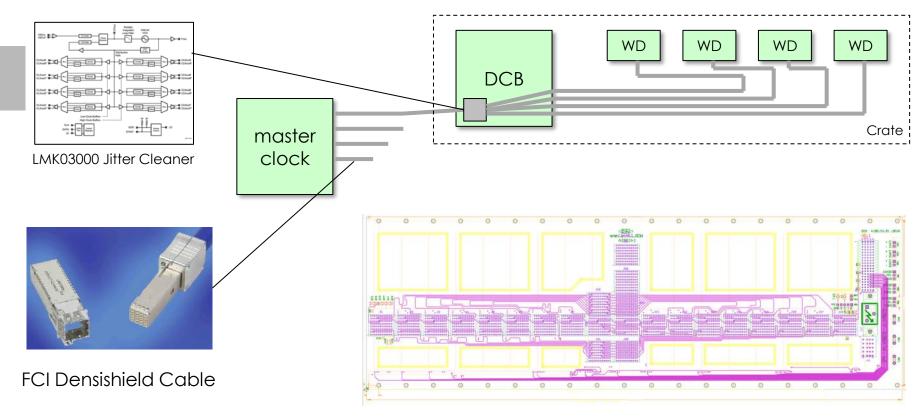
Use of DRS4 clock channel

The WaveDAQ system

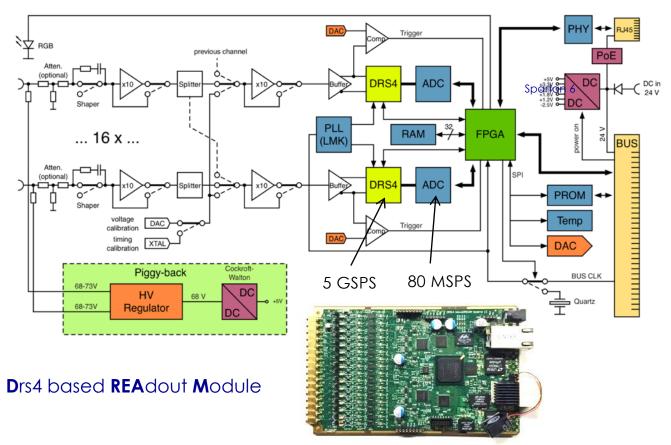


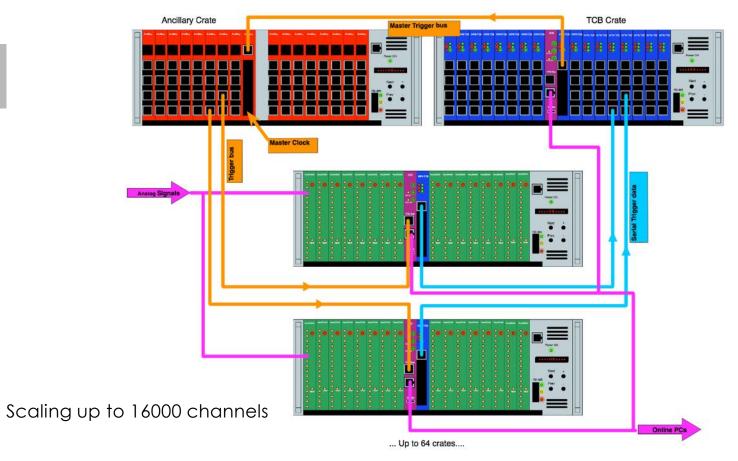

Custom Design "WaveDAQ"

- Standard 19" crate + custom backplane (no VME, no xTCA)
- Idea: Not only a solution for MEG II, but more general "crate standard"
- Take the best ideas on the market and combine them

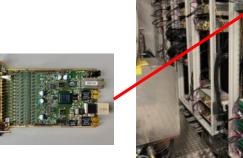

- Trigger / Busy signals in backplane
- "**Dual Star**" Serial gigabit links
- Hot-swap functionality
- Low jitter (<5 ps) clock
- Shelf management with Ethernet interface
 - **24 V** / 400 W Power
 - fans control, temperature
 - Board management
 - Firmware upload

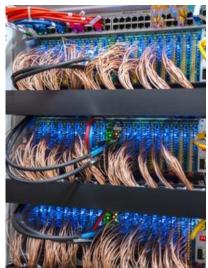
WaveDAQ Backplane

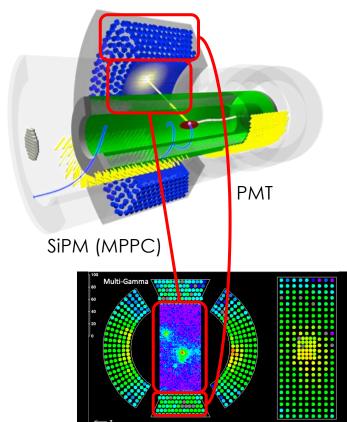

Half Height Backplane



WaveDREAM Board (WDB)

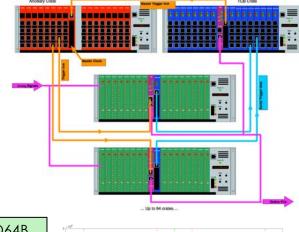

MEG II System

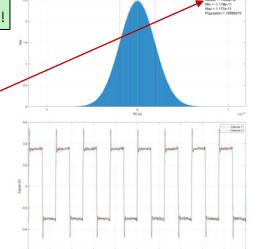




Liquid Xenon Detector

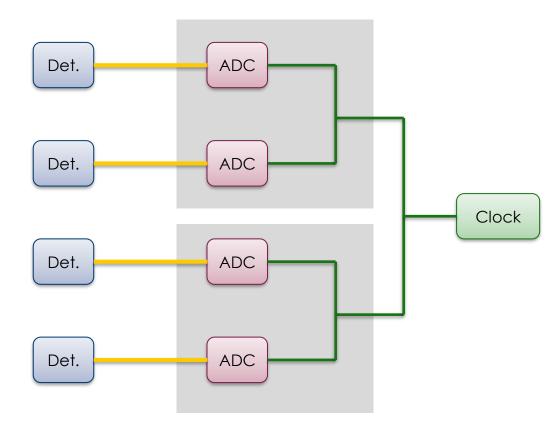
- 4092 channels SiPM & 668 channels PMT (19 WaveDAQ crates)
- Trigger on calorimeter sum
- Greatly improved resolutions compared to MEG I




Jitter measurements

courtesy E. Schmidt, PSI

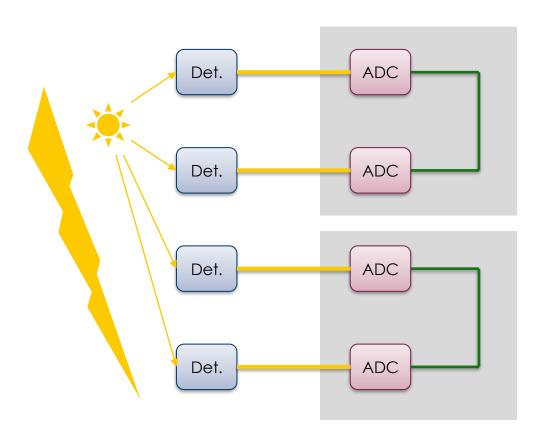
Filename + ToDo	Signal Probe Location	Signal	Ref Probe Location	Ref Signal	Jitter Std Dev	Jitter Min	Jitter Max	Tektronix MSO64B
27_4_Crate190_AnbDistIn_vs_3_DcbDistIn Switch scope to refclk setup.	4	ANB Distributor Input (Soldered)	3	DCB Distributor Input (Soldered)	10.8 ps	-63.7 ps	53.2 ps	8 GHz, 50 GSPS soldered diff, probe
28_7_Crate196_DcbDistIn_vs_Crate192_DcbDistIn Solder 2 Probes to DCB02/DCB07 distributor input from Cable.	7 Crate196	DCB Distributor Input (Soldered)	7 Crate192	DCB Distributor Input (Soldered)	7.3 ps	-39.7 ps	45.5 ps	soldered dill. probe
29_7_Crate196_DcbDistIn_vs_ScopeRef Switch to scope reference setup	7	DCB Distributor Input (Soldered)	None	Scope Constant Clock	3.9 ps	-23.4 ps	31.0 ps	g - 19 ng
30_9_Crate196_Slot15WdbLmkin_vs_ScopeRef Solder 2 Probes to 2 WDB280/WDB317 LMK inputs.	9	WDB LMK Input (Soldered)	None	Scope Constant Clock	2.0 ps	-10.9 ps	12.3 ps	$\sigma_{\text{jitter}} = 1.9 \text{ ps}$
31_9_Crate196_Slot15WdbLmkin_vs_Slot1WdbLmkin Switch scope to refclk setup.	9 Slot15	WDB LMK Input (Soldered)	9 Slot1	WDB LMK Input (Soldered)	1.9 ps	-11.1 ps	11.8 ps	Slot - Slot
32_9_Crate196_Slot15WdbLmkIn_vs_Crate192_Slot15WdbLmkIn	9 Crate196	WDB LMK Input (Soldered)	9 Crate192	WDB LMK Input (Soldered)	3.0 ps	-16.4 ps	16.8 ps	Crate - Crate



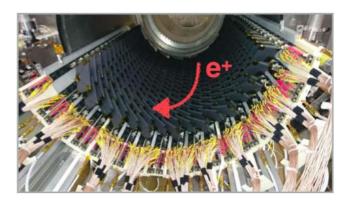
ge 29

Global calibration

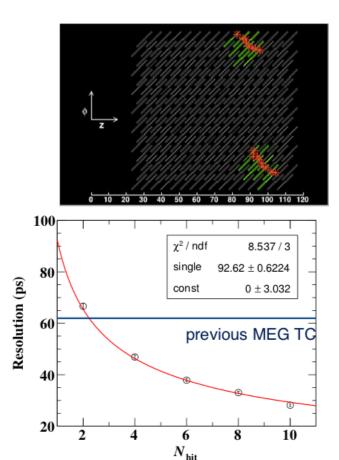
- Clock distribution is never perfect to the ps level
- Global sync injection at ADC does not calibrate different cable lengths
- Signal injection at detector can be difficult



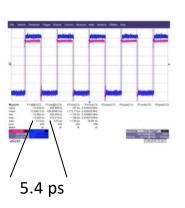
Global calibration


Solution: Use a **physics event** which is seen by all detectors:

- LED flash in calorimeter
- Cosmic traversing many channels
- Correct for different light path



MEG II Timing Counter


- $8 \times 10^8 \, \mu/s$
- 256 scintillating tiles 4x6 cm,
 512 WDB channels (2 crates)
- Resolution scales with sqrt(N)
- 35 ps reached with 8 hits

Lessons learned (so far...)

- Designing a **crate standard** is **easier** than anticipated (if no committee is involved (a))
- Distributing a 5 ps jitter clock is not very hard
- Doing everything from scratch can simplify things
 - shelf manager vs. 8-bit uC with few 100 lines of code
 - crate costs ~ 2k\$ including power supply
 - 1-wire temperature sensor is great!
- Mixed signal board with 40 μV of noise (gain=100!) is tough
 - whole project took 6 years from first idea with ~2 FTE
 - analog front-end took 1.5 years, FW ~2 years
 - careful selecting and shielding
 DC-DC converter, needed 4 revisions
 - the more noise you fix, the more new sources you find
 - Lots of **experience** obtained often missing in text books

Conclusions for precision timing in large systems

- Use end-to-end differential clock distribution
- Careful filter power for all PLLs with low-ESR capacitors
- Identify and remove EMI sources
- Large systems with<5 ps timing can be built
- I'm happy to share all my experiences

