

The Endcap Timing Layer detector for the CMS Phase-2 upgrade

Lazar Markovic on behalf of the CMS collaboration

Elba Island, 31/05/2023, FAST 2023 workshop

High Luminosity LHC (HL-LHC)

- Planned phase 2 upgrade will be done between 2026-28
- This talk is centered arround ETL of the CMS
- For why we need it, check out Federico's talk

MTD design

MTD design

MTD design

Endcap region of the CMS detector: ETL will be mounted on the CE nose

ETL will be mounted on the nose HGCAL

✤ Coverage:

- > z = 3 m from pp interaction
- ➢ 0.315 m < R < 1.2 m</p>
- ➤ Surface ~ 14 m2

2 double-sided disks for each side

- \succ double-sided disk \rightarrow large geometrical acceptance
- > 2 disks to achieve target time resolution:
 - Single hit resolution < 50 ps
 - track resolution < 35 ps</p>

Exploded view of one of the ETL disks

LGAD sensors ETROC 🔶 HPK2

ETL disk

Zoomed in view of the ETL disk

LGAD sensor matrix

16x16 array

- 0.31 m < R < 1.2 m*
- Fill-factor > 95 % (ratio of active and total detector surface) ∻

Fluence vs radius of the ETL disk

- Degradation of perfomanses begins at ~ $1x10^{15} n_{eq}/cm^2$ ~88% ETL will be exposed to < $1x10^{15} n_{eq}/cm^2$ About ~12% of ETL will be exposed to > $1x10^{15} n_{eq}/cm^2$ Tolerable is ~1.7x10¹⁵ n_{eq}/cm^2 *
- *
- *
- *

LGADs: Sensors for ETL

- The ETL sensor will be a 16x16 pad matrix of LGAD sensors
- 1.3 x 1.3 mm² pad size •

- From the beginning to the end of HL-LHC • lifetime, sensors expected to:
 - Achieve single hit time resolution < 50 ps when coupled to 0 the ASIC (30-40 ps for the bare sensor)
 - Ο Deliver > 8 fC of charge
- LGADs suited for radiaton: unchanged • performance up to $1.5E15 n_{eq}/cm^2$, and then slight slow degradation

16x16 array

LGADs: Radiation affected performance

- There are two major effects that affect the performance:
 - Gain layer depletion
 - Single Event Burnout (SEB)
- Gain layer can be "recovered" by increasing the bias V_{bias} (see following slides) and using carbon to harden it
- SEB can be avoided by carefully choosing
 V_{bias} range (see following slides)

SEB

 High-rate test beam at FNAL demonstrate survival of irradiated LGADs at > 11 V/µm under a flux corresponding to ~1 year running for the sensors in ETL inner region

Performance of LGADs

- Not safe regime due to Single Event Burn-out process affecting LGADs
 - ➤ E bulk < 11 V/µm</p>
 - > An incoming particle releases a lot of energy over a small volume, 5-10 μ m
 - > The local electric field is high enough to create a conductive channel
 - > The energy stored in the sensor capacitance discharges burning the sensor

Performance of LGADs

- Timing resolution measurements have been performed in Torino and at Fermilab
 - Using beta-source setups ⁹⁰Sr (2 MeV)
 - Very fast low noise electronic
 - Temperature -25 °C
 - For different fluencies

Example of MS sample performance: FBK (55 microns thick) measured with a beta-source setup

Performance of LGADs

- Maps measured at FNAL
- Resolution for non irradiated sensors ~ 30 ps
- Hit efficency
 - reaches ~ 100 % for non irr.
 - reaches ~ 99 % for irr.

Non-irradiated FBK 5x5 array

Non-irradiated IHEP IME 2x2 array

ETL Read-Out Chip (ETROC)

- ETROC is the ETL read-out ASIC
- Electronics needs to read all the channles, it's brand new, never been done before
- ETROC+LGAD should achieve a time resolution < 50 ps per single hit</p>
 - > 65 nm technology, 100 MRad (TID spec)
 - Iow noise + fast rise time
 - > power budget: 1 W/chip, 3 mW/channel
 - ETROC measures arrival time of signal (6 –20 fC)
 - ASIC contribution to time resolution < 40 ps</p>
 - ➤ L1 buffer latency: 12.5 us
 - ➢ ENC = ~ 0.3 fC
- ETROC is developed in stages (ETROC0/1/2/3)

Showcase of ETROC 2 design

ETROC0

- ETROC1: with TDC, 4x4 channel clock tree
- ETROC1 proved to be able to reach ~40 ps resolution when coupled to LGAD (measured at FNAL with 120 GeV proton beam)

$$\sigma_i = \sqrt{0.5 \cdot \left(\sigma_{ij}^2 + \sigma_{ik}^2 - \sigma_{jk}^2\right)} \sim 42 - 46 \text{ ps}$$

ETROC2

- ETROC2: full size, full functionality
- ETROC2 + LGAD testing coming soon 2023/24:
 - First, beta source and laser tests with wire-bonded LGAD
 - > Build experience and debug \rightarrow bump-bonded LGAD in beam

ETROC0: single analog channel ETROC1: with TDC, 4x4 channel - clock tree ETROC2: full size, full functionality ETROC3: final chip!

ETROC Assembly

- Modules are based on 4 16x16 pixel LGAD sensors, bump bonded to one ETROC each *
- Sensors are glued on AIN baseplate and in thermal contact with the cooling *
- Wire bonds to PCB Modules are directly connected to multi-module readout board that sits on top * disk
- Readout board based on CERNs rad-hard Low Power Gigabit Transceiver (lpGBT) and Optical * Link Module (VTRx+)

ETROC2

◆ Designing a testing-optimized module compatible with ETROC2, read-out board and power board, and with a bump-bonded 16x16 → will enable a full system test!

testing-optimized module for system test

Summary

- The design of MTD is heavily influenced by harsh conditions of radiation
- LGAD sensors will be used, providing resolution of < 50 ps, with collected ~10 fc of charge
- MS performance gives good results (shown for FBK)
- ETROC1 + LGAD reaches desired resolution of ~ 40-50 ps
- Full-size read-out chip ETROC2 arriving soon
- Top priority of the next months: validation of LGAD + ETROC2 based prototypes

THANK YOU FOR YOUR ATTENTION

BACKUP

High Luminosity LHC (HL-LHC)

- Up to **5x** higher vertex density
- Unprecedented radiation levels
 - ~10x higher then presen LHC
 - Expected fluence up to several 10¹⁶ neq/cm²

Expected fluence dictates the technologie development for subdetectors

Motivation for Tracker upgrade

Simulation: Number of pileup tracks incorrectly associated with the hard interaction vertex as a function of the collision line density for different time resolution and time reconstruction efficiency of 0.85

VBF H \rightarrow t t simulation 200 pp pile-up

Interactions are distributed ——— over time (and space) with an RMS of **180-200 ps**

Motivation for Tracker upgrade

With a resolution of **35 ps**, vertex merging is reduced from **15%** in space to **1%** in space-time, as in the current operating mode of the LHC

- The MIP Timing Detector (MTD)
 - > Will measure the time of passage of charged particles with a resolution of **30-40 ps**
 - > This precision will decrease to **50-60 ps** towards the end of the HL-LHC operation
 - > In addition to being "fast", it must be able to withstand harsh conditions/radiation
 - Charged tracks/vertices association with photons and hadronic showers

LGAD sensors - FermiLab test

- Proton beam 120 GeV/c
- Scintilator used as a trigger
- Telescope monitors the position
- MCP (resolution 10ps) for time reference
- Cooling chamber

2021

LGADs: Time resolution - charge collected

HPK MS samples – HPK2

Desy TeastBeam, November 2022

Siviero F. , MTD ETL sensors qualification and test plans, CMS upgrade Days 2023

- First test beam ever with 16x16 LGADs
 - Previous ones only with small prototypes
- Three vendors tested: HPK, FBK, IHEP-IME
- Very nice agreement with previous results from small prototypes
- All sensors achieved the target performance both in terms of time resolution and delivered charge

