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Scope

» LGAD (Low gain avalanche detector) - slide 3

» Structure of the collected data – slides 4-5

» Problem statement– slide 6

» Data preprocessing – slides 7-8

» Machine learning algorithm – slides 9-12

» Conclusions – slide 12
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LGAD detectors

» LGAD (Low Gain Avalanche Detector) as an alternative to ionisation chamber in 

dosimetry

– High spatial and temporal precision

– Sensors developed for CMS MTD (MIP Timing Detector) and designed to operate in 

the LHC environment, Read-out board designed by the University of Kansas

» Sensor consists of 5x5 matrix of pixels with a dimension of 1.3x1.3mm2 (Fig1)

» Two detectors were placed in the proton beam coming from the AIC-144 cyclotron 

at the Institute for Nuclear Physics in Cracow, facility was previously used for 

the proton therapy
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Fig2: Two mounted detector boardsFig1: LGAD sensor with the connected channels

Proton beam



Macro-pulse structure

» AIC-144 cyclotrone in Cracow accelerates protons to an energy of 58 MeV

» The Cyclotrone was producing pulses with the frequency of 50Hz 

(every 20ms), the length of the pulse was around 0.5ms

» Thanks to the timing precision (~50ps) of the LGAD detector it is possible to 

analyze the structure of the generated pulse

» A macro-pulse consists of multiple micro-pulses which occur every 38ns and 

last for around 1ns
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Fig3: Temporal structure of the macro-pulse



Macro-pulse structure

» We found that each micro-pulse could produce a negative (actual signals) or 

a positive (cross-talk) signal in the detector.

» Splitting data into individual windows allows to perform quantitive analysis

and study the shape of the pulses
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Fig4: Macro-pulse recorded by the detector for 2nA 

with 8 bit precision

Fig5: Fragment of the macro-pulse with several

micro-pulses

Fig6: Example of the micro-pulse window extracted from the 

macro-pulse, raw values on the left and normalized on the right



Problem statement

» LGAD detector can record different events depending on the number of 

particles passing through the sensor and the position of the deposited 

charge in the pixel matrix

» Analyzing those signals using conventional methods is hard given the 

number of possible signal shapes and interferences like noise, 

measurement precision and cross-talk

» Machine learning methods proved to be very powerful at tasks like pattern 

recognition, outlier detection, noise reduction and signal segmentation
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Fig7: Single particle in the 

middle channel

Fig8: Multiple particles in the 

single channel

Fig9: Possible crosstalk between

two activated channels



Peak detection algorithm

» Start of the macro-pulse is defined by the first micro-pulse, similarly end of 

the macropulse is defined by the last micro-pulse

» Baseline of the signal noise is calculated on the fly by the average of N last

processed samples

» Peak is defined as the N% change from the baseline

» To compenstate for differences in amplitudes, macro-pulse is normalized:

– Negative pulses are scaled to 1 while positive pulses remain

unchanged
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Fig10: Example of the macro-pulse fragment with micro-pulses maxima indicated by the red dot



Windows classification

» Shape of the signal pulse is unique – multiple particles passing through 

sensor, different levels of noise, different width, etc.

» Individual signal windows can be classified according to its features

» Clustering similar shapes allows for outlier detection and analyzing pileup

8Fig11: Example of the signal shapes



Unsupervised machine learning

» Deep Neural Networks (DNNs) have gained significant attention in various 

fields, including physics, due to their ability to learn complex patterns and 

make predictions from large datasets

» Deep Neural Networks learn from training data by adjusting the weights of 

interconnected neurons through iterative improvement from defined error 

function.

» Learning can be:

– Supervised – rely on labeled values (truth values)

– Unsupervised – focuses on uncovering relationships within data

9Fig11: Unsupervised learning 

(clusterization)

Fig11: Supervised learning (classification)



Autoencoder Neural Network
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» Not every sample and feature within the micro-pulse is important for the 

purpose of clusterization

» Autoencoder was used to extract most important features of the micro-pulse

» Autoencoders does not require supervision and are excellent tool for 

extracting data features and noise reduction

Fig12: Autoencoder architecture



Autoencoder Neural Network

» Trained autoencoder consists of two main components: encoder and 

decoder

» Decoder can be detached and used individually to reduce dimensionality of 

the pulses while preserving most important features

» Side effect of the features compression in the encoder is noise suppression
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Fig13: Comparison between raw data 

samples and autoencoder prediction



Clusterization

» Clusterization is a form of unsupervised training that allows to group similar 

results according to the provided features

» Multiple methods were evaluated – KMeans, DBScan, GaussianMixture
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Fig14: Results of the classification on 2nA data with pileup cluster indicatedby blue color and PCAprojection

Fig15: Results of the classification on 2nA data with outliers indicated by blue color and PCA projection



Conclusions
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» Machine learning techniques can be used in signal processing for analyzing

signal shapes

» Separation between signals performs poorly without extracting underlying 

features

» Autoencoder Neural Networks allow for unsupervised extraction of the signal 

features, signal interpolation and noise reduction

» After feature extraction, suitable clusterization method can be used to group the 

data according to the need (we were concentrating on the number of peaks in the 

signal)

» Further studies concentrated on data with higher pileup are needed
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