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Example time series from 

a diamond detector 

Time of arrival prediction

» Diamond detectors (double diamond architecture)

– Devised and used in the CMS-PPS (Precision Proton Spectrometer) system, at 

the LHC (CERN).

» A particle flying through a detector generates a voltage signal.

» A sampling device (SAMPIC) produces a sampled time series of voltage.

» Measurement goal: precise timing of the passage of the particle

» Project goal: estimate the performance of neural networks with respect 

to the method used currently.
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Double diamond
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Two diamond sensors on both sides of the board are connected to the same 

readout channel.



Time walk effect

» Easiest algorithm to compute the time of arrival: constant threshold

– Disadvantage: prone to the time walk effect
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Example of the time walk effect. Although both signals reach their maximum 

at the same time, the threshold-crossing time is different.



Constant Fraction Discriminator

» The CFD algorithm (Constant Fraction Discriminator)

– Method currently used in the CMS-PPS reconstruction

– Goal: mitigation of the time walk effect

– Implemented as the normalised threshold algorithm preceded by the 

baseline subtraction
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The CFD algorithm. Left: (0) before normalisation, (1) baseline subtraction, (2) division 

by maximum. Right: after the normalisation the timestamp can be found using the fixed 

threshold algorithm



Detector setup (1)

» 2020 – test beam facility at the DESY-II synchrotron.

» Combined data taking with diamond detectors and a more precise 

MCP-PMT (MicroChannel Plate Photomultiplier Tube)
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Detector setup (2)
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PPS timing sensors



Dataset

» The dataset needed to contain signals and the reference timestamps.

» Expected diamond detector precision: 50-100 ps

» Expected MCP-PMT precision: ~10 ps

» The reference timestamps (ground-truth) computed with the CFD using the 

MCP-PMT signals.

» Used only the events where a particle was detected both by a diamond 

detector and the MCP-PMT.

» Goal for the neural network: minimise the difference between the 

predicted and ground-truth timestamps given a time series from the 

diamond detector.
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Dataset example
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Dataset example. Left: an MCP signal with marked ground-truth timestamp. Right: a 

signal from a diamond detector; red: the ground-truth timestamp (includes the 𝑡0 shift 

of both signals), green: the CFD timestamps computed on the diamond detector time 

series (used to compare the neural networks with CFD).



Neural networks

» Neural network – a machine learning algorithm modelled after the structure 

of the human brain.

» Made of interconnected nodes (neurons), which process information.

– Number of neurons (parameters) can reach millions or even billions.

» Used to recognise patterns in data, such as images, text or time series.

» A neural network model is trained on large datasets to make predictions on 

new data.

» Training – fitting the network to the data

– Using a subset of the whole dataset – training set

» Testing – testing the network performance

– Using the rest of the dataset – test set

– Usually the training-test split is 80%-20%.

» Common testing approach: cross-validation

– Divide the dataset into a few folds; test on one, train on the others.
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Choosing the optimal architecture

» Tested architectures

– Multilayer Perceptron (MLP)

– Regular Convolutional Neural Network (CNN)

• Devised to process images and time series.

– UNet-based network

• Devised to find keypoints or timestamps.

» Model selection done using a two-step hyperparameter tuning procedure.

1. Find top five models using keras-tuner (a Python framework for TensorFlow).

2. Use the cross-validation to find the optimal model.

» Following hyperparameters were optimised:

– network depth,

– number of neurons (dense layers), number of filters (convolutional layers),

– Application of batch normalisation and/or dropout;
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Precision assessment method

» Comparison with the “reference” 

detector – MCP

– For each measurement: 

calculate the difference 

between the diamond det. and 

MCP.

– Precision metric: std of 

differences

» A Gaussian can be fitted to the 

data to reduce the impact of 

outliers.

– Better precision metric: std 

of a Gaussian fitted to the 

difference histogram
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Example difference histogram with a fitted 

Gaussian



Optimal model selection

» Hyperparameter tuning used to find an optimal model for each architecture.

» Precision statistics computed through a cross-validation of the optimal 

models

» The best (smallest) precision: UNet

14

architecture mean [ps] std [ps] params

MLP 63.9 0.9 2,737

CNN 62.8 1.3 36,865

UNet 60.7 1.2 456,965



Optimal UNet model

» Symmetric parts: encoder and decoder

» The encoder extracts time-independent features from a time series.

» The decoder builds a heatmap.

» The heatmap is expected to contain a Gaussian with the mean at the 

particle timestamp.

» The timestamp can be retrieved by applying a fit.
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Results

» Final results obtained with the test dataset not used in the previous tests

» Precision comparison with CFD:
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CFD NN Improvement

71.6 ps 59.4 ps 17.0%

Difference histograms with fitted Gaussians



Results for many channels

» Networks trained either on single channels (representative examples) or on 

all the channels together (maintaining the train/test split).

» Improvements with respect to the CFD:
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training 

channel

test channel

10 16 17 22 25 27

10 13% 10% 13% 7% -1% -23%

16 6% 23% 16% 9% -22% -9%

17 7% 17% 19% 9% -3% 8%

22 4% 14% -4% 11% -84% -51%

25 4% 4% 7% 4% 12% 8%

27 -13% -10% 4% -16% 4% 19%

all 8% 22% 14% 12% 9% 17%



Improvements for all the channels
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Improvements with respect to the CFD for all the explored channels using the 

networks trained on particular channels. Improvements range from 8% to 23%.



Summary

» Improvements ranging 8% to 23% with respect to the CFD

» Advantages:

– Network, once selected, has just to be trained and can work.

– The expert knowledge is required only to find the optimal network model. 

Training and predicting is relatively simple.

– In case the observed data evolves, the network can be easily retrained.

» Disadvantage: a neural network is a black-box

– It is impossible or difficult to explain the network predictions.

» The work is continued on the LHC data.
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The end

» The project was partially funded by the Polish Ministry of Education and 
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