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The need for Precision Timing
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Time Interval Error (TIE)
Quantifying Time Jitter in Clocks

The Time Interval Error is the
time difference between the
edge of the reference clock
and the edge of the distributed
clock

TIE is measured for multiple
edges and the standard
deviation is quoted as a
measure of jitter/wander.

High speed variation in TIE is
called Jitter

Low speed variations in TIE is
called Wander
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Precision Timing Needs Better Clocks

* The time resolution of the detector system has contributions from

Gt ~ Gt clock @ Gfle @ detector .

* |n order to measure the time of interaction in your detector precisely, you
need to have a reference clock with jitter that adds marginally to the
measurement that you are making

Jitter (High Speed Variations) can be mitigated using jitter attenuators
and dedicated channels for distribution

Lets look at such a scalable prototype without jitter attenuator



‘Pure’ Clock Distribution System

Distributing clocks using dedicated channels
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But what about wander?

Note: Light travels ~300 microns in a
picosecond in free space
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Questions:

1. How do we measure wander?
2. How do we correct for it?




Measuring Time

Digital Dual Mixer Time Difference (DDMTD) circuit *

Reference Clock and Test Clock are heterodyned
with the help of a PLL and Flip Flops

The PLL generates Offset Clock with the
frequency relation: N

foffset — Jref * N+ 1

N is the integer that determines the number of
iInput clock cycles required for a full phase cycle
of the heterodyned signal

The time difference between the beat clocks is
used to calculate TIE between the Ref.Clock and
the Test Clock

*First proposed by P. Moriera in 2010
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With N = 100k, f,,, = 160MHz,

£, = 1.599984 kHz

Note that as we sample at f;,,,, we lose sensitivity to higher

frequency |itter.
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Revisiting Pure Clock Distribution

Measurements made using DDMTD
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24 Channel DDMTD System

This board fans out clock generated by the OCXO
to 24 channels and measures the drift of the
returning clock w.r.t the reference clock
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Questions:
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2. How do we correct for it?




Correcting for Drifts in Clock
How Digitally Controlled Phase Shifter (DCPS) Works

3D structure of a unit cell
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Multi Channel DCPS Test Bench

Delay measurements were made by
activating the delay steps of the ASIC
cumulatively (in steps of 8 units)

We measured the TIE b/w the distributed
clock and the reference clock using DDMTD
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Multi Channel DCPS TestBench. - . ... .
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DCPS ASIC Version 2 e
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DCPS ASIC Version 3

A third version of the DCPS ASIC was
designed with radiation tolerance in
mind

— — — o _—
= — —— _ - = > T———— .

ocDynamic range of ~250ps
=5 coarse delay steps — 8ps,
16ps, 32ps, 64ps, 128ps
=2 Tuning Bits

———— —

o With ~300fs granularity
=66 fine delay steps
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DCPS v3 has been designed with
radiation tolerant 12C controller

Further tests are being conducted
(including radiation hardness)
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Summary

Pure Clock D|str|but|on System & DDMTD -

Demonstrated a soalable clock distribution system that is oapable of distributing clocks with sub-picosecond precision

- DDMTD circuit is a low cost circuit capable of tracking low frequency wanders of the clock

24 Channel DDMTD Board .

* Developed system capable of tracking the long term wander of 24 channels of clock simultaneously.
» Scalable architecture, developed with offline corrections in mind
 Each channel provides sub-picosecond precision

e Stability of the DDMTD measurements are consistent across channels

Di |taII Controlled Phase Shlter ASIC L

 Demonstrated system capable of tracking long term wander of the clock and correcting for it in real time
with sub-picosecond precision

 The DCPS distributing the clock doesn’t introduce a significant amount of phase noise
* High Dynamic Range >200ps with ~300fs steps

e Designed to be dispersion free up-to ~500MHz

e Radiation tolerant (DCPS v3)
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BACKUP



DDMTD Performance
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DDMITD Lineari
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