CMS jet measurements and constraints on PDFs and $lpha_{s}$

Achim Geiser, DESY Hamburg

Low-x 2023, Leros Island, Greece Sept. 4, 2023 on behalf of the **CMS** collaboration

Outline: – inclusive jets, PDFs and $\alpha_{\rm s}$

- dijets, PDFs and $\alpha_{\!\scriptscriptstyle s}$
- multijets, jet multiplicity, multiparton interactions
- azimuthal correlations and $\alpha_{\text{s}},~~\alpha_{\text{s}}$ running
- conclusions

1

CMS, JHEP 02 (2022) 142 + Addendum JHEP 12 (2022) 035

CMS PAS SMP-21-009

CMS, JHEP 02 (2022) 142 + Addendum JHEP 12 (2022) 035

CMS, JHEP 02 (2022) 142 + Addendum JHEP 12 (2022) 035

NNLO describes data much better than NLO, but still sizeable PDF dependence -> can fit PDF

QCD fit @NNLO, R=0.7 (xFitter): PDF + α_s

CMS, JHEP 02 (2022) 142 + Addendum JHEP 12 (2022) 035

Full QCD fit at NNLO: inclusive DIS cross sections (HERA) [arXiv:1506.06042] + CMS inclusive jets at 13 TeV [arXiv:2111.10431]

NNLO fast grids NNLOJet+applFast [D. Britzger et al., EPJC 82 (2022) 930, arXiv:2207.13735]

good	Data arts		HERA+CMS
	Data sets	The same of the law	Partial χ^2/N_{dp}
fi+·	HERA I+II neutral current	$\mathrm{e^+p},E_\mathrm{p}=920\mathrm{GeV}$	376/332
1.1.	HERA I+II neutral current	$\mathrm{e^+p},E_\mathrm{p}=820\mathrm{GeV}$	60/63
	HERA I+II neutral current	$\mathrm{e^+p},E_\mathrm{p}=575\mathrm{GeV}$	202/234
	HERA I+II neutral current	$\mathrm{e^+p},E_\mathrm{p}=460\mathrm{GeV}$	209/187
	HERA I+II neutral current	$\mathrm{e^-p},E_\mathrm{p}=920\mathrm{GeV}$	227/159
	HERA I+II charged current	$\mathrm{e^+p},E_\mathrm{p}=920\mathrm{GeV}$	46/39
	HERA I+II charged current	$\mathrm{e^-p},E_\mathrm{p}=920\mathrm{GeV}$	56/42
	CMS inclusive jets 13 TeV	0.0 < y < 0.5	8.6/22
		0.5 < y < 1.0	23/21
		1.0 < y < 1.5	13/19
		1.5 < y < 2.0	14/16
	Correlated χ^2		81
	Global $\chi^2/N_{\rm dof}$		1302/1118

inclusive jet measurements dominated by dijets: 2 back-to-back final state partons (LO QCD configuration, $O(a_s^2)$)

production of third jet

- radiation of third parton (NLO QCD configuration, O(a_s³), is effectively LO),
- -> decorrelation in dijet azimuthal angle (but angle between two leading jets remains > $2/3 \pi$)

four-jet final state requires two additional parton radiations (at least $O(a_s^4)$)

-> excellent probe for higher order QCD corrections

(angle between two leading jets can go down to 0)

 $\Delta \phi_{dijet} = \pi$

 $\Delta \varphi_{dijet} < \pi$

 $\Delta \varphi_{\text{dijet}} << \pi$

multiparton and hadronization corrections included partial NLO EW corrections included

Double differential dijets, ratio to NNLO

R=0.4

2-dim: m₁₂ and |y|_{max}

A. Geiser, Low-x 2023

R=0.8

Triple differential dijets, ratio to NNLO

4.9.23

A. Geiser, Low-x 2023

11

m1,2 (GeV)

 σ_{eff} model dependent and in qualitative agreement with earlier determinations.

Multi-jet multiplicity (up to 7+) vs. $\Delta \phi$ of jet_{1,2}

CMS, arXiv:2210.13557

up to 7 jets! sometimes, scaled LO+PS models (left) still describe the data better than NLO+PS models (right). (PS models might need to be retuned for NLO)

Cross sections vs. p_T for 1^{st} , 2^{nd} , 3^{rd} , 4^{th} jet

CMS, arXiv:2210.13557

>=2 jet events with p_{T1} >200 GeV and p_{T2} >100 GeV:

NLO does a good job for 1st and 2nd jet (PS mostly subleading).

for jet multiplicities >=3 and >=4, data tend to lie between the LO+PS and NLO+PS predictions, both including MPI models.

Azimuthal correlations between jets, full Run 2

Azimuthal correlations between jets, full Run 2

CMS-PAS-SMP-22-005, preliminary, brand new

well described

perform NLO α_s fit (fixed PDF) 134 fb⁻¹(13 TeV)

 $\alpha_{s}(m_{7}) = 0.1177 + 0.0117 - 0.0074$ (+.0114 scale, .0013 exp, .0011 NP, .0010 PDF, .0020 PDF choice, .0003 EW)

4.9.23

Comparison with other NLO jet measurements

CMS-PAS-SMP-22-005

nclusive

jets

dijets

multi-jets

 $\alpha_{s}(M_{7}^{2})$

Running of $\alpha_{\rm s}$

CMS-PAS-SMP-22-005

Running of α_s consistent with QCD up to the highest accessible scale (2 TeV)

Conclusions

Powers round i normali

Inclusive single jet production in CMS was used to derive the most precise $\alpha_{\rm s}$ determination from jets,

 $\alpha_{s}(m_{Z}) = 0.1166 + - 0.0018$

and significant constraints on the gluon PDF in a combined NNLO PDF+ α_s fit including HERA data.

Dijet cross sections at 13 TeV have recently also been measured and the corresponding preliminary NNLO PDF+ α_s fit gives results which are partially complementary to the inclusive jet results.

Double parton interactions are established to contribute significantly to four-jet production, and multi-jet distributions with up to 7 Jets are reasonably described by LO+LL and NLO+LL MC models including MPI.

The measurement and NLO QCD fit of azimuthal jet correlations allows the extraction of α_s and a cross check of its running up to the highest scale in CMS (2 TeV).

Backup

CMS, JHEP 02 (2022) 142 + Addendum JHEP 12 (2022) 035

corrections to NNLO predictions

nonperturbative corr.

partial NLO EW corrections

