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Collinear factorization in QCD at NLO
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Establish the same within hybrid kr-factorization,
for which the LO cross section formula is

g0t = [ Bt . g

E— Fin(xim kl) fﬁ(im) dB*(Xim ki, im)
Xin 7T Xin

The amplitudes inside B*(xi,, k., X:+) depend explicitly on k

They involve a space-like initial-state gluon with momentum ki = x;,P* 4 k'

N S

Such amplitudes need care to be well-defined, to be gauge-invariant.

Kb =xin PR+ kY

We apply the auxiliary-parton method, and our objective is within this constraint.




Auxiliary parton method (tree-level) [FSEnY

We desire to obtain the matrix element with one space-like gluon for the process
9" (kin) wm(ks) — wi(p1) wa(pa) - walpn) es g*(kin) glkm) — g(p1) g(p2) g(p3)

and do so by replacing the space-like gluon with an on-shell auxiliary quark pair
q(ki(A) wmlks) — q(ka(A)) wilpr) wa(p2) -+ wnlpn)

with special momenta

k,|? _
kﬁl = /\P}l y k; :p/\p = (/\—X;n)Pu—ki + | L|

(/\ - Xin)‘v2
such that, while individually on-shell, their difference is
K — kS =xinP* + Kk + O(AT) =KL +O(AT)

i

The matrix element with the space-like gluon is obtained by taking A — oo
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The matrix element with the space-like gluon is obtained by taking A — oo
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The factor x% [k, |> ensures the correct on-shell limit, 1/A? selects the leading power,
1/g? corrects the power of the coupling.

One can use auxiliary quarks, as well as gluons, by including the color-correction factor
N2 1
Cau><—q = — ) Caux—g - ZNC
Ne




Auxiliary parton method

e the auxiliary parton method can be applied to Feynman graphs, from which one can
derive eikonal Feynman rules for the auxiliary partons

e this works unambiguously at tree-level (arbitrary number of jets etc.), but needs a
treatment of the linear denominators for loop graphs

e the auxiliary parton method can also be applied on closed expressions for complete
on-shell amplitudes

e then A effectively works as a regulator for linear denominators

1 A—00 2/\ . .

— — — In/A in loop integrals

P-K AP+KZ pintes

e we performed this exercise in (Blanco, Giachino, AvH, Kotko 2023) using on-shell ex-
pressions by (Bern, Dixon, Kosower 1994, 1998, and Schmidt 1997) to obtain one-loop
amplitudes for ) — g*gg, 0 — g*qq, ® — g*gH, 0 — g*qqdee"




Auxiliary partons at one loop

We recognize the following pattern:
dv* = dv*fam + dV*unf

dV*m is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/€%,1/€ poles look as if the space-like gluon were on-shell
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dv* = dv*fam + dV*unf

dV*m is independent of the type of auxiliary partons
has the correct regular on-shell limit
all 1/€%,1/€ poles look as if the space-like gluon were on-shell

For example, apply A limit on A|°°p(1Q,6Q,2q,3q,4e+,5€7) (Bern, Dixon, Kosower 1998)
to get A'°°P(1*,24,3,4¢+, 5. ). The pole-part is proportional to the tree-level amplitude
with factor

1 2\ ¢ 2\ ¢ 3
{_2K = ) +( H ) }—}Atree(1*,2q,3q,4e+,5e),
€ —Sp3 —Sp2 2e

with s, and sp3 involving only the longitudinal part of kj =p + k.
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More-or-less proven using known universal collinear limits of one-loop amplitudes
(Bern, Chalmers 1995, Bern, Del Duca, Kilgore, Schmidt 1999).

Before the large-/A, the small-|k | corresponds to a collinear limit of auxiliary partons.
While the large-A and small-[k, | limit commute at tree-level, they do not at one loop.




Real radiation with auxiliary partons
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Real radiation with auxiliary partons
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The differential phase space and the matrix element factorize for the unfamiliar case, where
the radiative gluon participates in the consumption of A.

’MEUX’ ( A+X|n)P K ,Xr/\P +71, +XrP Xq/\P +4q. +XqP {pl} )
AZ‘M ‘ Xi”P_ql_TL)kﬁ;{pi}?:1)
Xi2n|qJ- +rL|2

aux

A—o0

Qaux(xm qiyXry rl)

Qaux(xq) qL)XT)TL) - qur iPaux(xqaxr) |qL + ri|2

N )
g P xelg P+ xqlr 2 —xgxelg +r P\ 2 gL f?

e Phase space also factorizes and the contribution can be calculated analytically.

e The result contains In/A and depends on the type of auxiliary partons.




Complete unfamiliar contribution

Combining the unfamiliar contributions and organizing them suggestively, we can write

dR*unf + dv*unf _ Aunf dB* ,
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e No InA present. O(ws) contribution to the space-like gluon Regge trajectory.
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e Target impact factor corrections as in Ciafaloni, Colferai 1999.
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Complete unfamiliar contribution

Combining the unfamiliar contributions and organizing them suggestively, we can write

dR*unf + dv*unf _ Aunf dB* ,

where N ) b 1
Qe lNc [ 28 ‘ P'me
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e Target impact factor corrections as in Ciafaloni, Colferai 1999,
e Must be removed because the region where radiation is collinear to P is double-counted.
We follow the prescription of Ciafaloni, Colferai 1999

. : : T T
and remove the collinear region with and angular or- 9( .| <X < ’Jk)
dering condition on the relevant 1/x,-term VVA fro+ k.|




Familiar divergencies

Familiar (UV-subtracted) virtual divergencies involving the space-like gluon look as if it
were on-shell, with only the longitudinal momentum component x;,P in the soft log:

C — %2 2 Hz — %\ 2 ]1Nc—2n — %2
—— [ +€#Z*'”(2Xinp,pi)(m S e M|

Familiar real soft behavior with the space-like gluon acting as “spectator” looks as if it
were on-shell, with only the longitudinal momentum component x;,P in the eikonal terms:

(XinPPi)  mxy2
GenPrp) )

x
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Soft and collinear singularities in the the real radiation integral of the tree-level matrix
element are typically dealt with using subtraction (Catani-Seymour, FKS, etc.):

| a0 L T = | @ [N T X R @ AT
+3 [ a0, [ldpIR(p) o ATe

where the p,-integrals are supposed to be performable analytically within dimreg.




Familiar real collinear singularity

Tree-level matrix elements with a space-like gluon still have a singularity when a radiative
gluon becomes collinear to P.
— %2
p\/[ ’ (XinP + ki) km;T', {pi}{l:])
T—%XP ZN Xz
—

P-r % (Xin — %)

)2 |M | ( Xin _XT)P"_kmkm;{pi}?:])

Collinear splitting function with only the 1/z/(1 — z) part.
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Tree-level matrix elements with a space-like gluon still have a singularity when a radiative
gluon becomes collinear to P.
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Collinear splitting function with only the 1/z/(1 — z) part.

Integrate over relevant phase space with restriction
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which is the complement of the restriction on the unfamiliar phase space.
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Essentially identical to formula from Nefedov 2020 for multi-Regge evolution.

)kL+H>&u<MUZJ
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Real contribution to the non-cancelling collinear remnant.
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