Probing gluon saturation via diffractive jets in photon-nucleus interactions

Edmond lancu

IPhT, Université Paris-Saclay

with A.H. Mueller, D.N. Triantafyllopoulos, and S.-Y. Wei arXiv:2112.06353 (PRL) & 2207.06268 & 2304.12401

Outline

- Diffractive dijet production in photon-nucleus interactions at high energy:
 - a golden channel to study saturation
 - \bullet electron-nucleus DIS at the future EIC (LHeC ?)
 - nucleus-nucleus UPCs at the LHC
- Why diffraction ?
 - elastic scattering \Rightarrow controlled by strong scattering ("black disk limit")
 - particularly sensitive to high parton densities/gluon saturation
- Diffractive jets: a unique example of a hard process $(P_{\perp} \gg Q_s \sim 1 \text{ GeV})$ which is controlled by the physics of saturation
 - hard processes are easy to measure
 - a priori, well described by the collinear factorisation
 - saturation hidden in the diffractive PDFs ("non-perturbative")
- The CGC allows one to compute diffractive dijets from first principles
 - collinear (actually, TMD) factorisation emerges from the CGC

Dipole picture for DIS at high energy

• Small Bjorken $x_{\rm \scriptscriptstyle Bj}=\frac{Q^2}{2q\cdot P}\ll 1:$ convenient to work in the dipole frame

• Lorentz boost to a frame where the dipole is energetic: large q^+

ullet the virtual photon fluctuates into a $q\bar{q}$ pair long before the scattering

- the $q\bar{q}$ color dipole acts as a probe of the gluon distribution
- the dipole transverse size r is preserved by the scattering

Low-x 2023, Leros, Greece

Diffractive Jets in γA

Dipole factorisation for inclusive DIS

• Photon wavefunction $(\gamma^* \to q\bar{q})$ times dipole scattering (known to NLO)

$$\sigma_{\gamma^*A}(Q^2, x) = \int \mathrm{d}^2 r \int_0^1 \mathrm{d}\vartheta \left| \Psi_{\gamma^* \to q\bar{q}}(r, z; Q^2) \right|^2 \underbrace{\sigma_{\mathrm{dipole}}(r, A, x)}_{2\pi R_A^2 T_A(r, x)}$$

• Dipole amplitude $T_A(r, x)$: solution to BK/JIMWLK equations (to NLO)

$$T_A(r,x) \simeq \begin{cases} r^2 Q_s^2(A,x) & \text{ for } rQ_s \ll 1 \text{ (color transparency)} \\ 1 & \text{ for } rQ_s \gtrsim 1 \text{ (black disk/saturation)} \end{cases}$$

• Saturation momentum: $Q_s^2(A,x) \sim A^{1/3}/x^{\lambda_s}$ with $\lambda_s \sim 0.3$

Inclusive DIS in the dipole picture

$$\sigma_{\gamma^*A}(Q^2, x) = \int \mathrm{d}^2 r \int_0^1 \mathrm{d}\vartheta \left| \Psi_{\gamma^* \to q\bar{q}}(r, z; Q^2) \right|^2 \underbrace{\sigma_{\mathrm{dipole}}(r, A, x)}_{2\pi R_A^2 T_A(r, x)}$$

- Dipole size limited by virtuality: $r^2 \lesssim 1/\bar{Q}^2$ with $\bar{Q}^2 \equiv \vartheta(1-\vartheta)Q^2$
- ullet To probe saturation, one needs $r\gtrsim 1/Q_s,$ hence $\bar{Q}^2\lesssim Q_s^2$
- A priori, two interesting situations:
 - symmetric jets $artheta \sim 1/2$, but semi-hard photon: $Q^2 \sim Q_s^2$
 - hard photon $Q^2 \gg Q_s^2$, but asymmetric jets ("aligned"): $\vartheta(1-\vartheta) \ll 1$

Inclusive DIS in the dipole picture

- Excellent fits to ep data (F_2 , F_L , F_{2c}) at HERA: $x \le 10^{-2}$, $Q^2 \le 50$ GeV²
- However, inclusive DIS probes (quasi)symmetric $q \bar{q}$ configurations
 - \Rightarrow gluon saturation probed only for low $Q^2 \sim Q_s^2 \lesssim 1~{\rm GeV^2}$
 - limited region in phase-space, non-perturbative contamination 😟
- Can one measure saturation directly at high Q^2 ?

Diffraction: F_{2D}

• Elastic scattering/diffraction is more sensitive to strong scattering

 $\sigma_{el} \propto |T|^2 \iff \sigma_{tot} \propto 2 \mathrm{Im} T$

- Colourless exchange: 2-gluon ladder, (BFKL) Pomeron, rapidity gap $Y_{\mathbb{P}}$
- F_{2D} controlled by the black disk limit $(T \sim 1)$ even when $Q^2 \gg Q_s^2$
 - asymmetric $q \bar{q}$ pairs, $\vartheta(1 \vartheta) \ll 1$, with large size $r \sim 1/Q_s$
 - would be non-perturbative, $r\sim 1/\Lambda,$ in absence of saturation

One vs two Pomerons... at HERA

• Naively (2-gluon exchange): σ_{diff} rises with $\frac{1}{r}$ or with A like two Pomerons

 $T^2\,\simeq\, \left(r^2Q_s^2(A,x)\right)^2 \propto \frac{A^{2/3}}{x^{2\lambda_s}} \qquad {\rm vs.}\qquad T\,\simeq\, r^2Q_s^2(A,x) \propto \frac{A^{1/3}}{x^{\lambda_s}}$

- But it doesn't! Diffraction is controlled by $T\sim 1$, or $r\sim 1/Q_s$
- Almost the same scaling as σ_{tot} :

$$rac{\sigma_{el}}{\sigma_{tot}} \sim rac{1}{\ln\left(Q^2/Q_s^2
ight)}$$

- Weak *x*-dependence confirmed by HERA (Bartels, Golec-Biernat, Kowalski, 2002)
- Would be interesting to also check the *A*-dependence at the EIC

Figure 9: The ratio of $\sigma_{diff}/\sigma_{tot}$ versus the $\gamma^* p$ energy W. The data is from ZEUS and the solid

Exclusive dijets is higher twist

- What would be a jet measurement analogous to F_{2D} ?
- Elastic scattering can also produce exclusive dijets:
 - a $q\bar{q}$ pair which is hard: $k_{1\perp}\simeq k_{2\perp}\equiv P_{\perp}\gg Q_s$ & symmetric: $artheta\sim 1/2$
- ... but these are rare events ("higher twist"), insensitive to saturation:
 - $\sigma_{\rm el} \sim |T_{q\bar{q}}(r,Y_{\mathbb P})|^2$ with $r \sim 1/P_{\perp}$
 - $P_{\perp} \gg Q_s(Y_{\mathbb{P}})$: small dipole \Longrightarrow weak scattering

• rapidity gap
$$Y_{\mathbb{P}} = \ln \frac{1}{x_{\mathbb{P}}}$$

$$\frac{\mathrm{d}\sigma_{\mathrm{el}}^{\gamma A \to q\bar{q}A}}{\mathrm{d}\vartheta_1 \mathrm{d}\vartheta_2 \mathrm{d}^2 \boldsymbol{P}} \propto \frac{1}{P_{\perp}^6}$$
$$Q_s^2 \equiv Q_s^2(A, Y_{\mathbb{P}}) \sim A^{1/3} \,\mathrm{e}^{0.3Y_{\mathbb{P}}}$$

Diffractive 2+1 jets

(E.I., A.H. Mueller, D.N. Triantafyllopoulos, Phys.Rev.Lett. 128 (2022) 20)

- Can one have diffractive dijets at leading twist ? ($\sim 1/P_{\perp}^4)$
- Yes ... provided one allows for strong scattering !
- 2+1 jets: 2 hard $(P_{\perp} \gg Q_s)$ and 1 semi-hard $(k_{3\perp} \sim Q_s)$

$$R \sim \frac{1}{Q_s} \gg r \sim \frac{1}{P_\perp}$$

- Effective gluon-gluon dipole
- Strong scattering: $T_{gg}(R, Y_{\mathbb{P}}) \sim 1$
- Semi-inclusive dijet production
- $\mathcal{O}(\alpha_s)$, but leading-twist

• 3rd jet controls the hard dijet imbalance: $K_{\perp} \equiv |{m k}_1 + {m k}_2| = k_{3\perp} \ll P_{\perp}$

TMD factorisation for diffractive 2+1 jets

• The third jet is relatively soft:
$$k_3^+ = \vartheta_3 q^+$$
 with $\vartheta_3 \sim rac{Q_s^2}{Q^2} \ll 1$

• gluon formation time must be small enough to scatter: $\frac{k_3^+}{k_{a+1}^2} \lesssim \frac{q^+}{Q^2}$

- It can alternatively be seen as a part of the Pomeron wavefunction
 - boost back to target infinite momentum frame & change gauge

• x: energy fraction of the exchanged gluon with respect to the Pomeron

TMD factorisation for diffractive 2+1 jets (2)

- The strong ordering in both k_{\perp} and k^+ is essential for factorisation
- The dipole picture holds in the projectile light cone gauge $A^+ = 0$
 - ${\, \bullet \,}$ right moving partons couple to the A^- component of the target field

- The TMD picture holds in the target light cone gauge $A^- = 0$
 - only the soft gluon couples to the target field: $v^i A^i$ with $v^i = k^i/k^+$

TMD factorisation for diffractive 2+1 jets (3)

 $\frac{\mathrm{d}\sigma_{2+1}^{\gamma_{T,L}^*A\to q\bar{q}gA}}{\mathrm{d}\vartheta_1\mathrm{d}\vartheta_2\mathrm{d}^2\boldsymbol{P}\mathrm{d}^2\boldsymbol{K}\mathrm{d}Y_{\mathbb{P}}} = H_{T,L}(\vartheta_1,\vartheta_2,Q^2,P_{\perp}^2)\,\frac{\mathrm{d}xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2\boldsymbol{K}}$

• The hard factor: $\gamma^* \to q \bar{q}$ decay & the gluon emission

$$H_T = lpha_{
m em} lpha_s \left(\sum e_f^2
ight) artheta_1 artheta_2 (artheta_1^2 + artheta_2^2) \, rac{1}{P_{\perp}^4} \quad {
m when} \, \, Q^2 \ll P_{\perp}^2$$

Low-x 2023, Leros, Greece

Diffractive Jets in γA

TMD factorisation for diffractive 2+1 jets (3)

 $\frac{\mathrm{d}\sigma_{2+1}^{\gamma_{T,L}^*A\to q\bar{q}gA}}{\mathrm{d}\vartheta_1\mathrm{d}\vartheta_2\mathrm{d}^2\boldsymbol{P}\mathrm{d}^2\boldsymbol{K}\mathrm{d}Y_{\mathbb{P}}} = H_{T,L}(\vartheta_1,\vartheta_2,Q^2,P_{\perp}^2)\,\frac{\mathrm{d}xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2\boldsymbol{K}}$

- The unintegrated gluon distribution of the Pomeron: a diffractive TMD
- Implicit in early studies of inclusive diffraction (Hebecker, Golec-Biernat, Wüsthoff, Hautmann, Soper ... 97-01)

Low-x 2023, Leros, Greece

Diffractive Jets in γA

The Pomeron UGD

$$\frac{\mathrm{d}xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^{2})}{\mathrm{d}^{2}\boldsymbol{K}} = \frac{S_{\perp}(N_{c}^{2}-1)}{4\pi^{3}} \underbrace{\Phi_{g}(x,x_{\mathbb{P}},K_{\perp}^{2})}_{\text{occupation number}}$$

• Explicitly computed in terms of the gluon-gluon dipole amplitude $T_{gg}(R, Y_{\mathbb{P}})$

$$\Phi_g(x, x_{\mathbb{P}}, K_{\perp}^2) \simeq (1-x) \begin{cases} 1, & K_{\perp} \lesssim \tilde{Q}_s(x) \\ \\ \frac{\tilde{Q}_s^4(x)}{K_{\perp}^4}, & K_{\perp} \gg \tilde{Q}_s(x) \end{cases}$$

- \bullet Valid for small $x_{\mathbb{P}} \lesssim 10^{-2}$ but any $x \leq 1$
 - effective saturation momentum: $ilde{Q}^2_s(x,Y_{\mathbb{P}}) = (1-x)Q^2_s(Y_{\mathbb{P}})$
- ullet Very fast decrease $\sim 1/K_{\perp}^4$ at large gluon momenta $K_{\perp} \gg \tilde{Q}_s(x)$
- The bulk of the distribution lies at saturation: $K_{\perp} \lesssim \tilde{Q}_s(x)$

Numerical results

(E.I., A.H. Mueller, D.N. Triantafyllopoulos, S.-Y. Wei, arXiv:2207.06268)

- Left: McLerran-Venugopalan model. Right: adding high-energy evolution
- \bullet Pronounced peak at $K_{\perp}\simeq \tilde{Q}_s:$ diffraction is controlled by saturation

• BK evolution of $T_{gg}(R, Y_{\mathbb{P}})$: evolution of $\Phi_{\mathbb{P}}(x, x_{\mathbb{P}}, K_{\perp})$ in $x_{\mathbb{P}}$ and K_{\perp}

• increasing $Q^2_s(Y_{\mathbb{P}})$, but the shape remains the same (geometric scaling)

The gluon diffractive PDF

• By integrating the gluon momentum K_{\perp} : the usual collinear factorisation

 $\frac{\mathrm{d}\sigma_{2+1}^{\gamma A \to q\bar{q}gA}}{\mathrm{d}\vartheta_1\mathrm{d}\vartheta_2\mathrm{d}^2\boldsymbol{P}\mathrm{d}Y_{\mathbb{P}}} = H(\vartheta_1,\vartheta_2,Q^2,P_{\perp}^2)\,xG_{\mathbb{P}}(x,x_{\mathbb{P}},P_{\perp}^2)$

• ... but with an explicit result for the gluon diffractive PDF:

$$xG_{\mathbb{P}}(x,x_{\mathbb{P}},P_{\perp}^2) \equiv \int^{P_{\perp}} \mathrm{d}^2 \boldsymbol{K} \, \frac{\mathrm{d} xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2 \boldsymbol{K}} \propto (1-x)^2 \, Q_s^2(A,Y_{\mathbb{P}})$$

- The integral is rapidly converging and effectively cut off at $K_\perp \sim ilde Q_s(x)$
- The $(1-x)^2$ vanishing at the end point is a hallmark of saturation
- DGLAP evolution with increasing P_{\perp}^2
- Initial condition for DGLAP determined by saturation (MV+BK)

The gluon diffractive PDF: numerical results

• DGLAP: increase for very small $x \le 0.01$, slight decrease for x > 0.05

• When $x \to 1$, the distribution vanishes even faster

Low-x 2023, Leros, Greece

Diffractive Jets in γA

2+1 diffractive dijets in AA UPCs

- Large impact parameter $b > R_A + R_B \implies$ photon-mediated interactions
 - one nucleus acts as a photon emitter, the other one as a hadronic target
- Quasi-real photon: virtuality $Q^2 = (\omega/\gamma)^2$ with $\gamma =$ Lorentz factor

• Energy flux \times Hard factor \times Gluon diffractive TMD

2+1 diffractive dijets in AA UPCs

- Large impact parameter $b > R_A + R_B \implies$ photon-mediated interactions
 - one nucleus acts as a photon emitter, the other one as a hadronic target
- Quasi-real photon: virtuality $Q^2 = (\omega/\gamma)^2$ with $\gamma =$ Lorentz factor

- Coherent diffraction: target nucleus does not break
 - rapidity gaps on both sides: photon gap + diffractive gap
 - how to distinguish the photon emitter from the nuclear target ?

Low-x 2023, Leros, Greece

Diffractive Jets in γA

Diffractive jets in Pb+Pb UPCs at the LHC

Recent measurements: ATLAS-CONF-2022-021 and CMS arXiv:2205.00045

• Several thousands of candidate-events for coherent diffraction

- no just $\gamma\gamma$ scattering: cross-section would be 10 times smaller
- Most likely: 2+1 jets ... but not that easy to experimentally check
 - the experimental set-up is not ideal for observing the 3rd jet

Energy cutoff

- Energy is not that high:
 - LHC: $\sqrt{s_{\scriptscriptstyle NN}} = 2E_N = 5 \,{\rm TeV}$, yet $\sqrt{s_{\scriptscriptstyle \gamma N}} = \sqrt{4\omega_{\rm max}E_N} \simeq 650 {\rm GeV}$
 - upper energy cutoff: $b \sim \frac{1}{Q} > 2R_A \Rightarrow \omega < \frac{\gamma}{2R_A} \equiv \omega_{\max} \simeq 40 \text{ GeV}$

• exponential suppression for $\omega > \omega_{\max}$

$x_{\mathbb{P}}$ is not that small

• Limited energy and relatively hard dijets $P_{\perp} \ge 15 \, {\rm GeV}$

- relatively large $x_{\mathbb{P}}$: $x_{\mathbb{P}} \gtrsim 5 \times 10^{-3}$
- one cannot probe the high energy evolution of the Pomeron

• Not the ideal "small- $x_{\mathbb{P}}$ " set-up! Similar in that sense to the EIC

• Decreasing P_{\perp} would greatly help !

The 3rd jet is not easy to observe

- $K_{\perp} \sim Q_s \sim 1 \div 2 \,\text{GeV}$: not really a jet! could be measured as a hadron
- Large $P_{\perp} \Rightarrow$ large phase-space for DGLAP evolution
 - additional gluons with transverse momenta $Q_s \ll k_\perp \ll P_\perp$

• Large dijet imbalance $Q_T = |\mathbf{k}_1 + \mathbf{k}_2| \sim 10 \text{ GeV} \gg Q_s$ (seen at the LHC)

- consistent with final state radiation (Hatta et al, 2010.10774)
- insensitive to the 3rd jet

How to measure the 3rd jet ?

- Observing the 3rd jet would be extremely useful
 - $\bullet\,$ it propagates towards the nuclear target: lift the A vs. B ambiguity
 - ullet measure the diffractive rapidity gap and thus infer $x_{\mathbb P}$
- E.g.: assume the photon to be a right mover: it was emitted by nucleus B

- Rapidity separation $\Delta \eta_{
 m jet}$: a direct measure of the saturation momentum Q_s
- The 3rd "jet" could have been seen as a hadron by CMS: $|\eta_3| < |\eta_{max}| = 2.4$

How to measure the 3rd jet ?

- Observing the 3rd jet would be extremely useful
 - $\bullet\,$ it propagates towards the nuclear target: lift the A vs. B ambiguity
 - ullet measure the diffractive rapidity gap and thus infer $x_{\mathbb P}$
- E.g.: assume the photon to be a right mover: it was emitted by nucleus B

- Rapidity separation $\Delta \eta_{
 m jet}$: a direct measure of the saturation momentum Q_s
- Yet, CMS measured $P_{\perp} = 30 \text{ GeV}$... so they missed it! (arXiv:2205.00045)

How to measure the 3rd jet ?

- Observing the 3rd jet would be extremely useful
 - $\bullet\,$ it propagates towards the nuclear target: lift the A vs. B ambiguity
 - ullet measure the diffractive rapidity gap and thus infer $x_{\mathbb P}$
- E.g.: assume the photon to be a right mover: it was emitted by nucleus B

- Rapidity separation $\Delta\eta_{
 m jet}$: a direct measure of the saturation momentum Q_s
- The situation would greatly improve by decreasing P_{\perp} (ALICE ?)

Conclusions

- Diffraction in γA (EIC, UPC): the best laboratory to study gluon saturation
- For sufficiently small $x_{\mathbb{P}} \lesssim 10^{-2}$ and/or large $A \sim 200$, diffractive TMDs and PDFs can be computed from first principles
- Due to saturation, diffractive dijets are dominated by (2+1)-jet events
- Experimentally observing the semi-hard, 3rd, jet appears to be tough, but it would be highly beneficial
 - distinguish the photon emitter from the target nucleus
 - confirm the overall physical picture and its predictions
- Measure dijets (or dihadrons) with lower $P_{\perp} \leq 10 \, \text{GeV}$
- Use hadronic detectors at larger rapidities

2+1 jets with a hard gluon

• The third (semi-hard) jet can also be a quark: same-order

• TMD factorisation: quark unintegrated distribution of the Pomeron

