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@ Diffractive dijet production in photon-nucleus interactions at high energy:
a golden channel to study saturation
o electron-nucleus DIS at the future EIC (LHeC ?7)
e nucleus-nucleus UPCs at the LHC

@ Why diffraction ?
o elastic scattering = controlled by strong scattering (“black disk limit")
e particularly sensitive to high parton densities/gluon saturation
@ Diffractive jets: a unique example of a hard process (P, > Qs ~ 1 GeV)
which is controlled by the physics of saturation
e hard processes are easy to measure
e a priori, well described by the collinear factorisation
e saturation hidden in the diffractive PDFs (“non-perturbative™)
@ The CGC allows one to compute diffractive dijets from first principles

o collinear (actually, TMD) factorisation emerges from the CGC
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Dipole picture for DIS at high energy

@ Small Bjorken z,,, = 2?—_213 < 1: convenient to work in the dipole frame

o Lorentz boost to a frame where the dipole is energetic: large g™
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o the virtual photon fluctuates into a ¢g pair long before the scattering
e the ¢gq color dipole acts as a probe of the gluon distribution

e the dipole transverse size r is preserved by the scattering
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Dipole factorisation for inclusive DIS

@ Photon wavefunction (y* — ¢q) times dipole scattering (known to NLO)
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@ Dipole amplitude T4 (r, z): solution to BK/JIMWLK equations (to NLO)
r?Q%(A,x) for Qs < 1 (color transparency)

Ty(r,z) ~
1 for rQs 2 1 (black disk/saturation)

~

@ Saturation momentum: Q%(A,z) ~ AY/3/2*s with A\, ~ 0.3
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Inclusive DIS in the dipole picture

; gt A
¢ (1-d)g*

1
2
07*A<Q27 33) = /dgr/ dv ‘\Ij'y*ﬁqu(rv 2 Q2)| O—dipole(ra A7 T)
0 ~—
27 R% Ta(r.x)
@ Dipole size limited by virtuality: 72 < 1/Q? with Q% = 9(1 — 9)Q?
@ To probe saturation, one needs r > 1/Q., hence Q* < 2

@ A priori, two interesting situations:
e symmetric jets 1 ~ 1/2, but semi-hard photon: Q% ~ Q?

e hard photon Q2 >> 2, but asymmetric jets (“aligned”): ¥(1 —9) < 1
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Inclusive DIS in the dipole picture
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@ Excellent fits to ep data (F, Fr, Fy.) at HERA: 2 < 1072, Q% < 50 GeV?
@ However, inclusive DIS probes (quasi)symmetric ¢G configurations

= gluon saturation probed only for low Q% ~ Q% < 1 GeV?
e limited region in phase-space, non-perturbative contamination ®

@ Can one measure saturation directly at high Q% ?
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Diffraction: Fip

@ Elastic scattering/diffraction is more sensitive to strong scattering

Oel OX |T|2 = opor < 2ImT

@ Colourless exchange: 2-gluon ladder, (BFKL) Pomeron, rapidity gap Yp
@ Fyp controlled by the black disk limit (7" ~ 1) even when Q% > Q?
e asymmetric ¢q pairs, ¥(1 — ¥) < 1, with large size r ~ 1/Q;

e would be non-perturbative,  ~ 1/A, in absence of saturation
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One vs two Pomerons... at HERA

@ Naively (2-gluon exchange): oqig rises with % or with A like two Pomerons

2 A2/3 AL/3
2 212 212
T ~ (r QS(A,x)> X o Vs. T ~ r*Q5(A,x) x v
ZEUS
LR gy @ But it doesn't! Diffraction is controlled
QP_ 0.06 - —— Satur. Mod. with evol MX<3GeV b T ~ 1 or T' ~ 1
§b 0.08 ; i s ‘ Y ' /Qs
o2 e @ Almost the same scaling as gyy:
ol JR A
0.06 % T ; :<MX<7;G=V el N 1
ooaf 0 1 0 b Otot In (QQ/QE)
0.02 !
0 (I @ Weak z-dependence confirmed by HERA
0.06 7.5<My<15GeV
oo * (Bartels, Golec-Biernat, Kowalski, 2002)
04 s .
R
0.2 —— @ Would be interesting to also check the
040 6‘0 80 1!;0 11"0 140 1;0 1;0 2&0 2&0 A_dependence at the EIC

W(GeV)

Diffractive Jets in vA Edmond lancu 7/24



Exclusive dijets is higher twist

@ What would be a jet measurement analogous to Fop ?
@ Elastic scattering can also produce exclusive dijets:

e a qq pair which is hard: k1| ~ ko) = Py > Qs & symmetric: ¢ ~ 1/2
@ ... but these are rare events ( “higher twist"), insensitive to saturation:

o 0o ~ |Tyq(r,Yp)|? with r ~ 1/P;

e P > Q,(Yp): small dipole = weak scattering

W ) W o rapidity gap Yp = In i

A gA
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Py Q? = Qi(A7 YlP’) ~ Al/S eO.3Yp
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Diffractive 241 jets

(E.l, A.H. Mueller, D.N. Triantafyllopoulos, Phys.Rev.Lett. 128 (2022) 20)
@ Can one have diffractive dijets at leading twist ? (~ 1/P1)
@ Yes ... provided one allows for strong scattering !

@ 2+1 jets: 2 hard (P > Q) and 1 semi-hard (ks ~ Q)

Iy by =Py
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ko~ D) R~ — > r~ —
Qs PJ_

K~ Qu(Y?) o Effective gluon-gluon dipole
@ Strong scattering: T,,(R.Yp) ~ 1
Yomlu
xp

@ Semi-inclusive dijet production

@ O(ay), but leading-twist

@ 3rd jet controls the hard dijet imbalance: K| = |ky + ko| = k3 < Py
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TMD factorisation for diffractive 241 jets

2
@ The third jet is relatively soft: ki = ¥3¢" with 05 ~ 82 <1
e gluon formation time must be small enough to scatter: -
3
@ It can alternatively be seen as a part of the Pomeron wavefunction

e boost back to target infinite momentum frame & change gauge
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@ x: energy fraction of the exchanged gluon with respect to the Pomeron
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TMD factorisation for diffractive 2+1 jets (2)

@ The strong ordering in both k| and k™ is essential for factorisation
@ The dipole picture holds in the projectile light cone gauge AT =0

e right moving partons couple to the A~ component of the target field
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@ The TMD picture holds in the target light cone gauge A= =0

e only the soft gluon couples to the target field: v’ A? with v¢ = k?/k+
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TMD factorisation for diffractive 2+1 jets (3)
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@ The hard factor: v* — ¢q decay & the gluon emission

1
Hy = omcrs (Z e?) 9195(92 + 93) pr when Q2 < P?
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TMD factorisation for diffractive 2+1 jets (3)
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@ The unintegrated gluon distribution of the Pomeron: a diffractive TMD

@ Implicit in early studies of inclusive diffraction
(Hebecker, Golec-Biernat, Wiisthoff, Hautmann, Soper ... 97-01)
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The Pomeron UGD

K? NZ—1
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occupation number

@ Explicitly computed in terms of the gluon-gluon dipole amplitude T, (R, Y»)

L, KLS QS($>
(I)g(l‘,l‘p,Ki) = (1 - $) Q4($)
Ki

9 KL>> QS(I)
@ Valid for small zp <1072 but any z < 1
o effective saturation momentum: Q2?(x,Yp) = (1 — 2)Q?(Ys)

@ Very fast decrease ~ 1/K7 at large gluon momenta K | > Qs(z)

@ The bulk of the distribution lies at saturation: K| < Q. ()
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Numerical results

(E.l., A.H. Mueller, D.N. Triantafyllopoulos, S.-Y. Wei, arXiv:2207.06268)
@ Left: McLerran-Venugopalan model. Right: adding high-energy evolution
@ Pronounced peak at K| ~ Q,: diffraction is controlled by saturation
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@ BK evolution of Ty, (R, Yp): evolution of ®p(x,xp, K1) in zp and K|

e increasing Q?(Yz), but the shape remains the same (geometric scaling)
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The gluon diffractive PDF

@ By integrating the gluon momentum K : the usual collinear factorisation

YA—=qqgA
doyiy

P —— ) 2 P2 P2
A9, d0,d2PdYp (01,92,Q%, P}) xGp(z, xp, P7)

@ ... but with an explicit result for the gluon diffractive PDF:

dLL‘G[p(CE,Z’]p,Ki)
2K

P
zGp(x, zp, P?) z/ ’K x (1 —2)Q*(A,Yp)

The integral is rapidly converging and effectively cut off at K| ~ QS(I)
@ The (1 — z)? vanishing at the end point is a hallmark of saturation
@ DGLAP evolution with increasing Pf_

@ Initial condition for DGLAP determined by saturation (MV+BK)
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The gluon diffractive PDF: numerical results
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@ DGLAP: increase for very small x < 0.01, slight decrease for = > 0.05

@ When x — 1, the distribution vanishes even faster
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2+1 diffractive dijets in AA UPCs

@ Large impact parameter b > R4 + Rp = photon-mediated interactions

e one nucleus acts as a photon emitter, the other one as a hadronic target
@ Quasi-real photon: virtuality Q% = (w/7)? with v = Lorentz factor
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@ Energy flux x Hard factor x Gluon diffractive TMD
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2+1 diffractive dijets in AA UPCs

@ Large impact parameter b > R4 + Rp = photon-mediated interactions
@ one nucleus acts as a photon emitter, the other one as a hadronic target
@ Quasi-real photon: virtuality Q% = (w/7)? with v = Lorentz factor

B

< Z,

b>R+R,

@ Coherent diffraction: target nucleus does not break
e rapidity gaps on both sides: photon gap + diffractive gap

e how to distinguish the photon emitter from the nuclear target ?
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Diffractive jets in Pb+Pb UPCs at the LHC

@ Recent measurements: ATLAS-CONF-2022-021 and CMS arXiv:2205.00045

PbPb 0.38 nb* (5.02 TeV)
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@ Several thousands of candidate-events for coherent diffraction
@ no just 77y scattering: cross-section would be 10 times smaller
@ Most likely: 241 jets ... but not that easy to experimentally check

o the experimental set-up is not ideal for observing the 3rd jet
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Energy cutoff

@ Energy is not that high:

o LHC: \/syn =2EN =5TeV, yet /5.y = Vdwmax En =~ 650GeV

e upper energy cutoff: b ~ é >2R4 > w< ﬁ = Whax =~ 40 GeV

e exponential suppression for w > wWmax
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xp is not that small

@ Limited energy and relatively hard dijets 7} > 15 GeV
o relatively large zp: xp > 5 x 1073

@ one cannot probe the high energy evolution of the Pomeron
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@ Not the ideal “small-zp" set-up! Similar in that sense to the EIC

@ Decreasing P, would greatly help !
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The 3rd jet is not easy to observe

0 K| ~Qs~1-+2GeV: not really a jet! could be measured as a hadron

@ Large P, = large phase-space for DGLAP evolution

e additional gluons with transverse momenta Qs < k; < P

PbPb 0.38 nb* (5.02 TeV)
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@ Large dijet imbalance Q1 = |k + ka| ~ 10 GeV > Q) (seen at the LHC)
e consistent with final state radiation (Hatta et al, 2010.10774)

e insensitive to the 3rd jet
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How to measure the 3rd jet ?

@ Observing the 3rd jet would be extremely useful

e it propagates towards the nuclear target: lift the A vs. B ambiguity

e measure the diffractive rapidity gap and thus infer ap

@ E.g.: assume the photon to be a right mover: it was emitted by nucleus B

2P,

Anjer 2 In ~ 23

S
@ large w = 40GeV, P, = 15GeV

2O M= 1, Anjct = 27, Ip =~ 0.004

A(target) B (photon)

@ Rapidity separation Anje: a direct measure of the saturation momentum Q)

@ The 3rd “jet” could have been seen as a hadron by CMS: |n3| < |Nmax| = 2.4
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How to measure the 3rd jet ?

@ Observing the 3rd jet would be extremely useful

e it propagates towards the nuclear target: lift the A vs. B ambiguity

e measure the diffractive rapidity gap and thus infer ap

@ E.g.: assume the photon to be a right mover: it was emitted by nucleus B

2P
Ajet 2 an—J' ~ 23

S

u=2d @ large w = 40GeV, larger P, = 30GeV

T 0 o~ 0.3, Anje = 3.4, zp~0.02

B (photon)

@ Rapidity separation Anje: a direct measure of the saturation momentum Q)

@ Yet, CMS measured P = 30 GeV... so they missed it! (arXiv:2205.00045)
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How to measure the 3rd jet ?

@ Observing the 3rd jet would be extremely useful

e it propagates towards the nuclear target: lift the A vs. B ambiguity

e measure the diffractive rapidity gap and thus infer xp

@ E.g.: assume the photon to be a right mover: it was emitted by nucleus B

.

w=40GeV

2P,

S

~ 2+3

Anjet 2 In

@ large w = 40GeV, lower P, = 10GeV

A(target) B(photon) ° M2 = 147 A’,]jet = 237 Tp =~ 0.002

@ Rapidity separation Anje: a direct measure of the saturation momentum ()

@ The situation would greatly improve by decreasing P, (ALICE ?)
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Conclusions

o Diffraction in yA (EIC, UPC): the best laboratory to study gluon saturation

@ For sufficiently small zp < 1072 and/or large A ~ 200, diffractive TMDs
and PDFs can be computed from first principles

@ Due to saturation, diffractive dijets are dominated by (2+41)—jet events

@ Experimentally observing the semi-hard, 3rd, jet appears to be tough, but it
would be highly beneficial

e distinguish the photon emitter from the target nucleus

e confirm the overall physical picture and its predictions

@ Measure dijets (or dihadrons) with lower P; < 10 GeV

Use hadronic detectors at larger rapidities
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241 jets with a hard gluon

@ The third (semi-hard) jet can also be a quark: same-order
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@ TMD factorisation: quark unintegrated distribution of the Pomeron
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