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• Mueller-Tang jet process [arXiv:2304.09073]

• Balitsky, Fadin, Kuraev, Lipatov (BFKL) resummation

• Mueller-Tang at the LHC: experiment setup

• NLO impact factor(IF) and Factorization-Breaking

• NLO MT phenomenology



Introduction

Mueller-Tang process: LL approx.

Probing the High-Energy limit of pQCD at hadron colliders [Mueller, Tang ’87]

Goal: probing the BFKL Pomeron at finite mom. transferred t

Exclusive dijets: p1 + p2 → j1 + j2 + gap

1) large rapidity separation: Yj � 1
2) no activity in between: Ygap ∼ Yj

Valid only in first approximation and differs from experiment set up

Jet

Jet

h

h

fg/f

fg/f





gap

• 2→ 2 elastic scattering ⇔ back-to-back jets
(in transverse plane)

• Large (pseudo)-rapidity ⇔ very small scatter-
ing angles

• Y � 1 ⇔ Need for BFKL resumm
Y � 1→ αs log(ŝ/t) ∼ 1

• Ygap � 1⇔ favors color-singlet exchange
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Introduction Theory

Mueller-Tang jets: LO to LLA

• Lowest-Order Approx.: Box+Crossed diagrams projected onto
color-singlet rep.∏ab,a′b′ = δabδa′b′

/(
N2

c − 1
)

• Leading-Log Approx: Nth-order ladder diagrams not suppressed
since (αs log sk2)n ∼ (αsY )n ∼ 1

• BFKL Resummation → Gluon-Green’s function (GGF)

G

k1 k1′

k2 k2′

= + · · ·+

• LL factorized cross-section: σ ∼ GGF2 ⊗ IF (IF=Imp. Fact.)

dσ̂

dYdk2
=

∫
d

2
`1`
′
1Φ2(`1, `

′
1)G2(`1, `2, k

2
, Y )×

{
`→`′

1→2

}
= Φ2G2(k, Y )

• GGF is universal (process independent)

• GGF is color-singlet

• IF is process dependent

• IF trivial (c-numbers) at LL Radiative corrections affect GGF and IF

G∗G

Imp. Fact.
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Experimental inquiries Color singlet excess

CMS analyses

7 TeV [EPJC 78,242 (2018)]
Charged-particle multiplicity in the gap region

• PYTHIA MC v.s HERWIG MC predictions v.s data.

• HERWIG 6: include contributions from color singlet ex-
change (CSE), based on BFKL at LL.

• PYTHIA 6: inclusive dijets, no-BFKL.

• HERWIG seems to reproduce the excess in zero-th bin
↔ no particle in gap region

Sensitive to BFKL?

13 TeV[C.Baldenegro:arxiv:2102.06945]
fCSE ≡ color-singlet

/
jet-gap-jet ratio of -events
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• RMK model (HERWIG) [C.Royon et al. PRD83.034036] based on
BFKL NLL + LO IFs, gap and survival probability |S|2 = 0.1

- unsatisfactory agreement with unexpected rise in Y ≡ ∆ηjj .
- Better agreement for fCSE vs pTJ .

• EEIM [] based on RMK + soft gap contamination
- Better agreement then RMK

• Puzzling event excess in decorrelation limit ∆φjj → 0:
tentative explanation from factorization violating terms?
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Observable Definition

MT at NLO

ϕ

y−1 +1

−4.7<yjet <−1.4 +1.4<yjet <+4.7

gap

jet jet
Semi-inclusive dijets: pa + pb → j1 + X + gap + X + j2

• Central rapidity −1 < Ygap < 1 gap: no charged particles and no photons or
neutral hadrons above energy threshold pt > Eth = 0.2 GeV.

• Tag the 2 hardest jets with pjet
j > 40 GeV and |ηjet | > 1.5

• Jet radius Rjet = 0.4 and anti-kt jet algorithm.

Cross-section structure: IF⊗GGF⊗GGF ∗⊗IF
dσ̂

dJ1dJ2d2k
=

∫
d

2
`1,2d

2
`
′

1,2Φ(`1,2, k; J1)G(`1, `
′
1, k,Y )G(`2, `

′
2, k,Y )Φ(`′1,2, k; J2)

• Highly dimensional numerical integrations

• GGF at NLL in full form: not averaged over reggeon momenta
∝ Gauss-Hypergeometric func. and require ad-hoc implementation
Numerical precision degrades exponentially for large conformal spins
Brute-force solution: use hundreds of precision digits
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NLO Impact Factors:

• Virtual corrections[Fadin et al.:hep-ph/9908265]: BFKL scale s0 de-
pendent

• Real corrections[Hentchinski et al.:arxiv1406.5625]: 2→ 3 topology

• Interaction is not elastic

BFKL factorization
violated?
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Theory Violation of BFKL factorization

Can MT at NL fit into BFKL framework?

Is BFKL factorization valid at NLO?
Structure of real emission and 1-loop corrections to singlet box+crossed:

• IR singularity must cancel (except the collinear corrections to the PDFs)

• All log s(or Y ) factors must reproduce GGF kernel No log s in IF!

NLO IF from [Hentchinski et al. ]
D. Colferai and I checked these results using

standard Feynman diagram techniques
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z as z → 0Jet
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Φlog ∝
∫
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2~k

∫ 1

0

dz

z

•• Central emission incurs in no dynamical suppression

• However, gap requirement reduces the size of the violating term

• Formally factorization is violated but small violation in practice
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Theory Violation of BFKL factorization

Factorization Breaking
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Results

Results
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Results Central values

CMS setup

We follow CMS setup:

• √s = 14 TeV

• pj > 40 GeV

• 2.8 < Y < 9.2

• −1 < ygap < 1→ Ygap = 2

• Eth = 1 GeV

ϕ

y−1 +1

−4.7<yjet <−1.4 +1.4<yjet <+4.7

gap

jet jet
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Results Central values

Results

Comparing: tot. cross section σYj12
integr. over rapidity

bins

• LL(LL GGF x LO IF)

• NLL(NLL GGF x LO IFs)

• FULL (NLL GGF x LO IF + LL GGF x NLO IF)

• NLO IF corrections are large and negative
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Results Theoretical Uncert.

Natural vs Minimal Sensitivity renorm. scale

Th. Uncert.: squared sum of ∆σ variations when {s0, µR , µF} ∗ 2, /2
“Natural” scale µR = pj1 + pj2 ⇔ Minimal sensitivity scale µR = 4×(pj1 + pj2 )
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• FULL @ Nat µR significantly smaller then LL

• FULL @ MS: µR compatible with LL

• FULL @ MS: NLO corrections reduce sensitivity to scale variation
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Results Observable Sensitivity

σYj12
: sensitivity to gap threshold

FULL v.s. ∝ log(s) violating term: total cross-section as function of jet rapidity separation
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• log
/
FULL∼ 10%− 20%: small violation

• log term more sensible to gap size:
gluon emission in log term tend to be more central then the rest

• Minimal sensitivity to Eth for both log and FULL:
threshold applied only on central gap region
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Results Observable Sensitivity

σYj12
: sensitivity to gap size

FULL v.s. ∝ log(s) violating term: total cross-section as function of jet rapidity separation
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• log
/
FULL∼ 10%− 20%: small violation

• Violation increases at large Y:
unsuppressed region Y − Ygap grows with Y

• log term more sensible to gap size:
gluon emission in log term tend to be more central then the rest
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Results Observable Sensitivity

σ∆φj12
: sensitivity to gap threshold

FULL v.s. ∝ log(s) violating term: total cross-section as function of jet azimuthal angle
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• Azymuthal spread only due to NLO IFs: Recall that ∆φ = π for LL and NLL contrib.

• Strongly peaked on back-to-back configuration

• Minimal sensitivity to energy threshold

• Violation is small in most events

• Violating term becomes dominant at intermediate to small angles:
log term is eager to emit gluons at large angles
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Results Observable Sensitivity

σ∆φj12
: sensitivity to gap threshold

FULL v.s. ∝ log(s) violating term: total cross-section as function of jet azimuthal angle
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• Azymuthal spread only due to NLO IFs: Recall that ∆φ = π for LL and NLL contrib.

• Strongly peaked on back-to-back configuration

• Sensitivity to gap size increases towards small angles

• Stronger sensitivity in log term then FULL
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Results Observable Sensitivity

Dynamic vs Central gap

Dynamic gap extends between the whole rapidity range between jets Except for a buffer y0 ∼ 0.4 to not interfere with jet Ygap ∝ Yj

Central gap
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• log
/

FULL drops at large Y

• Violation stays small

• More sensible to threshold
but could be reduced enlarging the “buffer” zone
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Results Observable Sensitivity

Dynamic vs Central gap

Central gap
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• Violation is small also at small angles

• Effectively no violation with dynamic gap
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Results Competing process

MN with soft minijets

“Background”: Mueller-Navelet emission with transverse energy below threshold:
MNth v.s. MT both at LL
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• ratio MNth/MT > 20%

• strongly suppressed at large Ys
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Results Competing process

Tentative explanation of flattening towards small angles?

We envision that a more accurate description of uncor-
related ∆φj12

. π/2 dijet events would require an addi-
tional resummation of log(s) factors in IFs

(c)

l2l1 l1 l2

l’1 l’2 l’1

(a) (b)

That would likely increase the number of events with
highly uncorrelated jets which may explain the observed
puzzling flattening of the cross section towards small az-
imuthal angles.
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Actually, there are other leading diagrams with log(s)
enhancement that have not been considered but can fit
into the gap definition.
Since the gap is central and no constraint is imposed on
its forward and backward sides we could envision a hybrid
process:
Mueller-Navelet → Mueller-Tang → Mueller-Navelet
type of emission.
That could be estimated by a Pomeron loop diagram in
the optical limit t → 0.

FD, CR (KansasUni) QCD at high energy 7/9/23 19 / 34



Conclusions

Conclusions and outlook

• Complete numerical implementation of MT jets at LHC in NLLA with collinear resummation of BFKL
kernel; cross section slightly lower and steeper than in LLA

• BFKL factorization formally violated at NLLA

• In practice, violation is small and factorization formula holds (approximately) at LHC energies

• Good stability w.r.t. gap/threshold parameters

• Better description expected with proper renorm scale fixing ( ' 4 times larger than natural scale)

• Need MC implementation to compare to data

• Improvements could include hadronization, resummation of log s term in IFs, inclusion of gap survival
probability and BLM (or others) renorm-scale fixing

• Perhaps with central gap the main contribution come from “cut” Pomeron-loop

FD, CR (KansasUni) QCD at high energy 7/9/23 20 / 34
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Backup

Backup
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BFKL approach

High energy limit of QCD

QCD in the high energy limit shows qualitative new behaviors:
Loop or phase space integrations in scattering amplitudes with precise color structure give rise to log(ŝ/t) ∼ Y coefficients

σ ∼ A log s/t + B + C(s/t)−1 . . .

• (8) ∈ t

α2
s

s

α3
s log s/t

real

α4
s log s/t

virt.

α4
s log

2 s/t

real

• (1) ∈
α4
s α5

s log s/t α5
s

Octet dominates (α2
s � α4

s ) but radiates everywhere. Clearly, α4
s log s > α4

s and αn
s log s > αn

s ; what about α2
s log s > α1

s ?

• New hierarchy Balitsky-Fadin-Kuraev-Lipatov

kn

k1

k2

LL Gluon-ladder diagrams

Effective expansion parameter becomes αs log s/t

Radiative corrections of
order n to the partonic
cross sections

dσ̂ ' α
n
s logn

(
s

−t

)
σ

(0)

︸ ︷︷ ︸
Leading Log approx.(LL)

+ α
n
s logn−1

(
s

−t

)
σ

(1)

︸ ︷︷ ︸
Next-to-Leading Log (NLL)

+ . . .
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BFKL approach

BFKL equation

Recursive integral equation in the form of a Green function equation called BFKL equation.
The ladder diagrams are resummed to all order by iterating the Gluon Green function G .

G(k, k′) = δ2(k− k′) +

∫
d2`K(k, `)G(`, k′)

G is universal (process independent)

= +

k

k′

q− k

q− k′

k q− k

︸ ︷︷ ︸

δ(k−k′)

G

G

G

G

G(k, k′, q,Y ) =

+i∞∫
−i∞

dω

2πi
eYω

∑
n∈Z

1
2

+i∞∫
1
2
−i∞

dγ

2π i

Eγ,n(k)E∗γ,n(k ′)

ω − ᾱsχ(γ, n)
eYω =

(
sx1x2

−t

)ω

En,ν ∝

 2F1

(
a(n, ν), b(n, ν), c, z(k, k′, q)

)
, non-forward, Gauss hypergeometric func.

|k|−
1
2

+iνe inθ, forward limit q → 0.
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BFKL approach Theoretical picture

NLO impact factors

Several non trivial modifications to the theoretical description needed to accommodate the NLO corrections to
the impact factors (IF).

→
G G G G

NLO impact factors have yet to be implemented for
phenomenology studies to complete the NLO calcu-
lation (BFKL@NLL + impact factors@NLO).
Efforts by D. Colferai, F. Deganutti, C. Royon, T.
Raben on this direction (private communication),
and by U. of Munster coll. (M. Klasen, J. Salomon,
P. Gonzlez, M. Kampshoff).

Non-factorizable. NLO impact factors connect the Gluon Green functions over the “cut”

dσ̂

dJ1dJ2d2q
=|A(Y , q)|2 ⇔ Va(k1, k2, J1, q)⊗ G(k1, k

′
1, q,Y )⊗ G(k2, k

′
2, q,Y )⊗ Vb(k′1, k

′
2, J2, q),

A(Y , q) ∼ Va(q)Vb(q)

∫
d2kd2k′G(k, k′, q,Y ) ⇔ Ḡ

(
Y , q,

k

k′

)
∝

n even∑
n

∫
dν

[ k∗ h̄−2

k′h−2 2F1

(
k

k′

)
2F1

(
k′∗

k∗

)
+{1↔ 2}

]
.

• From squared amplitude to multiple convolution between the the jet vertices and the GGFs.

• LO vertices are c-numbers and can be factorized out of the convolution.

• Average of GGF over the reggeon momenta is remarkably simple.

A(Y , q) ∼ A(Y , q = 0)
4

q2

(
2F1 for large conf. spins using ball-arithmetic c-library https://arblib.org

)
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BFKL approach Theoretical picture

Previous fits and analysis

Fraction of jet-gap-jet events vs inclusive dijets measured by D0 Coll. [Phys.Lett. B440 189 (1998)] well reproduced by BFKL
estimates. NLL order correction are necessary

[O. Kepka, C. Marquet, C. Royon Phys.Rev. D83.034036 (2011)]

• Ratio R = NLL∗BFKL
NLOQCD of jet-gap-jet events to inclu-

sive dijet events as a function of pt .

• NLL∗ ∼ NLL (forward) Green Func. + collinear
improvement. No NLO Imp. Factors

• Normalization fixed by gap survival probability
|S|2 = 0.1.

[R. Enberg, G. Ingelman, L. Motyka Phys.Lett.B524,273 (2002)]

• NLL∗ BFKL predictions + soft rescattering cor-
rections (EIM models) describe many features of
the data (not so good for other observables).

• Different implementations of underlying event:

Gap survival probability (S),

Multiple interactions (MI),

Soft colour interactions (SCI).

FD, CR (KansasUni) QCD at high energy 7/9/23 25 / 34



Calculation strategy

non-forward Gluon Green Function

The decision to keep just the pure NL contribution brings some simplification

dσ̂

dJ1dJ2d2q
=

∫
d2k1d

2k2V
NLO (k1, k2, q; J1)×∫

d2k′1G(k1, k
′

1, q,Y )︸ ︷︷ ︸
G(k1,q,Y )

∫
d2k′2G(k2, k

′
2, q,Y )︸ ︷︷ ︸

G(k2,q,Y )

V LO (J2, q)

V NLO

GLL GLL

q− k1 q− k2
k1 k2

Ḡ(x1x2, q,∆θ,
k

k′
) ∝

m even∑
m

∫
dν

[
k∗ h̄−2k′h−2

2F1

(
1−h, 2−h, 2;− k

k′

)
2F1

(
1−h̄, 2−h̄, 2;−k

′∗

k∗

)
+ {1↔2}

]
.

• Integrand is highly oscillatory and slowly falling with ν. h = 1+n
2 + iν

• Fast and reliable evaluation of 2F1(a, b, c; z) and for large Im(a, b) notoriously difficult.

• To avoid numerical cancellations for large conformal spin even quadruple precision not
enough.
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Calculation strategy

Numerical analysis

The decision to keep just the pure NL contribution brings some simplification

dσ̂

dJ1dJ2d2q
=

∫
d2k1d

2k2V
1(k1, k2, q; J1)×∫

d2k′1G(k1, k
′

1, q,Y )︸ ︷︷ ︸
G(k1,q,Y )

∫
d2k′2G(k2, k

′
2, q,Y )︸ ︷︷ ︸

G(k2,q,Y )

V 0(J2, q)

V NLO

GLL GLL

q− k1 q− k2
k1 k2

• Large increase in computation time due to the high-dimensional multiple integration.

The full form of the eigenfunction in momentum space is known [Bartels, Braun, Colferai, Vacca].

• The momentum dependence of the eigenfunction is expressed through hypergeometric functions in a region
of parameter very sensible to numerical fluctuations. 2F1(a, b; c, z), a− b ∈ Z−
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Calculation strategy

Numerical analysis

• Calculation of the partonic cross section.
(1) Ḡ as a grid of its parameters {ki , qj , θl ,Ym}. It involves a numerical
integration over ν and a sum over n for each set of the parameters.
(2) Partonic cross section as the interpolation of Ḡ grids and the NLO
vertex. qj

Yl

qj+1

Yl+1
σ̂(kJ1

,kJ2
,θJ1,J2

,Y )

dkJdY
∝
∑

V (k1i , k2j , θ1n , θ2m , J)Ḡ(k1i , qr , θ1n ,Yl)Ḡ(k2j , qr , θ2m ,Yl)

• Dressing of the initial state and final state hadronization by Herwig

(1) Proton-proton scattering dσpp→JGJ

dx1dx2dq
∝
∑

a,b fa(x1, kJ1 )fb(x2, kJ2 )σ̂(kJ1 , kJ2 , θJ1,J2 ,Y )

(2) Fitting of the cross section and its substitution by a sum of analytic functions of the fitting parameters.
(3) Hadronization from the proto-jet to the detector with a matching procedure to remove the double
counted diagrams. The error avoided by this subtraction is predicted to be of NL order.
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Calculation strategy

BFKL

Balitsky, Fadin, Kuraev, Lipatov (BFKL) were the first to consider the Regge limit of QCD.
The large logs come from the integration over the longitudinal momentum fraction bounded by the outermost
partons.
Sudakov parametrization ki = zip

+ + z̄ip
− + k, p+ = pa√

2
, p− = pb√

2

pa p1

pb p2
k2

k1
p3

On shell conditions → (k1, k2, z1), z̄1 = k1/s, z̄2 = q/z1s.
Positive energies E > 0→ 1 > z1 > z2 > 0.∫

dΠ3 ∝
∫ 1

z2

dz1

z1

∫
dz2δ(z2 − k2/s) = log(

s

s0
)

Changing s0 leaves the LL unaltered.

The amplitude is independent from the longitudinal fractions:

• Eikonal approximation −ig ū(pa − k1)γµu(pa) ' −2igpµa .
• k1 → z1p

+ + k2, k1 → z̄2p
− + k2 → k2

1 = (z1p
+, 0, k1)2 → 1

k2
1
' − 1

k2
1
.

For s � t the predominant contribution comes from the strongly ordered region
1� z1 � z2 � 0→ y1 � y3 � y2. yi = log( zi

√
s

|ki |
).
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Mueller-Tang jets at LL

LL approximation: LO vertex

G

q− k′

q− k

k

k′

= + . . .+

︸ ︷︷ ︸
G(0)(k,q)

k q− k

At LL accuracy the Gluon green function
G resumms to all orders of perturbation
theory the ladder diagrams composed
by s-channel gluons connected to t-channel
reggeizzed gluons through the Lipatov vertex.
The normalization of the Gluon
Green function fixes the jet vertex leading order.

lim
Y→0

G(k, k′, q,Y ) = G(k, k′, q, 0) =
δ2(k− k′)

k2(q− k)2
.

At this order, apart for the jet distribution function S that fixes the jet momentum, the jet vertex is a simple
color factors (c-number)

Va(x , q, xJ , kJ) = S0
J (x , q; xJ , kJ)h0

a ,

h0
a = C 2

q/g
α2
s

N2
c − 1

, S
(0)
J = xδ2(kJ − q)δ(xJ − x).

The independence of the LO vertices from the reggeon momenta allow for considerable simplification.

FD, CR (KansasUni) QCD at high energy 7/9/23 30 / 34



Mueller-Tang jets at LL

details of NLO impact factor

Details of NLO impact factor

dV̂ (1)(x, k, l1, l2; xJ , kJ ; MX,max, s0)

dJ
=

= v(0)
q

αs

2π

[
S

(2)
J

(k, x) ·
[
−
β0

4

ln

 l21

µ2

 + ln

 (l1 − k)2

µ2

 + {1 ↔ 2}

 − 20

3

 − 8Cf

+
Ca

2

[{ 3

2k2

l
2
1 ln

 (l1 − k)2

l2
1

 + (l1 − k)2 ln

 l21

(l1 − k)2

 − 4|l1||l1 − k|φ1 sinφ1


−

3

2

ln

 l21

k2

 + ln

 (l1 − k)2

k2

 − ln

 l21

k2

 ln

 (l1 − k)2

s0

− ln

 (l1 − k)2

k2

 ln

 l21

s0

 − 2φ2
1 + {1 ↔ 2}

}
+ 2π2 +

14

3

]]

+

∫ 1

z0

dz

 ln
λ2

µ2
F

S
(2)
J

(k, zx)

[
Pqq (z) +

C2
a

C2
f

Pgq (z)

]
+

(1 − z)

1 −
2

z

C2
a

C2
f

 + 2(1 + z2)

(
ln(1 − z)

1 − z

)
+

 S
(2)
J

(k, zx) + 4S
(2)
J

(k, x)


+

∫ 1

0
dz

∫ d2q

π

[
Pqq (z)Θ

M̂2
X,max −

(p − zk)2

z(1 − z)

Θ

( |q|
1 − z

− λ
)

×
k2

q2(p − zk)2
S

(3)
J

(p, q, (1 − z)x, x)+Θ

M̂2
X,max −

∆2

z(1 − z)

 S
(3)
J

(p, q, zx, x)Pgq (z)

×

 Ca

Cf

[J1(q, k, l1, z) + J1(q, k, l2, z)] +
C2
a

C2
f

J2(q, k, l1, l2)Θ(p2 − λ2)


]]
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Mueller-Tang jets at LL

NLO impact factors

In general the cross section for these processes is given as a multiple convolution between the the jet vertices and the GGFs.

dσ̂

dJ1dJ2d2q
=

∫
d2k1d

2k′1d
2k2d

2k′2Va(k1, k2,J1, q)×

G(k1, k
′

1, q,Y )G(k2, k
′

2, q,Y )Vb(k′1, k
′

2,J2, q), J = {kJ , xJ }.
Jet Functions for NLO impact factor

J1(q, k, l, z) =
1

2

k2

(q − k)2

 (1 − z)2

(q − zk)2
−

1

q2

 − 1

4

1

(q − l)2

 (l − z · k)2

(q − zk)2
−

l2

q2


−

1

4

1

(q − k + l)2

 (l − (1 − z)k)2

(q − zk)2
−

(l − k)2

q2

 ;

J2(q, k, l1, l2) =
1

4

[
l21

(q − k)2(q − k + l1)2
+

(k − l1)2

(q − k)2(q − l1)2

+
l22

(q − k)2(q − k + l2)2
+

(k − l2)2

(q − k)2(q − l2)2
−

1

2

( (l1 − l2)2

(q − l1)2(q − l2)2

+
(k − l1 − l2)2

(q − k + l1)2(q − l2)2
+

(k − l1 − l2)2

(q − k + l2)2(q − l1)2
+

(l1 − l2)2

(q − k + l1)2(q − k + l2)2

)]
.
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Mueller-Tang jets at LL LO vertex

LL approximation: Non forward gluon Green function

The GGF is given by the Mellin transform of the function fω which is the solution of the BFKL equation. The
solution of the non forward BFKL equation is more naturally expressed in the impact parameter space.

G(k, k′, q,Y ) =

∫ +i inf

−i inf

dω

2πi
eYωfω(k, k′, q)

fω(ρ1, ρ2, ρ
′
1, ρ
′
2) =

1

(2π)6

+ inf∑
n=− inf

∫ +inf

− inf

dν
Rnν

ω − ω(n, ν)
E∗nν(ρ′1, ρ

′
2)Enν(ρ1, ρ2)

Enν(ρ1, ρ2) =

(
ρ1 − ρ2

ρ1ρ2

)h (
ρ∗1 − ρ∗2
ρ∗1ρ
∗
2

)h̄

︸ ︷︷ ︸
Lipatov term

−
(

1

ρ2

)h (
1

ρ∗2

)h̄

−
(
−1

ρ1

)h (−1

ρ∗1

)h̄

︸ ︷︷ ︸
Mueller-Tang correction

Enν are the eigenfunctions in the impact parameter space.
The GGF in momentum space is recovered applying a Fourier transformation to the eigenfunctions.

Ẽnν(k, q) =

∫
d2r1d

2r2

(2π)4
Enν(ρ1, ρ2)e i(k·r1+(q−k)·r2)
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Mueller-Tang jets at LL LO vertex

Mueller Navelet jets at NLL

At NLL the approximation is refined including the terms ∝ αn
s log(n−1)( s

−t
).

• Larger variety of Feynman diagrams give rise to a much more complex
iterating structure

• LL order diagrams evaluated in a broader kinematic domain
Up to two partons are close in rapidity (Quasi-MRK).

y ′1 � y1 � · · · � yi ' yi+1 � · · · � yn � y ′2

The jet vertex gets its part of the radiative corrections

V (kJ , xj , k) = V (0)(kJ , xj , k) + αsV
(1)(kJ , xj , k)

• NL corrections to the jet vertex calculated by Bartels, Colferai and Vacca (BCV).

• QMRK → up to two outgoing parton per vertex
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