

🕅 📖

Leros, GR Sep 4-8, 23

Measurement of

Azimuthal Lepton-Jet Decorrelation

in Deep-Inelastic Scattering at HERA

Bernd Surrow (<u>surrow@temple.edu</u>)

DOE NP contract: DE-SC0013405

Low-x workshop 2023 Leros, Greece, September 3-8, 2023

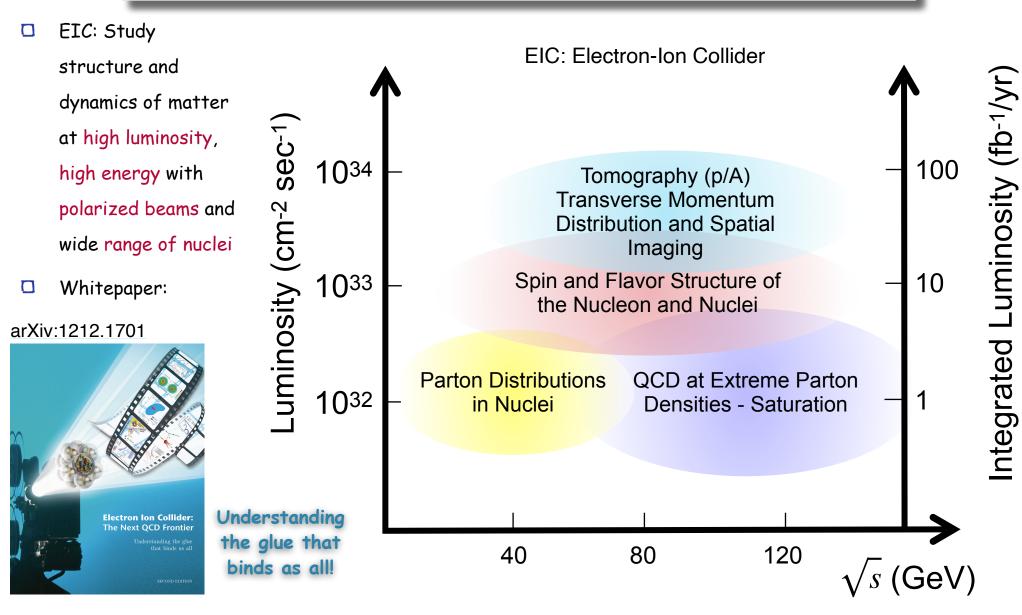
Outline

et

Introduction

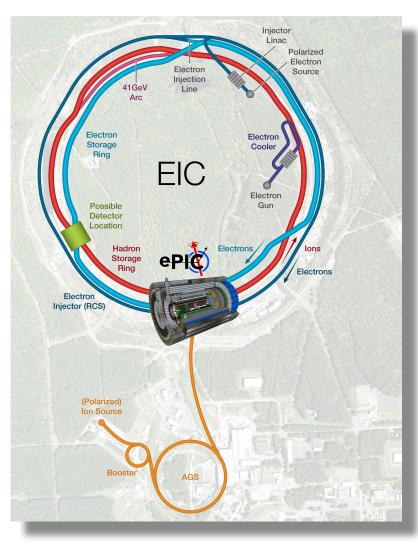
Analysis Details

Results


Summary and Outlook

Low-x workshop 2023 Leros, Greece, September 3-8, 2023 Workshop Jets at the EIC 3D imaging (https://indico.bnl.gov/event/ 8066/), November 23-25, 2020

for at the EIC D imaging


Bernd Surrow

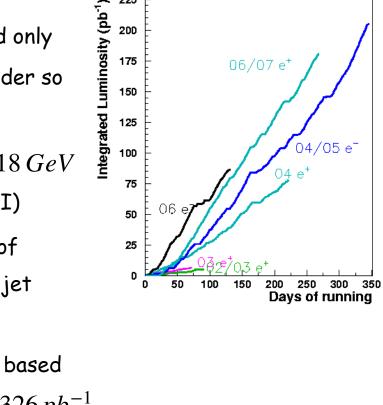
D EIC

Center of Mass Energies:	29GeV - 140GeV
Luminosity:	10 ³³ - 10 ³⁴ cm ⁻² s ⁻¹ / 10-100fb ⁻¹ / year
Highly Polarized Beams:	70%
Large Ion Species Range:	p to U
Number of Interaction Regions:	Up to 2!

- Award of DOE CDO*: December 2019
- Site selection at BNL: January 2020
- Award of DOE CD1*: June 2021
- Anticipated award of CD2*: ~January 2024
- Anticipated start of construction CD3*: ~April 2025
- Anticipated start of operation CD4*: ~April 2032-2034

* CD: Critical Decisions - DOE Project Approval Process

Bernd Surrow

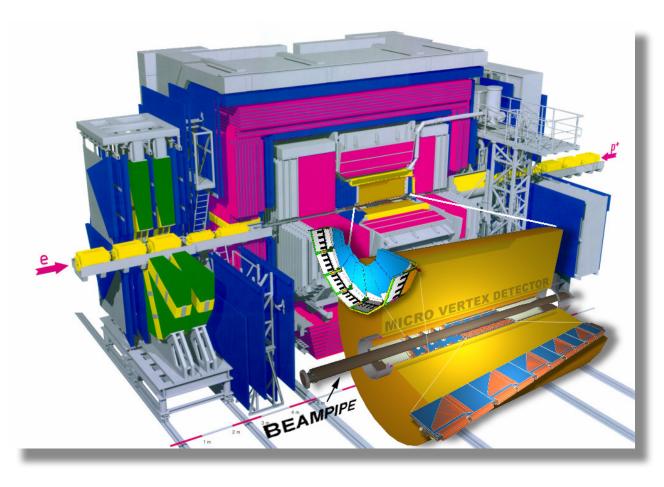

04/05 e⁻

HERA Luminosity 2002 - 2007

HERA

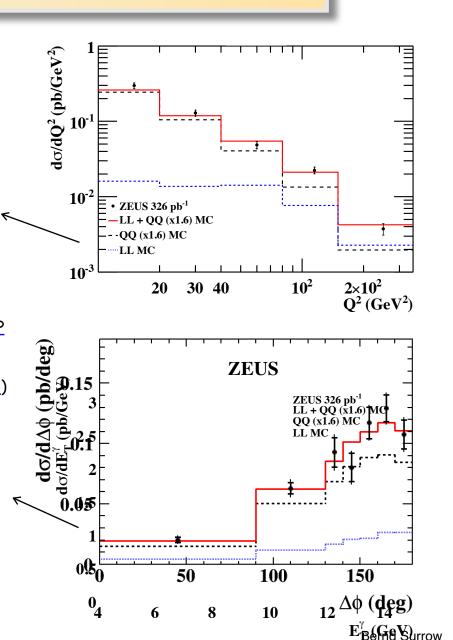
- HERA: Hadron-0
 - Electron Ring
 - Accelerator
 - □ First and only $e^{\pm}p$ collider so far!
 - $\Box \sqrt{s} = 318 \, GeV$ (HERA II)
 - □ Variety of existing jet studies
 - Analysis based

on:
$$L \simeq 326 \, pb^{-1}$$


225

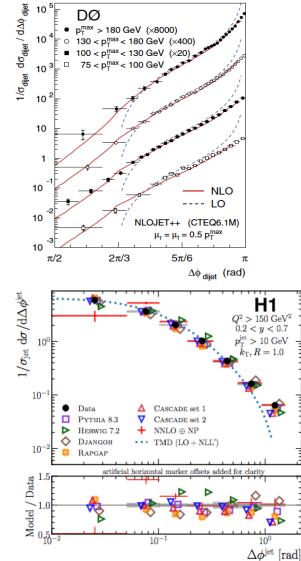
ZEUS Experiment at HERA

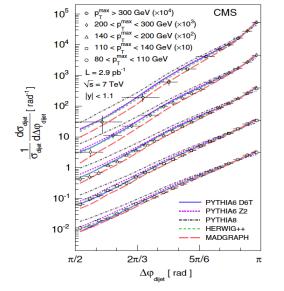
- General purpose detector
 - $\hfill\square$ Jet reconstruction for
 - $E_T > 2.5 \,\mathrm{GeV}$
 - Two independent
 - luminosity monitors
 - (lead-scintillator
 - calorimeter and
 - magnetic spectrometer)
 - using the Bethe-Heitler

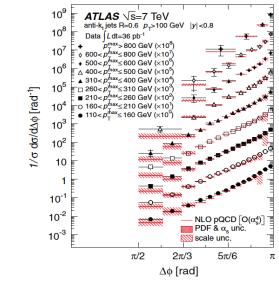


process, $\delta L/L\sim 2~\%$

Previous ZEUS jet results


- Inclusive jets with anti-kt and SIScone algorithms (arXiv:1003.2923, Phys. Lett. B 691 (2010) 127-137)
- Inclusive jets in photoproduction (arXiv:1205.6153, Nucl. Phys. B864 (2012), 1-37)
- Isolated photons accompanied by jets in DIS (arXiv:1206.2270, Phys Lett B 715 (2012) 88-97)
- Isolated photons plus jets in PHP (arXiv:1312.1539, Phys.Let B (2014) Volume 730, 293-301)
- More on isolated photons plus jets in PHP (arXiv:1405.7127, JHEP 2014 (23))
- O Diffractive di-jet production in DIS (Eur. Phys. J. C 76 (2016) 16)
- Diffractive photoproduction of isolated photons at HERA (arXiv: 1705.10251, Phys. Rev. D 96 (2017) 032006)
- Further studies of isolated photon production with a jet in deep inelastic scattering at HERA (arXiv: 1712.04273, J. High Energ. Phys. (2018) 2018: 32)
- Azimuthal correlation in photoproduction and deep inelastic ep scattering at HERA (arXiv:2106.12377,) (JHEP (2021) 102)

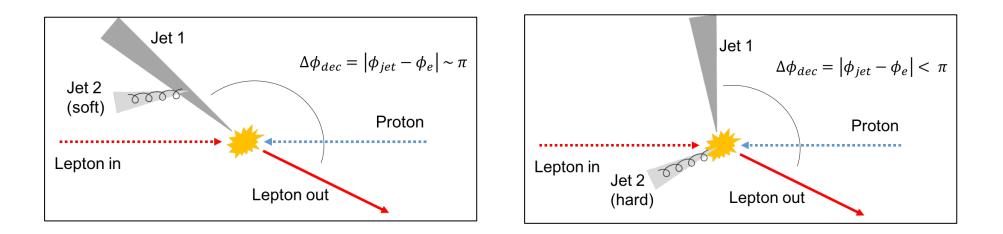



Low-x workshop 2023 Leros, Greece, September 3-8, 2023

Previous azimuthal jet results at hadron-hadron colliders:

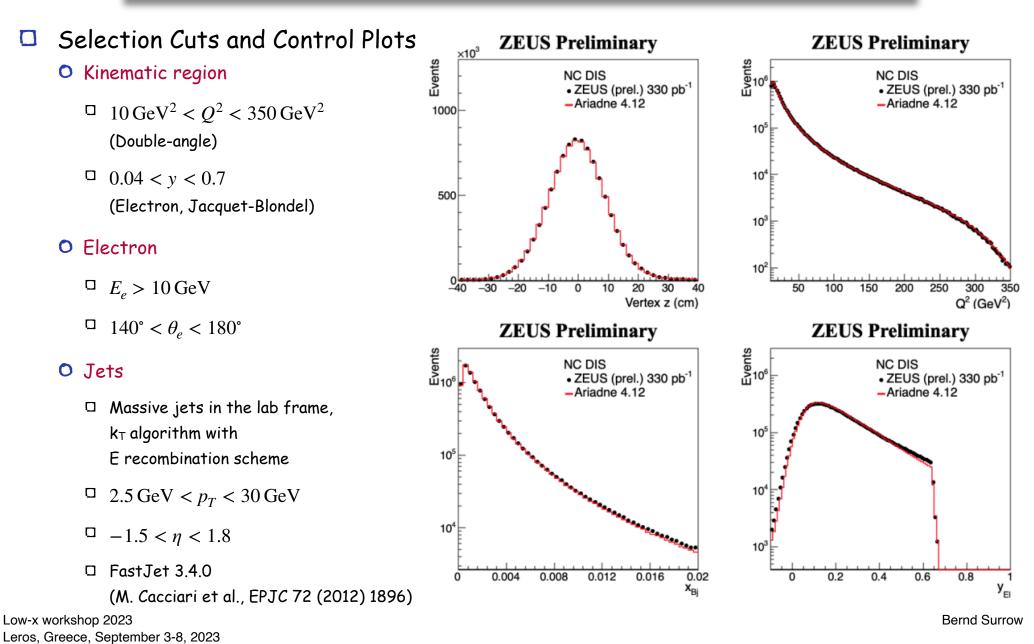
Conclusions for results at Tevatron (DO) and LHC (ATLAS and CMS):

- Improvements in data description by high order correction (NLO to LO).
- MC generators describe data well except in the region $\Delta \phi \sim \pi \Longrightarrow$ tune MC based on data.


Recent results from HERA (H1):

- Improvements in data description by TMD calculation around the region $\Delta \phi \sim \pi$.
- Large overlap of collinear/TMD frameworks.

Low-x workshop 2023 Leros, Greece, September 3-8, 2023


Motivation Jet-lepton decorrelation

- Jet-lepton decorrelation can be used to probe soft and hard QCD radiation effects without explicit description of the additional jets.
- Can access TMD distributions, complementary to SIDIS, without an explicit description of TMD fragmentation function [Liu et al., PRL 122 (2019) 192003, Lui et al., PRD 102 (2020) 094022].
- O HERA measurements: Probe TMD at small x!

Analysis Details

Cross-section determination

• Inclusive ($N_{jet} \ge 1$) measurement of differential cross section in azimuthal decorrelation $\Delta \phi_{dec}$ between the leading jet and the lepton

$$\frac{d\sigma}{d\Delta\phi_{dec}} \left(e + p \to e + \text{jet} + X \right) = \frac{1}{\mathcal{L}} \frac{N_{i, \text{had}}}{\delta\Delta\phi_{\text{dec}, i}}$$

- \Box Leading jet = jet with the highest E_T
- $\Box \ \Delta \phi_{dec} = |\phi_{jet} \phi_e|$
- MC-based (ARIADNE 4.12) unfolding & efficiency correction

O $\epsilon \sim 0.8$, no strong dependence found.

- Measurement unfolded to the hadron level:
 - O Hadron jets with FastJet 3.4.0, kT-algo with E scheme and R = 1
 - O Massive jets in the lab frame

with all final state particles, as identified by ARIADNE,

without scattered lepton and neutrino.

Low-x workshop 2023 Leros, Greece, September 3-8, 2023

Unfolding

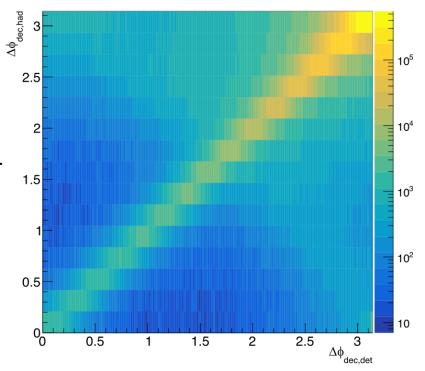
• Matrix-based unfolding:

 L-scan method as interfaced in TUnfold package (S.Schmitt, JINST 7 (2012) T10003)

 \square Takes the migration matrix of $\Delta \phi_{dec}$ as input

• No additional jet matching outside the unfolding

[□] Leading jet misidentification shows up as $\Delta \phi$ shift of, for the case of dijet, $\sim \pi$.

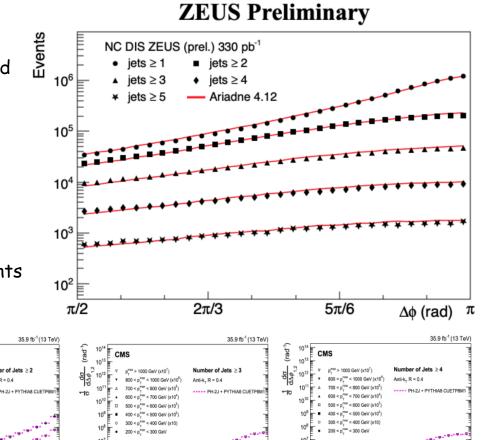

 Model-dependence of the unfolding process estimated with MEPS-LEPTO based MC sample

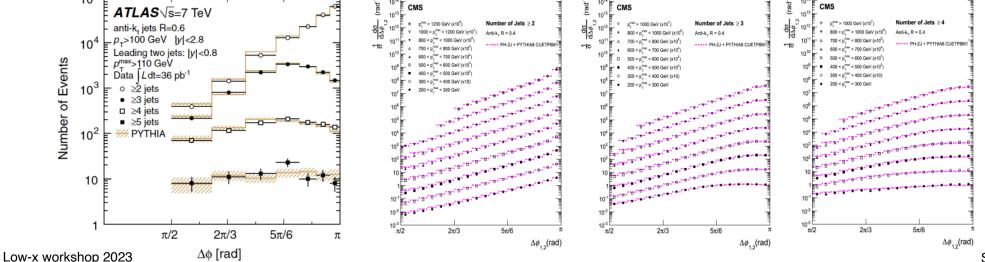
 $\Box \sim 5\%$ effect at $\Delta \phi \sim \pi$.

• For final publication, N_{jet} correlation will also be included in the unfolding process

Low-x workshop 2023 Leros, Greece, September 3-8, 2023

ZEUS Preliminary

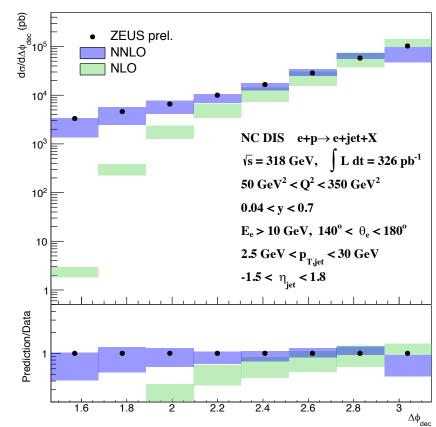

- Theoretical framework
 - Perturbative calculations from UNSAM (Borsa, de Florian, Pedron).
 - Calculations for EIC (Borsa et al., PRL 125 (2020) 082001)
 revisited for HERA kinematics
 - \Box Fixed order (up to $O(\alpha_s^2)$) calculations using the projection-to-Born method
 - \Box Takes a jet plus an extra jet at NLO and fully inclusive DIS at NNLO to produce single-inclusive ($N_{jet} \geq 1$) calculation at NNLO
 - DPDF4LHC15 sets
 - $\hfill\square$ No HQ contribution
 - $\hfill\square$ Calculations are produced at the parton level
 - Hadronization correction with ARIADNE
 - $^{\circ}$ Model dependence in hadronization correction evaluated with LEPTO, ~5%
 - Ongoing communication with experts (Feng Yuan) for TMD calculations for ZEUS kinematics!



Results

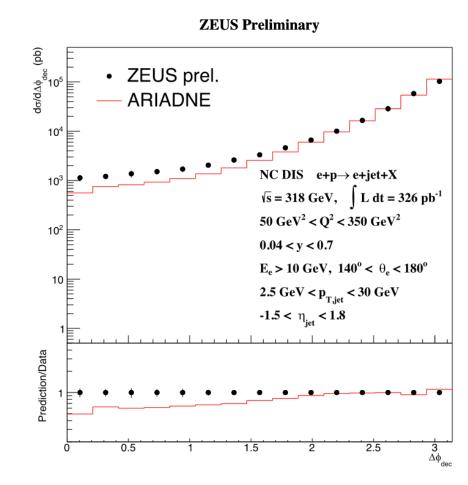
Preliminary result

- $^{oldsymbol{O}}$ Previous preliminary $\Delta\phi_{dec}$ distribution compared to LHC finds a qualitative agreement
- $^{f O}$ Soft gluon effects near $\Delta \phi \sim \pi$ in high jet multiplicity cases
- Agreement with MC degrades at high jet multiplicity, pointing to the need for improvements in the theoretical description

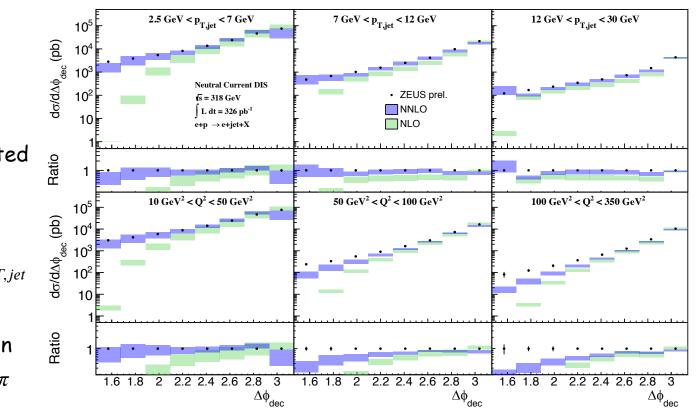

CMS

Leros, Greece, September 3-8, 2023

10⁵

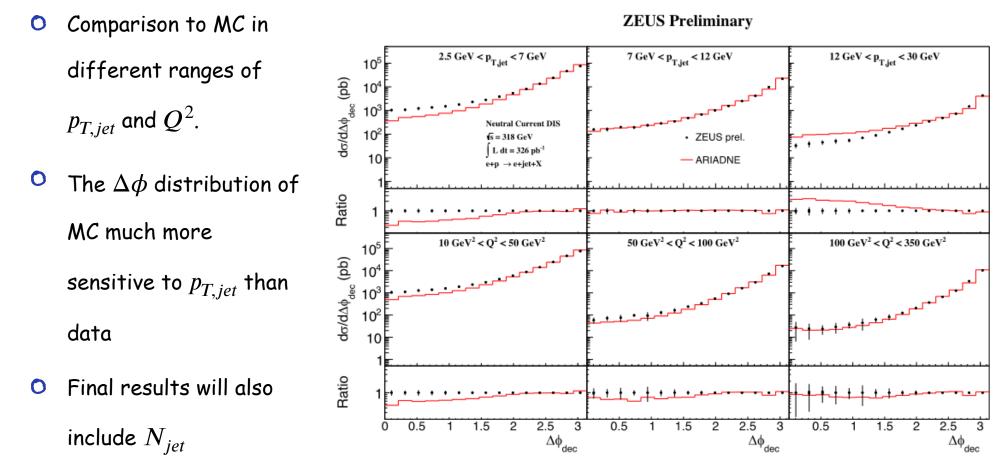

- Azimuthal angle jet/electron cross-section
 - Azimuthal angle jet/electron measurement for the inclusive case $(N_{jet} \ge 1)$
 - □ Systematics study suggests that the model dependence of the unfolding process is the dominating contribution (~5% at $\Delta \phi_{dec} \sim \pi$)
 - \Box Efficiency correction ~20%
 - Comparison to pQCD calculations.
 - \square Hadronization correction with uncertainty of ~5%
 - □ Clear improvement seen from NNLO compared to NLO
 - $\Box~$ Not enough phase space available for additional jet production with NLO around $\Delta\phi_{dec} < 3/4\pi$
 - $\hfill High \, \Delta \phi_{dec}$ behavior due to large logs from soft gluon radiation
 - Input from TMD will improve the understanding in this region

ZEUS Preliminary


- Azimuthal angle jet/electron cross-section
 - Azimuthal angle jet/electron measurement for the inclusive case $(N_{jet} \ge 1)$
 - □ Systematics study suggests that the model dependence of the unfolding process is the dominating contribution (~5% at $\Delta \phi_{dec} \sim \pi$)
 - \Box Efficiency correction ~20%
 - Comparison to ARIADNE MC.
 - ARIADNE is normalized to data luminosity
 - Overall reasonable agreement to data, based on LO + parton shower modeling
 - The $\Delta \phi_{dec}$ distribution is much steeper with ARIADNE, hinting that the high jet multiplicity from hard production may be underestimated

Results

 $\hfill\square$ Azimuthal angle jet/electron cross-section in p_T and Q^2 bins


ZEUS Preliminary

- Comparison to pQCD in different ranges of $p_{T,jet}$ and Q^2 .
- Good jet reconstruction near the kinematic limit $p_{T,jet} \sim 2.5 \ GeV$, as suggested by this comparison
- Soft gluon effects near $\Delta \phi \sim \pi$ maximize in low- $p_{T,jet}$ and Q^2
- Poor description of data in high- Q^2 around $\Delta \phi < 3/4\pi$ currently under investigation.

Results

D Azimuthal angle jet/electron cross-section in p_T and Q^2 bins - MC comparison

measurement

- Prelim. ZEUS results of decorrelation measurements of lepton and leading jet in DIS, similar to previous ZEUS γ-jet results and other experiments in proton-proton collisions
- Probe Transverse-Momentum Distribution Functions (TMD) using azimuthal angular correlations of final state lepton and jet measurements - Complementary to Semi-Inclusive DIS measurements with added benefit of no need for TMD fragmentation functions!
- The MC predictions from ARIADNE describe the main features of data well. However, some discrepancies are observable!
- Clear improvement seen from NNLO compared to NLO
- **Final Differential cross-section measurements/publication** will be presented at different p_{T} , Q^2 and jet multiplicity bins.
- Decorrelation measurements of lepton and leading jet in DIS will provide an important probe of TMDs at EIC!